
X

The Role of Compute in Autonomous Micro Aerial
Vehicles: Optimizing for Flight Time and Energy Efficiency

BEHZAD BOROUJERDIAN, University of Texas at Austin
HASAN GENC, University of Texas at Austin and University of California Berkeley
SRIVATSAN KRISHNAN, Harvard University
BARDIENUS PIETER DUISTERHOF, Harvard University and Delft University of Technology
BRIAN PLANCHER, Harvard University
KAYVAN MANSOORSHAHI, University of Texas at Austin
MARCELINO ALMEIDA, University of Texas at Austin
WENZHI CUI, University of Texas at Austin
ALEKSANDRA FAUST, Robotics at Google
VIJAY JANAPA REDDI, Harvard University and The University of Texas at Austin
https://github.com/harvard-edge/MAVBench

Autonomous and mobile cyber-physical machines are becoming an inevitable part of our future. In particular,
Micro Aerial Vehicles (MAVs) have seen a resurgence in activity. With multiple use cases, such as surveillance,
search and rescue, package delivery, and more, these unmanned aerial systems are on the cusp of demonstrating
their full potential. Despite such promises, these systems face many challenges, one of the most prominent of
which is their low endurance caused by their limited onboard energy. Since the success of a mission depends on
whether the drone can finish it within such duration and before it runs out of battery, improving both the time
and energy associated with the mission are of high importance. Such improvements have traditionally arrived at
through the use of better algorithms. But our premise is that more powerful and efficient onboard compute can
also address the problem. In this paper, we investigate how the compute subsystem, in a cyber-physical mobile
machine, such as a Micro Aerial Vehicle , can impact mission time (time to complete a mission) and energy.
Specifically, we pose the question as “what is the role of computing for cyber-physical mobile robots?” We show
that compute and motion are tightly intertwined, and as such a close examination of cyber and physical processes
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(a) Registered UAVs in the FAA database.
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(b) Predicted number of UAVs by the FAA.

Fig. 1. Currently and predicted number of registered UAVs according to FAA [7]. A visible growth
indicates the significance of these vehicles which demands system designers attention.

and their impact on one another is necessary. We show different “impact paths” through which compute impacts
mission metrics and examine them using a combination of analytical models, simulation, micro and end-to-end
benchmarking. To enable similar studies, we open sourced MAVBench, our tool-set, which consists of (1) a
closed-loop real-time feedback simulator and (2) an end-to-end benchmark suite comprised of state-of-the-art
kernels. By combining MAVBench, analytical modeling, and an understanding of various compute impacts, we
show up to 2X and 1.8X improvements for mission time and mission energy for two optimization case studies.
Our investigations, as well as our optimizations, show that cyber-physical co-design, a methodology with which
both the cyber and physical processes/quantities of the robot are developed with consideration of one another,
similar to hardware-software co-design, is necessary for arriving at the design of the optimal robot.

CCS Concepts: • General and reference → Empirical studies; Measurement; Experimentation; Performance; •
Computer systems organization → Embedded and cyber-physical systems; Robotics.
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1 INTRODUCTION
Unmanned aerial vehicles (UAVs), or drones, are rapidly increasing in number. Between 2015, when
the U.S. Federal Aviation Administration (FAA) first required every owner to register their drone,
and 2018, the number of drones has grown by over 100%. The FAA indicates that there are over a
million drones in the FAA drone registry database (Figure 1a). Due in large part to an increasing set
of use cases, including sports photography [59], surveillance [32], disaster management, search and
rescue [45, 56], transportation and package delivery [2, 22, 24], FAA predicts that this number will
only increase over the next 5 years as indicated by the projections shown in Figure 1b.

The growth and significance of this emerging new domain calls for cyber-physical co-design
involving computer and system architects. Traditionally, the robotics domain has mostly been left
to experts in mechanical engineering and controls. However, as we show in this paper, drones are
challenged by limited battery capacity and therefore low endurance (how long the drone can last in
the air). For example, most off-the-shelf drones have an endurance of less than 20 minutes [22]. This
need for greater endurance demands the attention of hardware and system architects.
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As domain specific compute platforms are becoming an emerging paradigm [4], in this paper,
we investigate how the compute subsystem in a cyber-physical mobile machine, such as a Micro
UAV (MAV), can impact the mission time1 and energy and consequently the MAV’s endurance.
We illustrate that fundamentals of compute and motion are tightly intertwined. Hence, an efficient
compute subsystem can directly impact mission time and energy. We use a directed acyclic graph,
which we call the “cyber-physical interaction graph ", to capture the different ways (paths in the graph
or “impact paths”) through which compute can affect mission time and energy. By analyzing the
impact paths, one can observe the effect that each subsystem has on each mission metric. Furthermore,
we can find out through which cyber and physical quantities (e.g., response time and compute mass)
this impact occurs.

To study the different impact paths, we use a mixture of analytical models, benchmarks, and
simulations. For our analytical models, we use detailed physics to show how compute impacts
cyber and physical quantities and ultimately mission metrics such as mission time and energy.
For example, through derivation, we show how compute impacts response time, a cyber quantity,
which impacts velocity, a physical quantity, which in turn impacts mission time. For our simulator
and benchmarks, we address the lack of systematic benchmarks and infrastructure for research by
developing MAVBench, a first of its kind platform for the holistic evaluation of MAVs, involving a
closed-loop simulation framework and a benchmark suite. MAVBench facilitates the integrated study
of performance and energy efficiency of not only the compute subsystem in isolation but also the
compute subsystem’s dynamic and runtime interactions with the simulated MAV.

MAVBench, which is a framework that is built on top of AirSim [64], faithfully captures all of the
interactions a real MAV encounters and ensures reproducible runs across experiments, starting from
the software layers down to the hardware layers. Our simulation setup uses a hardware-in-the-loop
configuration that can enable hardware and software architects to perform co-design studies to
optimize system performance by considering the entire vertical application stack, including the
Robotics Operating System (ROS). Our setup reports a variety of quality-of-flight (QoF) metrics,
such as the performance, power consumption, and trajectory statistics of the MAV.

MAVBench includes an application suite covering a variety of popular applications of micro aerial
vehicles: Scanning, Package Delivery, Aerial Photography, 3D Mapping and Search and Rescue.
MAVBench applications are comprised of holistic end-to-end application dataflows found in a typical
real-world drone application. These applications’ dataflows are comprised of several state-of-the-art
computational kernels, such as object detection [31, 60], occupancy map generation [43], motion
planning [13], localization [54, 57], which we integrated together to create complete applications.

MAVBench enables us to understand and quantify the energy and performance demands of typical
MAV applications from the underlying compute subsystem perspective. More specifically, it allows
us to study how compute impacts cyber and physical quantities along with the downstream effects
of those impacts on mission metrics. It helps designers optimize MAV designs by answering the
fundamental question of what is the role of compute in the operation of autonomous MAVs?

Using the analytical models, benchmarks, and simulations, we quantitatively show that compute
has a significant impact on MAV’s mission time and energy. We bin the various impact paths
mentioned above to three clusters and study them separately and then simultaneously (holistically).
First, by studying each cluster independently, we isolate its effect to gain a better insight into its
impact, as well as its progress along the impact path. Second, by studying them simultaneously, we
illustrate the clusters aggregate impacts. The latter approach is especially valuable when the clusters
have opposite impacts, and hence understanding compute’s overall impact requires a holistic outlook.

1Please note that mission time is defined as time to completion for a specific mission such as package delivery.
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Finally, we present two optimization case studies showing how our tool-sets combined with an
understanding of the compute impact on the robot can be used to improve mission time and energy.
In the first case study, we examine a sensor-cloud architecture for drones where the computation
is distributed across the edge and the cloud to improve both mission time and energy. Such an
architecture shows a reduction in the drone’s overall mission time and energy by as much as 2X and
1.3X respectively when the cloud support is enabled. The second case study targets Octomap [43], a
computationally intensive kernel that is at the heart of many of the MAVBench applications, and
demonstrates how a runtime dynamic knob tuning can reduce overall mission time and energy
consumption to improve battery consumption by as much as 1.8X.

In summary, we make the following contributions:

• We introduce an acyclic directed graph called the cyber-physical interaction graph to capture
various impact paths that originate from compute in cyber-physical systems.

• We present various analytical models demonstrating these impacts for MAVs.
• We provide an open-source, closed-loop simulation framework to capture these impacts. This

enables hardware and software architects to perform performance and energy optimization
studies that are relevant to compute subsystem design and architecture.

• We introduce an end-to-end benchmark suite, comprised of several workloads and their
corresponding state-of-the-art kernels. These workloads represent popular real-world use cases
of MAVs further aiding designers in their end-to-end studies.

• Combining our tool-sets and analytical models, we demonstrate the role of compute and its
relationship with mission time and energy for unmanned MAVs.

• We use our framework to present optimization case studies that exploit compute’s impact on
performance and energy of MAV systems.

The rest of the paper is organized as follows. Section 2 provides a basic background about Micro
Aerial Vehicles, the reasons for their prominence, and the challenges MAV system designers face.
Section 3 demonstrates the tight interaction between the cyber and physical processes of a MAV and
introduces the “cyber-physical interaction graph” to capture how these two processes impact one
another. Architects simulators and benchmarks need to be updated to model such impacts. To this
end, Section 4 describes the MAVBench closed-loop simulation platform, and Section 5 introduces
the MAVBench benchmark suite and describes the computational kernels and full-system stack it
implements. Section 6 then describes our evaluation setup, and Section 7, Section 8, and Section 9
use a combination of our analytical models, simulator, and benchmarks to dissect the impact of
compute on MAVs. Section 10 presents two case studies exemplifying optimizations of the sort that
system designers can exploit to improve mission time and energy, Section 11 presents the related
work, and finally, Section 12 summarizes and concludes the paper.

Table 1. UAVs by NATO Joint Air Competence Power [33].

Category Weight (kg) Altitude (ft) Mission Radius (km)
Micro <2 <200 5
Mini (2-20) (200- 3000) 25
Small (20-150) (3000-5000) 50

Tactical (150-600) (5000-10000) 2000
Combat >600 >10000 Unlimited

ACM Trans. Comput. Syst., Vol. X, No. XXX, Article X. Publication date: X 2021.



The Role of Compute in Autonomous Micro Aerial Vehicles: Optimizing for Flight Time and
Energy Efficiency X:5

2 MICRO AERIAL VEHICLE BACKGROUND
We provide a brief background on Micro Aerial Vehicles (MAVs), the most ubiquitous and growing
segment of Unmanned Aerial Vehicles (UAVs). We then describe various subsystems that make up a
MAV, and finally present the overall system level constraints facing MAVs.

2.1 Micro Aerial Vehicles (MAVs)
UAVs initially emerged as military weapons for missions in which having a human pilot would be a
disadvantage [70]. But since then there has been a recent proliferation of various other aerial vehicles
for civilian applications including crop surveying, industrial fault detection, mapping, surveillance
and aerial photography. There is no single established standard to categorize the wide range of UAVs.
But Table 1 shows one proposed classification guide provided by NATO. This classification is largely
based on the weight of the UAV, and the mission altitude and range.

In this paper, we focus on MAVs. A UAV is classified as a micro UAV if its weight is less than 2 kg,
and it operates within a radius of 5 km. MAVs’ small size increases their accessibility and affordability
by shortening their “development and deployment time,” and reducing the cost of “prototyping and
manufacturing” [69]. Also, their small size coupled with their ability to move flexibly empowers
them with the agility and maneuverability necessary for these emerging applications.

MAVs come in different shapes and sizes. A key distinction is their wing type, ranging from
fixed wing to rotary wing. Fixed wing MAVs, as their names suggest, have fixed winged airframes.
Due to the aerodynamics of their wings, they are capable of gliding in the air, which improves
their “endurance” (how long they last in the air). However, this also results in these MAVs typically
requiring (small) runways for taking-off and landing. In contrast, rotor wing MAVs not only can take
off and land vertically, but they can also move with more agility than their fixed-wing counterparts.
They do not require constant forward airflow movement over their wings from external sources since
they generate their own thrust using rotors. These capabilities enhance their benefits in constrained
environments, especially indoors, where there are many tight spaces and obstacles. For many
applications these benefits outweigh the cost of reduced endurance and as such rotor wing MAVs
have become the dominant form of MAV. We focus on rotor based MAVs, specifically quadrotors.
Nonetheless, the conclusions we draw from our studies apply other UAV categories as well.

2.2 MAV Robot Complex
MAV’s have three main subsystems that make up their robot complex: sensing, actuation, and
compute, as shown in Figure 2. Similar to other cyber-physical systems, the design and development
of MAVs requires an understanding of their composed and intertwined subsystems which we detail
in this section. In these cyber-physical systems, the data flows in a (closed) loop, starting from the
environment, going through the MAV and back to the environment, as shown in Figure 3.

Sensors: Sensors are responsible for capturing the state associated with the robot and its surround-
ing environment. To enable intelligent flights, MAVs must be equipped with a rich set of sensors
capable of gathering various forms of data such as depth, position, and orientation. For example,
RGB-D cameras can be utilized for determining obstacle distances and positions. The number and
the type of sensors are highly dependent on the workload requirements and the compute capability of
onboard processors which are used to interpret the raw data coming from the sensors.

Flight Controller (Compute): The flight controller (FC) is an autopilot system responsible for
the MAV’s stabilization and conversion of high-level to low-level actuation commands. While they
themselves come with basic sensors, such as gyroscopes and accelerometers, they are also used
as a hub for incoming data from other sensors such as GPS and sonar. For command conversions,
FCs take high-level flight commands such as“take-off" and lower them to a series of instructions
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2 Sensors: RealSense R200 Camera
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Compute: Companion Computer (Atom x7-Z8750) + 
Flight Controller (PX4)1

Actuators: Motors + Propellers

Fig. 2. MAV robot complex. The three main subsystems, i.e., compute, sensors and actuators, of an
off-the-shelf Intel Aero MAV are shown. All other MAVs have a similar subsystem structure.

Environment

Companion Computer

   Flight Controller

Sensors Actuators

Fig. 3. Closed-loop data flow in a MAV. Information flows from sensors collecting environment data
into the MAV’s compute system, down into the actuators and back to the environment.

understandable by actuators (e.g., current commands to electric motors powering the rotors). FCs use
light-weight processors such as the ARM Cortex-M3 32-bit RISC core for the aforementioned tasks.

Companion Computer (Compute): The companion computer is a powerful compute unit, com-
pared to the FC, that is responsible for the processing of the high level, computationally intensive
tasks (e.g., computer vision). Not all MAVs come equipped with companion computers. Rather, these
are typically an add-on option for more processing. NVIDIA’s TX2 is a representative example with
significantly more compute capability than a standard FC.

Actuators: Actuators allow robot to react to their surroundings. They range from rather simple
electric motors powering rotors to robotic arms capable of grasping and lifting objects. Similar to
sensors, their type and number are a function of the workload and processing power on board.

2.3 MAV Constraints
A MAV’s mechanical (propellers, payload, etc.) and electrical subsystems (motors and processors)
constrain its operation and endurance, and as such present unique challenges for system architects
and engineers. For example, when delivering a package, the payload size (i.e., the size of the package)
affects the mechanical subsystem, requiring more thrust from the rotors and this, in turn, affects
the electrical subsystem by demanding more energy from the battery source. Comprehending these
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Fig. 4. MAVs based on battery capacity and size. Endurance is important for MAVs to be useful in the
real-world. However, their small size limits the amount of onboard battery capacity.

constraints is crucial to understand how to optimize the system. The biggest of the constraints as they
relate to computer system design are performance, energy, weight and safety.

Performance Constraints: MAVs are required to meet various real-time constraints. For example,
a drone flying at high speed looking for an object requires fast object detection kernels. Such a
task is challenging in nature for large-sized drones that are capable of carrying high-end computing
systems, and virtually impossible on smaller sized MAVs. Hence, the stringent real-time requirements
dictate the compute engines that can be put on these MAVs. Note that in the studies presented in this
paper, our real-time constraints are assumed to be soft constraints as the operating system we use
(ROS [18]), is not a full-fledged real-time operating system (RTOS).

Energy Constraints: The amount of battery capacity on board plays an important role in the type
of applications MAVs can perform. Battery capacity has a direct correlation with the endurance of
these vehicles. To understand this relationship, we show the most popular MAVs available in the
market and compare their battery capacity to their endurance. As Figure 4a shows, higher battery
capacity translates to higher endurance. We see a step function trend, i.e., for classes of MAVs that
has similar battery capacity, they have similar endurance. On top of this observation, we also see that
for the same battery capacity, a fixed wing has longer endurance compared to rotor wing MAVs. For
instance, in Figure 4a, we see that the Disco FPV (”Fixed wing”) has higher endurance compared to
the Bebop 2 Power (”Rotor wing”) even though they have a similar amount of battery capacity. We
also note that the size of MAV also has a correlation with battery capacity as shown in Figure 4b.

Weight Constraints: MAV weight, inclusive of its payload weight, can also have a significant
impact on its endurance. Higher payload puts stress on the mechanical subsystems requiring more
thrust to be generated by the rotors for hovering and maneuvering. This significantly reduces the
endurance of MAVs. For instance, it has been shown that adding a payload of approximately 1.3 kg
reduces flight endurance by 4X [40].

Safety Constraints: Safety and thus reliability is an especially important topic in the context of
autonomous vehicles [20, 36, 46, 61]. Traditionally, in the computing domain, it is common to study
the susceptibility of execution to errors that manifest in programs and the architecture, however
for autonomous vehicles, in addition, both noise in the sensory data and actuator failures must be
rigorously monitored and designed around.
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3 A CYBER-PHYSICAL PERSPECTIVE ON MAVS
MAVs are an integration of cyber and physical processes. A tight interaction of the two enables
compute to control the physical actions of an autonomous MAV. Robot designers need to understand
how such cyber and physical processes impact one another and ultimately, the robot’s end-to-end
behavior. Furthermore, similar to cross-compute layer optimization approach widely adopted by the
compute system designers, robot designers can improve the robot’s optimality by adopting a robot’s
cross-system (i.e., cross cyber and physical) optimization methodology and co-design.

To this end, we introduce the cyber-physical interaction graph, a directed acyclic graph that
captures how different subsystems of a robot impact the mission metrics through various cyber and
physical quantities. We familiarize the reader with the graph (using a simple example) and move
onto presenting what the graph looks like for a complicated MAV robot. Next, looking through the
lens of this graph, we provide a brief example of how a subsystem such as compute can impact a
mission metric, and finally discuss the need for new tools to investigate these impacts in details.

3.1 Cyber-Physical Interaction Graph
A cyber-physical interaction graph has four components to it. It has (1) a robot complex, (2) cyber-
physical quantities, (3) impact functions, and (4) mission metrics. Subsystems in the robot complex
have either cyber and/or physical quantities that impact one another that are captured in the graph,
which can ultimately affect mission metrics such as mission time (time to completion for a mission)
or energy consumption (energy consumption associated with a mission).

Figure 5a shows a generic cyber-physical interaction graph. The graph consists of a set of edges
and vertices. The subsystems making up the robot complex are denoted using ellipses. The mission
metrics specifying the metrics developers use to measure the mission’s success are shown using
diamonds. The cyber-physical quantities specifying various quantities that determine the behavior of
the robot are shown using rectangles. The impact functions, capturing the impact of one quantity on
another and further on the mission metrics, are shown using contact points (filled black circles when
two or more edges cross). The edges in the graph imply the existence and the direction of the impact.

To investigate the impact of one vertex on another, such as compute and mission time, we need to
examine all the paths originating from the first vertex (compute) and ending with the second vertex
(mission time). We call each one of these paths “impact paths.”

We use a toy example of a simple robot arm (Figure 5b) to familiarize the reader with the
graph. Our robotic arm has two subsystems, namely a compute and an actuation subsystem. These
subsystems impact mission time, i.e., the time it takes for the robot to relocate all the boxes, through
a cyber quantity such as control throughput and a physical quantity such as arm’s mass. The green-
color/double-sided and blue-color/coarse-grained-dashed paths show two paths that compute impacts
mission time. Intuitively speaking, through the blue-color/coarse-grained-dashed path, compute
impacts controller’s throughput and hence the robot’s rotation speed. This, in return, impacts mission
time. Through the green-color/double-sided path, compute impacts the mass of the robot and hence
dictating the speed and ultimately, the mission time. Note that the impact function, shown with the
marker F in Figure 5b, is simply an addition function since the robot’s overall mass is the aggregation
of the compute and actuation subsystem mass.

3.2 MAV Cyber-Physical Interaction Graph
We apply the cyber-physical interaction graph to our quadrotor MAV. The quadrotor consists of three
subsystems, namely the sensory, actuation, and compute subsystem. Figure 6 illustrates the MAV’s
cyber-physical interaction graph broken down into the four major subcomponents.
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Fig. 5. Cyber-physical interaction graph. This graph captures how the various subsystems of a robot
impact mission metrics through cyber and physical quantities that interact with one another.

We focus on three cyber quantities, i.e, sensing-to-actuation latency (Sensing-Actuation Latency
in the graph), sensing-to-actuation throughput (Sensing-Actuation Throughput in the graph), and
Response Time. Sensing-to-actuation latency is the time the drone takes to sample sensory data and
process them to issue flight commands ultimately. Sensing-to-actuation throughput is the rate with
which the drone can generate the aforementioned (and new) flight commands. Response time is
the time the drone takes to respond to an event emerging (e.g., the emergence of an obstacle in the
drone’s field of view) in its surrounding environment.

For the physical quantities, we focus on motion dynamic/kinematic related quantities such as mass,
i,e, the total mass of the drone, its acceleration, and velocity. This is because they impact our mission
metrics. For instance, an increase in mass can decrease acceleration, which translates to more power
demands from the rotors, and that ultimately increases the overall mission energy consumption.

For mission metrics, we focus on time and energy. These metrics are chosen due to their importance
to the mission success. Reducing mission time is of utmost importance for most applications such as
package delivery, search and rescue, scanning, and others. Also, reduction in energy consumption is
valuable as a drone that is out of battery is unable to finish its mission.

The impact functions range from simple addition (marker 1 in Figure 6) to more complex linear
functions (marker 2) to non-linear relations (marker 3).

Note that although the MAV cyber-physical interaction graph presented in this paper does not
contain all the possible cyber and physical quantities associated with a MAV, we have included the
ones that have the most significant impact on our mission metrics.

3.3 Examining the Role of Compute Using the Cyber-physical Interaction Graph
Compute plays a crucial role both in the overall mission time and total energy consumption of a
MAV in different ways, which we refer to as impact paths. Figure 6, highlights two paths that can
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Fig. 6. Cyber-physical interaction graph for our quadrotor MAV with some path examples.

influence mission energy. We briefly explain these to give the reader an intuition for how compute
affects MAV’s mission metrics, deferring the details until later for discussion.

Through one path, the impact is positive (i.e., lowering the energy consumption and hence saving
battery) while through the other, the impact is negative (i.e., increasing the energy consumption). In
the positive impact path, i.e., the blue-color/coarse-grained-dashed path, compute can reduce the
mission energy. This is because a platform with more compute capability reduces a cyber quantity,
such as sensing-to-actuation latency and response time. This allows the drone to respond to its
environment faster and in return, increase a physical quantity like its velocity. By flying faster, the
drone finishes its mission faster and so reduces a mission metric such as its total mission energy.

Looking through the lens of another path, the impact is negative (i.e., energy consumption
increases). In the negative impact path, i.e., the red-color/fine-grained-dashed path, a more compute
capable platform has a negative impact on the mission energy because it consumes more power.

We count a total of nine impacts paths originating with compute and ending with mission time and
energy. This paper quantitatively examines all such paths where the cyber and physical quantities
impact one another dictating the drone’s behavior. At first in sections 7 and 8, we investigate them in
isolation to gain a better insight into the underlying concepts, and then in section 9, we put them
all together for a holistic examination. Overall, we see that an increase in compute can positively
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impact (reduce) mission time and energy by improving cyber quantities such as sensing-to-actuation
throughput and latency; however, an increase in compute can negatively impact the mission time and
energy through increasing physical quantities such as quad’s mass and power.

Investigating the cyber and physical interactions of the sorts mentioned above requires new tools.
This is due to the numerous differences between cyber-physical systems and their more traditional
counterparts (i.e., desktops, servers, smartphones, etc.). Such differences need to be appreciated,
and the architects’ tool sets need to be adjusted accordingly. In this paper, we mainly focus on two
major difference, namely (1) continuous interaction of the system with its complex and unpredictable
surrounding environment, an aspect that is void in traditional systems, and (2) a closed-loop data-flow.

To enable various system design research and development, we provide a simulator (Section 4)
and a benchmark suite (Section 5) to model the MAV-environment close interactions. Furthermore,
the environments’ complexity is captured with high fidelity using a game engine. And finally, the
closed-loop data flow nature of these systems are modeled using hardware in the loop simulator. In
the next two sections, we discuss each of these tools in detail. It is worth noting that although this
paper mainly focuses on Micro Aerial Vehicles (MAVs), the generality of our simulation framework
allows for the investigation of other autonomous machines (e.g., AirSim now supports cars as well).
With this, we hope to systematically bootstrap a collaboration between the robotics and system
design community—an opportunity for domain-specific architecture specialization.

4 CLOSED-LOOP SIMULATION
In this section, we present a closed-loop simulation environment for simulating and studying MAVs.
We show how our setup captures MAV robot complex, i.e., MAV subsystems and their components
and further their interactions in a closed-loop setup. We describe the knobs that our simulator supports
to enable exploratory studies for cyber-physical co-design. We also describe how the simulator models
mission metrics such as energy consumption, in addition to functionality and performance.

4.1 Simulation Setup
Closed-loop operation is an integral component of autonomous MAVs. As described previously in
Section 2, in such systems, the data flow in a (closed) loop, starting from the environment, going
through the MAV and back to the environment, as shown in Figure 3. The process involves sensing the
environment (Sensors), interpreting it and making decisions (Compute), and finally navigating within
or modifying the environment (Actuators) in a loop. In this section, we show how our simulation
setup, shown in Figure 7, maps to the various components corresponding to a MAV robot complex.
Furthermore, we discuss the simulator’s ability to capturing various cyber and physical quantities.

Environments, Sensors and Actuators: Environments, sensors and actuators are simulated with
the help of a game engine called Unreal [8]. With a physics engine at its heart, it “provides the ability
to perform accurate collision detection as well as simulate physical interactions between objects
within the world” [14]. Unreal provides a rich set of environments such as mountains, jungles, urban
setups, etc. to simulate.

To simulate MAV’s dynamics and kinematics, we used AirSim, an open-source Unreal based plug-
in from Microsoft [11, 64]. Through AirSim we can study the impact of drone’s physical quantities
such as velocity and acceleration. We limit our sensors and actuators to the ones realistically
deployable by MAVs, such as RGB-D cameras and IMUs. Unreal and Airsim run on a powerful
computer (host) capable of physical simulation and rendering. Our setup uses an Intel Core i7 CPU
and a high-end NVIDIA GTX 1080 Ti GPU.

Flight Controller: AirSim supports various flight controllers that can be either hardware-in-
the-loop or completely software-simulated. For our experiments, we chose the default software-
simulated flight controller provided by AirSim. However, AirSim also supports other FCs, such
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Fig. 7. Architectural overview of our closed-loop simulation.

as the Pixhawk [15], shown in black in Figure 7 which runs the PX4 [16] software stack. AirSim
supports any FC which can communicate using MAVLINK, a widely used micro aerial vehicle
message marshaling library [10].

Companion Computer: We used an NVIDIA Jetson TX2 [6], a high-end embedded platform
from Nvidia with 256 Pacal CUDA cores GPU and a Quad ARM CPU; however, the flexibility of
our setup allows for swapping this embedded board with others such as x86 based Intel Joule [9].
TX2 communicates with Airsim and also FC via Ethernet. Note that the choice of the companion
computer influences both cyber and physical quantities such as response time and compute mass.

ROS: Our setup uses the popular Robot Operating System (ROS) for various purposes such as
low-level device control and inter-process communication [18]. Robotic applications typically consist
of many concurrently-running processes that are known as “nodes.” For example, one node might
be responsible for navigation, another for localizing the MAV and a third for object detection. ROS
provides peer-to-peer communication between nodes, either through blocking “service” calls, or
through non-blocking FIFOs (known as the Publisher/Subscriber paradigm).

Workloads: Our workloads runs within the ROS runtime on TX2. Briefly, we developed five
distinct workloads, each representing a real world usecase: agricultural scanning, aerial photography,
package delivery, 3D mapping and search and rescue. They are extensively discussed in Section 5.1.

Putting It All Together: To understand the flow of data, we walk the reader through a simple
workload where the MAV is tasked to detect an object and fly toward it. The object (e.g., a person)
and its environment (e.g., urban) are modeled in the Unreal Engine. As can be seen in Figure 7,
the MAV’s sensors (e.g., accelerometer and RGB-D Camera), modeled in Airsim, feed their data
to the flight controller (e.g., physics data to PX4) and the companion computer (e.g., visual and
depth to TX2) using MAVLink protocol. The kernel (e.g., object detection), running within the ROS
runtime environment on the companion computer, is continuously invoked until the object is detected.
Once so, flight commands (e.g., move forward) are sent back to the flight controller, where they get
converted to a low-level rotor instruction stream flying the MAV closer to the person.

ACM Trans. Comput. Syst., Vol. X, No. XXX, Article X. Publication date: X 2021.



The Role of Compute in Autonomous Micro Aerial Vehicles: Optimizing for Flight Time and
Energy Efficiency X:13

4.2 Simulation Knobs and Extensions
With the help of Unreal and AirSim, our setup exposes a wide set of knobs. Such knobs enable
the study of MAVs with different characteristics targeted for a range of workloads and conditions.
For different environments, the Unreal market provides a set of maps free or ready for purchase.
Furthermore, by using Unreal programming, we introduce new environmental knobs, such as (static)
obstacle density, (dynamic) obstacle speed, and so on. In addition, Unreal and AirSim allow for the
MAV and its sensors to be customized. For example, the cameras’ resolution, their type, number, and
positions all can be tuned according to the workloads’ need.

Our simulation environment can be extended. For the compute on edge, the TX2 can be replaced
with other embedded systems or even micro-architectural simulators, such as gem5. Sensors and
actuators can also be extended, and various noise models can be introduced for reliability studies.

4.3 Energy Simulation and Battery Model
We extended the AirSim simulation environment with an energy and a battery model to collect
mission energy data in addition to mission time. Our energy model is a function of the velocity and
acceleration of the MAV [37]. The higher the velocity or acceleration, the higher the amount of
energy consumption. Velocity and acceleration values are sampled continuously, their associated
power calculated and integrated for capturing the total energy consumed by the MAV.

Equation 1 shows our parametric power estimation model proposed in [67].

𝑃 =


𝛽1
𝛽2
𝛽3


𝑇 



®𝑣𝑥𝑦



®𝑎𝑥𝑦



®𝑣𝑥𝑦

 

®𝑎𝑥𝑦


 +


𝛽4
𝛽5
𝛽6


𝑇 

∥®𝑣𝑧 ∥
∥ ®𝑎𝑧 ∥

∥®𝑣𝑧 ∥ ∥ ®𝑎𝑧 ∥

 +

𝛽7
𝛽8
𝛽9


𝑇 

𝑚

®𝑣𝑥𝑦 · ®𝑤𝑥𝑦

1

 (1)

In the Equation 1, 𝛽1, ..., 𝛽9 are constant coefficients determined based on the simulated drone. ®𝑣𝑥𝑦
and ®𝑎𝑥𝑦 are the horizontal speed and acceleration vectors whereas ®𝑣𝑧 and ®𝑎𝑧 are the corresponding
vertical values.𝑚 is the mass and ®𝑤𝑥𝑦 is the vector of wind movement.2

We have a battery model that implements a coulomb counter approach [49]. The simulator
calculates how many coulombs (product of current and time) have passed through the drone’s battery
over every cycle. This is done by calculating the power and the voltage associated with the battery.
The real-time voltage is modeled as a function of the percentage of the remaining coulomb in the
battery as described in [29]. Section 8 presents experimental results for a 3DR Solo MAV.

4.4 Simulation Fidelity and Limitations
The fidelity of our end-to-end simulation platform is subject to different sources of error, as it is
with any simulation setup. The major obstacle is the reality gap—i.e., the difference between the
simulated experience and the real world. This has always posed a challenge for robotic systems.
The discrepancy results in difficulties where the system developed via simulation does not function
identically in the real world. To address the reality gap, we iterate upon our simulation components
and discuss their fidelity and limitations. Specifically, this involves (1) simulating the environment,
(2) modeling the drone’s sensors and flight mechanics, and last but not least (3) evaluating the
compute subsystem itself.

First, the Unreal engine provides a high fidelity environment. By providing a rich toolset for
lighting, shading, and rendering, photo-realistic virtual worlds can be created. In prior work [58],
authors examine photorealism by running a Faster-RCNN model trained on PASCAL in an Unreal
generated map. The authors show that object detection precision can vary between 1 and 0.1
depending on the elevation and the angle of the camera. Also, since Unreal is open-sourced, we

2For this paper, we assumed zero wind, but we plan to rigorously study its impact in future studies.
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Fig. 8. High-level application pipeline for a typical MAV application. The upper row presents a universal
pipeline that all our MAVBench applications follow, which involves perception, planning and control.
The lower row presents how a specific workload in MAVBench (e.g. package delivery) maps to the
universal high-level application pipeline.

programmatically emulate a range of real-world scenarios. For example, we can set the number of
static obstacles and vary the speed of the dynamic ones to fit the use case.

Second, AirSim provides high fidelity models for the MAV, its sensors, and actuators. Embedding
these models into the environment in a real-time fashion, it deploys a physics engine running with
1000 Hz. As the authors discuss in [64], the high precision associated with the sensors, actuators,
and their MAV model, allows them to simulate a Flamewheel quadrotor frame equipped with a
Pixhawk v2 with little error. Flying a square-shaped trajectory with sides of length 5 m and a circle
with a radius of 10 m, AirSim achieves 0.65 m and 1.47 m error, respectively. Although they achieve
high precision, the sensor models, such as the “camera lens models,” “degradation of GPS signal
due to obstacles,” “oddities in camera,” etc. can benefit from further improvements. In addition its
physics engine can be improved to model aerodynamic variables such as turbulence, wake, vortices,
etc.

Third, as for the compute subsystem itself, our hardware has high fidelity since we use off-the-shelf
embedded platforms for the companion computer and flight controller. As for the software, ROS is
widely used and adopted as the de facto middleware software in the robotics research community.

5 BENCHMARK SUITE
To quantify the energy and performance demands of typical MAV applications and understand the
cyber-physical interactions, we created a set of workloads that we compiled into a benchmark suite. By
combining this suite with our simulation setup, we get to study the robot’s end-to-end behavior from
both cyber and physical perspective, and further investigate various compute optimization techniques
for MAV applications. Our benchmarks run on top of our closed-loop simulation environment.

Each workload is an end-to-end application that allows us to study the kernels’ impact on the
whole application as well as to investigate the interactions and dependencies between kernel. By
providing holistic end-to-end applications instead of only focusing on individual kernels, MAVBench
allows for the examination of kernels’ impacts and their optimization at the application level. This
is a lesson learned from Amdahl’s law, which recognizes that the true impact of a component’s
improvement needs to be evaluated globally rather than locally.

The MAVBench workloads have different computational kernels, as shown in Table 2. MAVBench
aims at being comprehensive by (1) selecting applications that target different robotic domains
(robotics in hazardous areas, construction, etc.) and (2) choosing kernels (e.g., point cloud, RRT)
common across a range of applications, not limited to our benchmark-suite. The computational
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(a) Scanning. (b) Aerial Photography. (c) Package Delivery.

(d) 3D Mapping. (e) Search and Rescue.

Fig. 9. MAVBench workloads. Each workload is an end-to-end application targeting both industry and
research use cases. All figures are screenshots of a MAV executing a workload within its simulated
environment. Fig. 9c shows a MAV planning a trajectory to deliver a package. Fig. 9d shows a MAV
sampling its environment in search of unexplored areas to map.

kernels (OctoMaps, RTT, etc.) that we use in the benchmarks are the building blocks of many
robotics applications, and hence, they are platform agnostic. We present a high-level software
pipeline associated (though not exclusive) to our workloads. Then, we provide functional summaries
of the workloads in MAVBench, their use cases, and mappings from each workload to the high-level
software pipeline. We describe in detail the prominent computational kernels that are incorporated
into our workloads. Finally, we provide a short discussion regarding the Quality-of-Flight (QoF)
metrics with which we can evaluate MAV applications success and further the role of compute.

5.1 Workloads and Their Data Flow
The benchmark suite consists of five workloads, each equipped with the flexibility to configure its
computational kernel composition (described later in Section 5.2). The following section sheds light
on the high-level data flow governing all the applications, each application’s functional summary, and
finally, the inner workings of these workloads as per the three-stage high-level application pipeline.

5.1.1 Fundamental Computing Stages. There are three fundamental processing stages in each
application: Perception, Planning and Control (PPC). In the perception stage, the sensory data is
processed to extract relevant states from the environment and the drone. This information is fed into
the next two stages (i.e., planning and control). Planning “plans” flight motions and forwards them to
the actuators in the control subsystem. Figure 8 summarizes this high-level software pipeline, which
each of our workloads embodies.

Perception: It is defined as “the task-oriented interpretation of sensor data” [65]. Inputs to this
stage, such as sensory data from cameras or depth sensors, are fused to develop an elaborate model
in order to extract the MAV’s and its environment’s relevant states (e.g., the positions of obstacles
around the MAV). This stage may include tasks such as Simultaneous Localization and Mapping
(SLAM) that enables the MAV to infer its position in the absence of GPS data.

Planning: Planning generates a collision-free path to a target using the output of the perception
(e.g., an occupancy map of obstacles in the environment). In short, this step involves first generating
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Fig. 10. Application dataflows. Circles and arrows denote nodes and their communications respectively. Sub-
scriber/publisher communication paradigm is denoted with filled black arrows whereas client/server with dotted red
ones. Dotted black arrows denote various localization techniques.
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a set of possible paths to the target, such as by using the probabilistic roadmap (PRM [47]) algorithm
and then choosing an optimal one among them using a path-planning algorithm, such as A*.

Control: This stage is about following the desired path, which is absorbed from the previous
stage while providing a set of guarantees such as feasibility, stability, and robustness [25]. In this
stage, the MAV’s kinematics and dynamics are considered, such as by smoothening paths to avoid
high-acceleration turns, and then, finally, the flight commands are generated (e.g., by flight controllers
such as the PX4) while ensuring the aforementioned guarantees are still respected.

5.1.2 High-level View of the Workloads. Figure 9 presents screenshots of our workloads. The
application dataflows are shown in Figure 10. Note that all the workloads follow the perception,
planning, and control pipeline mentioned previously. For the ease of the reader, we have also labeled
the data flow with these stages accordingly.

Scanning: In this simple though popular use case, a MAV scans an area specified by its width
and length while collecting sensory information about conditions on the ground. It is a common
agricultural use case. For example, a MAV may fly above a farm to monitor the health of the crops
below. To do so, the MAV first uses GPS sensors to determine its location (Perception). Then, it
plans an energy efficient “lawnmower path” over the desired coverage area, starting from its initial
position (Planning). Finally, it closely follows the planned path (Control). While in-flight, the MAV
can collect data on ground conditions using onboard sensors, such as cameras or LIDAR.

Aerial Photography: Drone aerial photography is an increasingly popular use of MAVs for
entertainment, as well as businesses. In this workload, we design the MAV to follow a moving target
with the help of computer vision algorithms. The MAV uses a combination of object detection and
tracking algorithms to identify its relative distance from a target (Perception). Using a PID controller,
it then plans motions to keep the target near the center of the MAV’s camera frame (Planning), before
executing the planned motions (Control).

Package Delivery: In this workload, a MAV navigates through an obstacle-filled environment to
reach some arbitrary destination, deliver a package and come back to its origin. Using a variety of
sensors such as RGBD cameras or GPS, the MAV creates an occupancy map of its surroundings
(Perception). Given this map and its desired destination coordinate, it plans an efficient collision-free
path. To accommodate for the feasibility of maneuvering, the path is further smoothened to avoid
high-acceleration movements (Planning), before finally being followed by the MAV (Control). While
flying, the MAV continuously updates its internal map of the surroundings to check for new obstacles
and re-plans its path if any such obstacles obstruct its planned trajectory.

3D Mapping: With use cases in mining, architecture, and other industries, this workload instructs
a MAV to build a 3D map of an unknown polygonal environment specified by its boundaries. To
do so, as in package delivery, the MAV builds and continuously updates an internal map of the
environment with both “known” and “unknown” regions (Perception). Then, to maximize the highest
area coverage in the shortest time, the map is sampled, and a heuristic is used to select an energy
efficient (i.e., short) path with a high exploratory promise (i.e., with many unknown areas along the
edges) (Planning). Finally, the MAV follows this path (Control), until the area has been mapped.

Search and Rescue: MAVs are promising vehicles for search-and-rescue scenarios where victims
must be found in the aftermath of a natural disaster. For example, in a collapsed building due to
an earthquake, they can accelerate the search since they are capable of navigating difficult paths
by flying over and around obstacles. In this workload, a MAV is required to explore an unknown
area while looking for a target such as a human. For this workload, the 3D Mapping application is
augmented with an object detection machine-learning-based algorithm in the perception stage to
constantly explore and monitor its environment until a human target is detected.
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Table 2. MAVBench applications and their kernel make up time profile in 𝑚𝑠. The application suite, as
a whole, exercises a variety of different computational kernels across the perception, planning and
control stages, depending on their use case. Furthermore, within each of the kernel computational
domain, applications have the flexibility to choose between different kernel implementations.
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5.2 Benchmark Kernels
The workloads incorporate many computational kernels that can be grouped under the three pipeline
stages described earlier in Section 5.1. Table 2 shows the kernel make up of MAVBench’s workloads
and their corresponding time profile (measured at 2.2 GHz, 4 cores enabled mode of Jetson TX2).
MAVBench is equipped with multiple implementations of each computational kernel. For example,
MAVBench comes equipped with both YOLO and HOG detectors that can be used interchangeably in
workloads with object detection. The user can determine which implementations to use by setting the
appropriate parameters. Furthermore, our workloads are designed with a “plug-and-play” architecture
that maximizes flexibility and modularity, so the computational kernels described below can easily
be replaced with newer implementations designed by researchers in the future.

Perception Kernels: These are the computational kernels that allow a MAV application to interpret
its surroundings.

Object Detection: Detecting objects is an important kernel in numerous intelligent robotics
applications. So, it is part of two MAVBench workloads: Aerial Photography and Search and Rescue.
MAVBench comes pre-packaged with the YOLO [60] object detector, and the standard OpenCV
implementations of the HOG [31] and Haar people detectors.

Tracking: It attempts to follow an instance of an object as it moves across a scene. This kernel is
used in the Aerial Photography workload. MAVBench comes pre-packaged with a C++ implementa-
tion [35] of a KCF [41] tracker.

Localization: MAVs must determine their position. There are many ways that have been devised
to enable localization, using a variety of different sensors, hardware, and algorithmic techniques.
MAVBench comes pre-packaged with multiple localization solutions that can be used interchangeably
for benchmark applications. Examples include a simulated GPS, visual odometry algorithms such as
ORB-SLAM2 [54], and VINS-Mono [57] and these are accompanied with ground-truth data that can
be used when a MAVBench user wants to test an application with perfect localization data.

Occupancy Map Generation: Several MAVBench workloads, like many other robotics applications,
model their environments using internal 3D occupancy maps that divide a drone’s surroundings into
occupied and unoccupied space. Noisy sensors are accounted for by assigning probabilistic values to
each unit of space. In MAVBench we use OctoMap [43] as our occupancy map generator since it
provides updatable, flexible and compact 3D maps.

Planning Kernels: Our workloads comprise several motion-planning techniques, from simple
“lawnmower" path planning to more sophisticated sampling-based path-planners, such as RRT [50]
or PRM [47] paired with the A* [39] algorithm. We divide MAVBench’s path-planning kernels
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into three categories: shortest-path planners, frontier-exploration planners, and lawnmower path
planners. The planned paths are further smoothened using the path smoothening kernel.

Shortest Path: Shortest-path planners find collision-free flight trajectories that minimize the MAV’s
traveling distance. MAVBench comes pre-packaged with OMPL [13], the Open Motion Planning
Library, consisting of many state-of-the-art sampling-based motion planning algorithms. These
algorithms provide collision-free paths from an arbitrary start location to an arbitrary destination.

Frontier Exploration: Some applications incorporate collision-free motion-planners that aim to
efficiently “explore” all accessible regions in an environment, rather than simply moving from a single
start location to a single destination as quickly as possible. For these applications, MAVBench comes
equipped with the official implementation of the exploration-based “next best view planner” [26].

Lawnmower: Some applications do not require complex, collision-checking path planners, e.g.,
agricultural MAVs fly over farms in a simple, lawnmower pattern, where the high-altitude of the
MAV means that obstacles can be assumed to be nonexistent. For such applications, MAVBench
comes with a simple path-planner that computes a regular pattern for covering rectangular areas.

Path Smoothening: The motion planners discussed earlier return piecewise trajectories that are
composed of straight lines with sharp turns. However, sharp turns require high accelerations from a
MAV, consuming high amounts of energy (i.e., battery capacity). Thus, we use this kernel to convert
these piecewise paths to smooth, polynomial trajectories that are more efficient for a MAV to follow.

Control Kernels: The control stage of the pipeline enables the MAV to closely follow its planned
motion trajectories in an energy-efficient, stable manner.

Path Tracking: MAVBench applications produce trajectories that have specific positions, velocities,
and accelerations for the MAV to occupy at any particular point in time. However, due to mechanical
constraints, the MAV may drift from its location as it follows a trajectory, due to small but accumulated
errors. So, MAVBench includes a computational kernel that guides MAVs to follow trajectories while
repeatedly checking and correcting the error in the MAV’s position.

5.3 Quality-of-Flight (QoF) Metrics
Metrics are key for quantitive evaluation and comparison of different systems. In traditional com-
puting systems, we use Quality-of-Service (QoS), Quality-of-Experience (QoE) etc. to evaluate
computer system performance for servers and mobile systems, respectively. Similarly, various figures
of merits can be used to measure a drone’s mission quality. These metrics otherwise called as mission
metrics measure mission success and also throughout this paper are used to gauge and quantify
compute impact on the drone’s behavior. While some of these metrics are universally applicable
across applications, others are specific to the application under inquiry. On the one hand, for example,
a mission’s overall time and energy consumption are almost universally of concern. On the other hand,
the discrepancy between a collected and ground truth map or the distance between the target’s image
and the frame center are specialized metrics for 3D mapping and aerial photography respectively.
MAVBench platform collects statistics of both sorts; however, this paper mainly focuses on time and
energy due to their universality and applicability to our goal of cyber-physical co-design.

6 EVALUATION SETUP
We want to study how for a cyber-physical mobile machine such as a MAV, the fundamentals of
compute relate to the fundamentals of motion. To this end, we combine theory, system modeling,
and micro and end-to-end benchmarking using MAVBench. The next three sections detail our
experimental evaluation and in-depth studies. We deploy our cyber-physical interaction graph to
investigate paths that start from compute and end with mission time or energy. To assist the reader in
the semantic understanding of the various impacts, we bin the impact paths into three clusters:
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(1) Performance impact cluster: Impact paths that originate from compute performance (i.e.,
sensing-to-actuation latency and throughput) which are shown in blue-color/coarse-grained-
dashed lines in Figure 11a.

(2) Mass impact cluster: Impact paths that originate from compute mass which are shown in
green-color/double-sided lines in Figure 11b.

(3) Power impact cluster: Impact paths that originate from compute power which are shown in
red-color/fine-grained-dashed lines in Figure 11c.

At first, we study the impact of each cluster on mission time (Section 7) and energy (Section 8)
separately. This allows us to isolate their effect in order to gain better insights into their inner
workings. Then we combine all clusters together and study them holistically in order to understand
their aggregate impact (Section 9).

In the compute performance and power studies, we conduct a series of sensitivity analysis
using core and frequency scaling on an NVIDIA TX2. The TX2 has two sets of cores, a Dual-Core
NVIDIA Denver 2 and a Quad-Core ARM Cortex-A57. We turned off the Denver cores during our
experiments to ensure that the indeterminism caused by process to core mapping variations across
runs would not affect our results. We profile and present the average velocity, mission, and energy
values of various operating points for our end-to-end applications.

In the compute mass and holistic studies, we use four different compute platforms with different
compute capabilities and mass ranging from a lower-power TX2 to high-performance, power-hungry
Intel Core-i9. These studies model a mission where the drone is required to traverse a 1 km path
to deliver a package. We collect sensing-to-actuation latency and throughput values by running a
package delivery application as a micro benchmark for 30 times on each platform. Mission time is
calculated using the velocity and the path length while the power and energy are calculated using our
experimentally verified models provided in Section 4.3.

7 COMPUTE IMPACT ON MISSION TIME
In this section, we take a deep dive exploring how compute impacts mission time through a combi-
nation of analytical models, simulation, and micro and end-to-end benchmarking. Briefly, compute
impacts mission time through both cyber and physical quantities. It impacts cyber quantities such
as sensing-to-actuation latency, throughput and ultimately response time, and also impacts physical
quantities such as drone’s mass, velocity, and acceleration. Such impacts percolate down to the
bottom of the cyber-physical interaction graph influencing mission metrics such as mission time.
This section studies each impact cluster separately to isolate their effect so that we gain better
insights into their inner working. First, we explain the impact paths in the performance cluster
(Figure 11a, blue-color/coarse-grained-dashed paths), and then, we explain the paths in the mass
cluster (Figure 11b, green-color/double-sided paths).

7.1 Compute Performance Impact on Mission Time
Compute reduces mission time through performance cluster by impacting physical quantities, such
as the drone’s average velocity (performance cluster shown in Figure 11a with the blue-color/coarse-
grained-dashed paths). A MAV’s average velocity is a function of its response time, i.e., how quickly
it can respond to a new event, such as the emergence of an obstacle in its environment. By improving
response time, compute allows the drone to fly faster while being safe (i.e., with no collisions), and
flying faster in return reduces the mission time. To achieve a high average velocity throughout the
mission, the drone needs to be capable of reaching a high velocity (maximum velocity) and also
quickly arrive at it (high acceleration). We discuss compute-maximum velocity relationship and leave
the compute-acceleration discussion to the next section.
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(a) Performance cluster. Impact paths influencing mission-time/energy through latency/throughput.
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(b) Mass cluster. Impact paths influencing mission time and energy through compute mass.
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(c) Power cluster. Impact paths influencing mission time and energy through compute power.

Fig. 11. Three impact clusters, performance, mass, and power, impacting mission time and energy.
Each cluster with all the paths contained in it are shown with a different color. Having the cyber-physical
interaction graph with different clusters enables the cyber-physical co-design advocated in this paper.
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Fig. 12. Theoretical max velocity and response time relationship.

Improving Maximum Velocity By Reducing Response Time: Drone’s maximum velocity is not
only mechanically bounded but also computationally bounded. Equation 2 shows this where response
time, a cyber quantity determined by compute, impacts velocity, a physical quantity. The variables
𝛿𝑡𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 , 𝑑, 𝑎𝑚𝑎𝑥 and 𝑣𝑚𝑎𝑥 denote response time, distance from obstacle, maximum acceleration
limit of the drone and maximum allowed velocity, respectively. Applying Equation 2 for out simulated
DJI Matric 100 drone, Figure 12 shows that, in theory, the drone’s maximum velocity takes a value
between 1.57 m/s to 8.83 m/s given a response time ranging from 0 to 4 seconds.

𝑣𝑚𝑎𝑥 = 𝑎𝑚𝑎𝑥 (

√
𝛿𝑡𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒

2 + 2
𝑑

𝑎𝑚𝑎𝑥

− 𝛿𝑡𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 ) (2)

To help explain the relationship between compute and velocity, we step through a typical obstacle
avoidance task whose maximum velocity obeys this equation. At a high level, a MAV periodically
takes snapshots of its environment and then spends some processing time responding to the emerging
obstacles in its path (𝛿𝑡𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 ). However, if the motion planner fails to find a trajectory that
circumvents the obstacle, the drone needs to decelerate immediately (𝑎𝑚𝑎𝑥 ) to avoid running into the
obstacle. In the worst case, the drone needs to be able to decelerate from its maximum speed (𝑣𝑚𝑎𝑥 ).

Figure 13 shows the progression of this task for two snapshots, 𝑠𝑛𝑎𝑝0 and 𝑠𝑛𝑎𝑝1. We call the
rate with which these snapshots occur sensing-to-actuation throughput (denoted by 𝛿𝑆𝐴_𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 ).
Between the two snapshots, i.e, inverse of the throughput, the drone is blind (Equation 3). This is
because no new snapshot are taken, and hence the drone is unaware of any changes in the environment
during this period. In the worst-case scenario, an obstacle (O) can be hiding within the blind space
caused by 𝛿𝑡𝑏𝑙𝑖𝑛𝑑 . This reduces the distance between the drone and the obstacle by 𝑣𝑚𝑎𝑥*𝛿𝑡𝑏𝑙𝑖𝑛𝑑
(Equation 4). After this blind period, at point 𝑠𝑛𝑎𝑝1, the second snapshot is taken and the drone
spends sensing-to-actuation latency (𝛿𝑡𝑆𝐴_𝑙𝑎𝑡𝑒𝑛𝑐𝑦), to perceive (𝛿𝑡𝑝𝑟 ), plan (𝛿𝑡𝑝𝑙 ) and control (𝛿𝑡𝑐 ),
traversing the PPC pipeline, to formulate and follow a trajectory to circumvent the obstacle (Equation
5). Equation 6 shows the distance between the drone and the obstacle after this traversal.

𝛿𝑡𝑏𝑙𝑖𝑛𝑑 =
1

𝛿𝑆𝐴_𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡
(3)
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Fig. 13. Obstacle avoidance in action, a bird’s-eye view. Note the progression in time as a result of
cyber quantities such as sensing-to-actuation latency, and the progression in space as the result of
physical quantities such as 𝑣 .

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒 𝐴𝑓 𝑡𝑒𝑟 𝐵𝑙𝑖𝑛𝑑 𝑇𝑖𝑚𝑒 = 𝑑 − 𝑣𝑚𝑎𝑥 ∗ 𝛿𝑡𝑏𝑙𝑖𝑛𝑑

= 𝑑 − 𝑣𝑚𝑎𝑥 ∗ 1
𝛿𝑆𝐴_𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡

(4)

𝛿𝑡𝑆𝐴_𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 𝛿𝑡𝑝𝑟 + 𝛿𝑡𝑝𝑙 + 𝛿𝑡𝑐 (5)

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒 𝐴𝑓 𝑡𝑒𝑟 𝑃𝑃𝐶 𝑇𝑟𝑎𝑣𝑒𝑟𝑠𝑎𝑙 = 𝑑 − 𝑣𝑚𝑎𝑥 ∗ 1
𝛿𝑆𝐴_𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡

− 𝑣𝑚𝑎𝑥 ∗ 𝛿𝑡𝑆𝐴_𝑙𝑎𝑡𝑒𝑛𝑐𝑦

(6)
At this point, if the drone fails to generate a plan, it must decelerate and ideally come to a halt

before running into the obstacle in its current path. Equation 7 shows the distance that it takes for
a moving body to come to a complete stop. Setting 6 and 7 equal to one another and solving for 𝑣
results in Equation 8, the absolute maximum velocity with which the drone is allowed to fly and
still be able to guarantee a collision-free mission. This equation shows the relationship between two
cyber quantities, i.e., 𝛿𝑡𝑆𝐴_𝑙𝑎𝑡𝑒𝑛𝑐𝑦 and 𝛿𝑆𝐴_𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 , and a physical quantity, i.e., 𝑣 .3

𝑆𝑡𝑜𝑝𝑝𝑖𝑛𝑔 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
𝑣2

2 ∗ 𝑎𝑚𝑎𝑥

(7)

𝑣𝑚𝑎𝑥 = 𝑎𝑚𝑎𝑥
©­«
√(

𝛿𝑡𝑆𝐴_𝑙𝑎𝑡𝑒𝑛𝑐𝑦 +
1

𝛿𝑆𝐴_𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡

)2
+ 2

𝑑

𝑎𝑚𝑎𝑥

−
(
𝛿𝑡𝑆𝐴_𝑙𝑎𝑡𝑒𝑛𝑐𝑦 +

1
𝛿𝑆𝐴_𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡

)ª®¬
(8)

𝛿𝑡𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝛿𝑡𝑆𝐴_𝑙𝑎𝑡𝑒𝑛𝑐𝑦 + 𝛿𝑆𝐴_𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 (9)

Investigating how system design choices impact 𝛿𝑆𝐴_𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 and 𝛿𝑡𝑆𝐴_𝑙𝑎𝑡𝑒𝑛𝑐𝑦 (and hence re-
sponse time and velocity) demands computer and system architects’ attention. For example, consider
the sequential versus a pipelined design paradigm. In the sequential processing paradigm, while the
drone is going through one iteration of the PPC pipeline, no new snapshots are taken (Figure 14a).

3If we pair this equation with Equation 2, we see that for a drone to be able to respond to an obstacle in the worst case scenario,
it needs to spend a total of 𝛿𝑡𝑆𝐴_𝑙𝑎𝑡𝑒𝑛𝑐𝑦 plus inverse of 𝛿𝑆𝐴_𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 which indeed is the response time (Equation 9) of
the MAV to an emerging event (obstacle).

ACM Trans. Comput. Syst., Vol. X, No. XXX, Article X. Publication date: X 2021.



X:24 Boroujerdian, et al.

snap1

d

O
progression

in time

progression
in space

� prt � plt � ct

� prt � plt � ct

snap0

(a) Sequential paradigm.

snap1

d

O
progression

in time

progression
in space

� prt � plt � ct
� prt � plt � ct

snap0

(b) Pipelined paradigm.

Fig. 14. Obstacle avoidance with the PPC pipeline. Latency associated with each stage is denoted
with 𝛿. Two different design paradigms are presented.

This means that the sensing-to-actuation throughput is the inverse of sensing-to-actuation latency
(Equation 10).

𝛿𝑆𝐴_𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
1

𝛿𝑡𝑆𝐴_𝑙𝑎𝑡𝑒𝑛𝑐𝑦
(10)

This implies that we can rewrite Equations 4, 6, 8 and 9 as such:

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒 𝐴𝑓 𝑡𝑒𝑟 𝐵𝑙𝑖𝑛𝑑 𝑇𝑖𝑚𝑒 = 𝑑 − 𝑣𝑚𝑎𝑥 ∗ 𝛿𝑡𝑆𝐴_𝑙𝑎𝑡𝑒𝑛𝑐𝑦 (11)

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒 𝐴𝑓 𝑡𝑒𝑟 𝑆𝐴 𝑇𝑟𝑎𝑣𝑒𝑟𝑠𝑎𝑙 = 𝑑 − 𝑣𝑚𝑎𝑥 ∗ 2 ∗ 𝛿𝑡𝑆𝐴_𝑙𝑎𝑡𝑒𝑛𝑐𝑦 (12)

𝛿𝑡𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 2 ∗ 𝛿𝑡𝑆𝐴_𝑙𝑎𝑡𝑒𝑛𝑐𝑦 (13)

resulting in a 𝑣𝑚𝑎𝑥 of:

𝑣𝑚𝑎𝑥 = 𝑎𝑚𝑎𝑥
©­«
√
4 ∗ 𝛿𝑡2

𝑆𝐴_𝑙𝑎𝑡𝑒𝑛𝑐𝑦 + 2
𝑑

𝑎𝑚𝑎𝑥

− 2 ∗ 𝛿𝑡𝑆𝐴_𝑙𝑎𝑡𝑒𝑛𝑐𝑦
ª®¬ (14)

However, in a pipelined processing paradigm (Figure 14b), perception, planning and control
stages overlap with one another. Hence, it is possible for us to reduce the 𝛿𝑆𝐴_𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 and thereby
cut down 𝛿𝑡𝑏𝑙𝑖𝑛𝑑 to the minimum of latency of each stage (Equation 15). Note that in this design
𝛿𝑡𝑆𝐴_𝑙𝑎𝑡𝑒𝑛𝑐𝑦 stays intact. Using the pipeline approach, the velocity is calculated using Equation 16.

𝛿𝑡𝑏𝑙𝑖𝑛𝑑 =
1

𝛿𝑆𝐴_𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡
=

1
𝑀𝑖𝑛( 1

𝛿𝑡𝑝𝑟
, 1
𝛿𝑡𝑝𝑙

, 1
𝛿𝑡𝑐

)
= 𝑀𝑎𝑥 (𝛿𝑡𝑝𝑟 , 𝛿𝑡𝑝𝑙 , 𝛿𝑡𝑐 ) (15)

𝑣𝑚𝑎𝑥 = 𝑎𝑚𝑎𝑥 (

√
(𝛿𝑡𝑆𝐴_𝑙𝑎𝑡𝑒𝑛𝑐𝑦 +𝑀𝑎𝑥 (𝛿𝑡𝑝𝑟 , 𝛿𝑡𝑝𝑙 , 𝛿𝑡𝑐 )2 + 2

𝑑

𝑎𝑚𝑎𝑥

−

(𝛿𝑡𝑆𝐴_𝑙𝑎𝑡𝑒𝑛𝑐𝑦 +𝑀𝑎𝑥 (𝛿𝑡𝑝𝑟 , 𝛿𝑡𝑝𝑙 , 𝛿𝑡𝑐 ))
(16)

There is a tradeoff in opting between the sequential versus pipeline paradigms. However, the choice
is not straightforward. Opting for one or the other requires a rigorous and thorough investigation
by system designers. For example, simply pipelining the design does not necessarily improve the
velocity. This is because the response time is equal to the addition of 𝛿𝑡𝑆𝐴_𝑙𝑎𝑡𝑒𝑛𝑐𝑦 (see above) and
inverse of 𝛿𝑆𝐴_𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 . Therefore, if the pipelined design increases 𝛿𝑡𝑆𝐴_𝑙𝑎𝑡𝑒𝑛𝑐𝑦 (e.g., due to the
communication overhead between parallel processes), the overall response time might increase.

ACM Trans. Comput. Syst., Vol. X, No. XXX, Article X. Publication date: X 2021.



The Role of Compute in Autonomous Micro Aerial Vehicles: Optimizing for Flight Time and
Energy Efficiency X:25

M
ax

 V
el

oc
ity

 (m
/s

)

1
2
3
4
5

En
er

gy
 (k

J)

20

40

60

80

SLAM FPS
0 5

Fig. 15. Relationship between SLAM throughput (FPS) and maximum velocity and energy of UAVs.

Improving Max Velocity by Reducing Perception Latency: Another way to improve velocity is
to reduce perception processing time. The faster a drone wants to fly, the faster it must process its
sensory feed to extract the MAV’s and its environment’s relevant states. In other words, faster flights
require faster perception. This can be seen with perception related compute intensive kernels such
as Simulateneous Localization and Mapping (SLAM) [66]. SLAM localizes a MAV by tracking
sets of features in the environment. Since a faster flight results in more rapid changes in the MAV’s
environment, fast flight can be problematic for this kernel leading to catastrophic effects such
as permanent loss or a flight time increase (for example by backtracking due to re-localization).
Minimizing or avoiding localization-related failures is highly favorable, if not necessary.

To examine the relationship between the compute, maximum velocity and localization failure,
we evaluated a micro-benchmark in which the drone was tasked to follow a predetermined circular
path of the radius 25 meters. For the localization kernel, we used ORB-SLAM2 [54] and to emulate
different compute powers, we inserted a sleep into the kernel. We swept velocities and sleep times
and bounded the failure rate to 20%. As Figure 15 shows, increasing FPS values from 1 to 8, which
is enabled by more compute, allows for an increase in maximum velocity from 1m/s to 5m/s (for a
bounded failure rate), which shows that the maximum velocity is affected by perception latency.

Expanding on the microbenchmark insight from Figure 15, we conducted a series of performance
sensitivity analysis using processor core count and frequency scaling. We study the effect of compute
on all of the MAVBench applications. Average velocity and mission times of various operating points
are profiled and presented as heat maps (Figures 16 and 17) for a DJI Matrice 100 drone. In general,
compute can improve mission time by as much as 5X.

Scanning: In this application, we observe trivial differences for velocity and endurance across all
three operating points (Figure 16a, Figure 17a) despite seeing a 3X boost in the motion planning
kernel, i.e. lawn mower planning, which is its bottleneck (Figure 18). This is because, for this
application, planning is only done once at the beginning of the mission and amortized over the rest of
the mission time. For example, the overhead of planning for a five-minute flight is less than .001%.

Package Delivery: As compute scales with the number of cores and/or frequency values, we
observe a reduction of up to 84% for the mission time (Figure 17b). With frequency scaling, this
improvement is due to the speed up of the sequential bottlenecks, i.e., motion planning and OctoMap
generation kernel. On the other hand, there does not seem to be a clear trend with regard to core
scaling, specifically between three and four cores. We conducted investigations and determined that
the anomalies are caused by the non-real-time aspects of ROS, AirSim, and the TCP/IP protocol
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Fig. 16. Core/frequency sensitivity analysis of mission average velocity for various benchmarks.
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Fig. 17. Core/frequency sensitivity analysis of mission time for various benchmarks.

used for the communication between the companion computer and the host. Overall, we achieve up
to 2.9X improvement in OctoMap generation which leads to maximum velocity improvement. It
is important to note that although we also gain up to 9.2X improvements for the motion planning
kernel, the low number of re-plannings and its short computation time relative to the entire mission
time render its impact trivial. Overall the aforementioned improvements translate to up to 4.8X
improvement in the average velocity. Therefore, mission time and MAV’s total energy consumption
are reduced.

3D Mapping: As compute scales, mission time reduces by as much as 86% (Figure 16c, Figure 17c).
The concurrency present in this application (all nodes denoted by circles with a filled arrow connection
or none at all in Figure 10d run in parallel) justifies the performance boost from core scaling. The
sequential bottlenecks, i.e., motion planning and OctoMap generation explains the frequency scaling
improvements. We achieve up to 6.3X improvement in motion planning (Figure 18) which leads
to hover time reduction. We achieve a 6X improvement in OctoMap generation which leads to a
maximum velocity improvement. Combined the improvements translate to a 5.3X improvement in
average velocity. Improving average velocity reduces mission time.

Search and Rescue: As compute scales, we see a reduction of up to 67% for the mission time
(Figure 16d, Figure 17d). Similar to the case of 3D Mapping, more compute allows for the reduction
of hover time and an increase in maximum velocity which contribute to the overall reduction in
mission time and energy. In addition, a faster object detection kernel prevents the drone from
missing sampled frames during any motion. We achieve up to 1.8X, 6.8X, and 6.6X speedup for the
object detection, motion planning and OctoMap generation kernels, respectively. In aggregate, these
improvements translate to a 2.2X improvement in the MAV’s average velocity.

Aerial Photography: As compute scales, we observe an improvement of up to 53% and 267% for
error and mission time, respectively (Figure 16e, Figure 17e). Note that this application is a special
case. In aerial photography, as compared to other applications, higher mission time is more desirable
than a lower mission time. The drone only flies while it can track the person; hence, a longer mission
time means that the target has been tracked for a longer duration. In addition to maximizing the
mission time, error minimization is also desirable for this application. We define error as the distance
between the person’s bounding box (provided by the detection kernel) center to the image frame
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Fig. 18. Kernel breakdown for MAVBench. The abbreviations are as follows: OD-Object detection,
MP-Motion Planning, OMG-OctoMap Generation for kernels and SC-Scanning, PD-Package Delivery,
MAP-3D Mapping, SAR-Search and Rescue, and AP-Aerial Photography for applications. The 𝑥-axis
lists the kernel-application names and 𝑦-Axis represents the runtime in seconds. Each bar graph
represents one of the configurations used in the hardware. The cores are varied from 2 to 4 and the
frequency goes from from 0.8 GHz , 1.5 GHz or 2.2 GHz.

center. Clock and frequency improvements translate to 2.49X and 10X speedup for the detection and
tracking kernels and that allows for longer tracking with a lower error.

7.2 Compute Mass Impact on Mission Time
Compute impacts mission time through its physical mass (mass cluster shown in Figure 11b with
green-color/double-sided paths). Increasing onboard compute affects the total weight of the MAV,
which impacts the MAV’s maximum acceleration and velocity, and consequently, that affects mission
metrics (i.e., flight time). To understand this impact, first, we need to understand the forces acting on
a quadcopter. The free-body diagrams shown in Figures 19a and 19b illustrate these forces in steady
flight.4 The force generated by the motor is called thrust. In steady flight, the 𝑦 component of this
thrust vector (𝑇𝑦) compensates gravity (𝑊 ) to keep the drone in the air while the 𝑥 component (𝑇𝑥 )
combats the air drag (𝐷). When decelerating, both thrust and drag act in the direction opposite to
flight and make the vehicle slow down. The resulting maximum acceleration can be derived from
Equation 17, where𝑚 is the total vehicle mass, 𝐷 is the total drag and𝑇𝑥𝑚𝑎𝑥

the maximum applicable
thrust in the horizontal direction (negative when slowing down). Note that since we would like to
calculate the worst case deceleration, we remove drag from the equation.

𝑎𝑚𝑎𝑥 =
𝑇𝑥𝑚𝑎𝑥

− 𝐷

𝑚
(17)

Adding more mass to the drone demands a higher portion of thrust to battle weight, i.e., the drone
requires higher 𝑇𝑦 . Given the limited total thrust (𝑇𝑚𝑎𝑥 ) that the motors can generate, a higher 𝑇𝑦
leaves the drone with less 𝑇𝑥 to accelerate with (Equation 18).

𝑇𝑥 =

√
𝑇 2
𝑚𝑎𝑥 −𝑇 2

𝑦 (18)

Putting this all together, Equation 19 captures the relationship between mass and acceleration.

𝑎𝑚𝑎𝑥 =

√
𝑇 2
𝑚𝑎𝑥 −𝑊 2

𝑚
(19)

4In a steady flight, the vehicle’s linear and angular velocities are constant.
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(a) 2D free body diagram. (b) 3D free body diagram.

Fig. 19. Forces acting on a quadcoptor. Knowing these forces is necessary in understanding how
cyber and physical quantities impact one another.

Increasing onboard compute capability increases the weight of a MAV. As the amount of onboard
compute increases, the thermal design power (𝑇𝐷𝑃) escalates. Higher TDP requires more cooling
effort and that automatically necessitates a more robust and heavier cooling system.

To study the effect of mass, we consider four different system-on-chips (SoCs) each with a different
compute capability. Table 3 shows the mass associated with the different chipsets.5 We observe that
the overall compute subsystem’s weight vary from 144 g to 1109 g, i.e., a 7.9X increase, increasing
the total MAV mass from 2544 g to 3509 g, i.e., a 1.4X increase.

Using Equation 17 and Table 3, we study the impact of compute’s added mass on the mission time
(mass cluster denoted with green-color/double-sided impact paths in Figure 11b) of a DJI Quadcopter,
assuming it is equipped with the different compute platforms. We also study the effects of different
environmental congestion levels (e.g., number of obstacles in the flight path). To study congestion
levels, we introduce the notion of “slow down ratio” (SDR). This ratio is calculated as 𝑣𝑚𝑎𝑥 , denoting
maximum allowed velocity of a MAV, over 𝑣𝑎𝑣𝑔, average velocity which the MAV maintains across
its mission (Equation 20), and it indicates environment’s congestion. The higher the environment

5The weights are collected either through direct inquiry of the developing company or a thorough online search. We could not
find a heat sink for the Xavier online, hence we exacted the heat sink weight through linear interpolation of the rest of data
points.

Table 3. Characteristics of the compute platforms we use for mass and holistic experiments. The
platforms range from light yet high-end embedded platforms such as Jetson TX2 to heavy yet powerful
high-end server such as an Intel Core i9.

MAV Compute subsystem
MAV
Robot

Complex
Platform Performance Thermal

Power
(W)

Mass Mass
(g)

Name
Number

of
Cores

CPU
Frequency

(GHz)

Latency
(s)

Throughput
(Hz)

Total
(s)

Board and
processor

(g)

Heat
Sink
(g)

Total
(g)

i9-9940X 14 1.2 .243 13.3 .318 165 506 603 1109 3509
i7-4790K 7 2 .426 4.46 .65 88 483 285 768 3168
Jetson Xavier 8 2.2 .586 3.25 .894 30 280 100 380 2780
Jetson Tx2 6 2 .717 2.49 1.119 15 85 59 144 2544
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Fig. 20. Impact of compute mass, a physical quantity, on velocity, acceleration and mission time.

congestion, the higher the slow down ratio, resulting in a lower average velocity relative to maximum
allowed velocity. This is because a congested space does not allow the drone to reach its top speed
for long periods of time due to the frequent slowdowns caused by the numerous obstacles.

𝑆𝑙𝑜𝑤 𝐷𝑜𝑤𝑛 𝑅𝑎𝑡𝑖𝑜 (𝑆𝐷𝑅) = 𝑉𝑚𝑎𝑥

𝑉𝑎𝑣𝑔
(20)

Compute platform mass can considerably impact acceleration and velocity. Figure 20a shows the
impact of compute platform mass on 𝑎𝑚𝑎𝑥 and 𝑣𝑚𝑎𝑥 . Different points on a line correspond to the
different platforms in Table 3. We see an acceleration of 9.8m/s2 vs. 2.3m/s2, i.e., a 4.4X difference,
for our lightest (TX2) and heaviest (i9) platforms, respectively. This difference leads to a velocity of
11.7m/s vs. 5.6m/s, respectively, i.e., a 2.1X difference, for our lightest and heaviest platform.

Since compute mass impacts acceleration and velocity, it impacts mission time. Figure 20b shows
this impact. Different points on a line correspond to the different platforms, and different lines
correspond to different slow down ratios (SDRs). The acceleration and velocity differences discussed
previously result in mission time of 341 s and 713 s, i.e., a 2X difference for TX2 and i9, respectively
(for the most congested environment with the SDR of 4). Note that higher environment congestion
grows the difference between the two extreme designs. For example, the mission time of the best
and worse designs for SDR of 2 are 170 s and 356 s resulting in a difference of 186 s whereas same
mission times for SDR of 4 are 341 s and 713 s resulting in a difference of 372 s.

In summary, given these numbers, we conclude that lighter compute systems are of high value.
Since the compute induced mass is mainly the result of cooling solutions to meet 𝑇𝐷𝑃 , system
designers need to target power-efficient designs. Furthermore, the analysis shows that dealing with
congested spaces (such as in an indoor search and rescue mission) requires more compute efficiency
from a mass perspective, and thus warrants greater demand for attention from system designers.

8 COMPUTE IMPACT ON MISSION ENERGY
Compute can impact mission energy through its performance, added power and mass. We dive
deep into such impacts and study each impact cluster separately to isolate their effect so that we
gain better insights into their inner working. First, we explain the impact paths in the power cluster
(Figure 11c, red-color/fine-grained-dashed paths). These are the paths originate with compute power.
Then, we explain performance cluster impacts paths (Figure 11a, blue-color/coarse-grained-dashed
paths). These paths originate with compute performance quantities such as sensing-to-actuation
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(a) eLogger inside view.

eLogger 
V4

(b) eLogger outside view.

Fig. 21. Power collection. Drone is instrumented with eLogger and data is collected during flight.
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(b) Power during flight at 5 and 10 m/s.

Fig. 22. Power profiling and breakdown. Compute generally makes up a small portion of the MAV’s
overall power pie. Velocity has a minor impact on power consumption for our MAV.

latency and throughput. Finally, we discuss the effect of mass cluster impact paths (Figure 11b,
green-color/double-sided paths). These paths originate with compute mass.

8.1 Compute Power Impact on Mission Energy
Compute impacts MAV’s overall energy consumption through its power consumption (power cluster
shown in Figure 11c with red-color/fine-grained paths). The more the power consumption associated
with the compute platform, the more the overall MAV’s energy consumption.

To study this impact path, we present the power breakdown of a commonly used off the shelf
drone, the 3DR Solo [1]. We use an Eagle Tree Systems eLogger V4 [5] setup to measure power
consumption (Figures 21a and 21b). eLogger allows us to collect power consumption data at 50 Hz
during flight. We command the drone to fly for 50 s and pull the data off of the power meter after the
drone lands. Note that during this section, we isolate the impact of the compute power. Later on, we
examine the power and performance impact together on mission metrics in Section 9.

A drone with higher compute capability generally spends a higher budget of its total power on
the compute subsystem in order to improve its performance. Figure 22a demonstrates this point by
showing the power consumption of both the compute and the rotors for the four platforms described

ACM Trans. Comput. Syst., Vol. X, No. XXX, Article X. Publication date: X 2021.



The Role of Compute in Autonomous Micro Aerial Vehicles: Optimizing for Flight Time and
Energy Efficiency X:31

0.8 1.5 2.2

4

3

2

34.9 34.9 35.1

35 34.8 35.1

34.9 35.1 35

Frequency (GHz)

# 
of

 C
or

es

(a) Scanning.

0.8 1.5 2.2

4

3

2

150.7 131.2 104.8

190.2 119.3 89.2

497.6 130.5 104.8

Frequency (GHz)

# 
of

 C
or

es

(b) Package Delivery.

0.8 1.5 2.2

4

3

2

649.6 424.9 421.8

743.4 444.2 383.5

2213.5 663.3 586.2

Frequency (GHz)

# 
of

 C
or

es

(c) 3D Mapping.

0.8 1.5 2.2

4

3

2

305.1 283.7 186.4

256.5 294.1 246.4

438.2 448 281.7

Frequency (GHz)

# 
of

 C
or

es

(d) Search & Rescue.

0.8 1.5 2.2

4

3

2

50.1 77.7 73.2

52.4 70.3 52.7

20.1 38.7 69.5

Frequency (GHz)

# 
of

 C
or

es

(e) Aer Photography.

Fig. 23. Core/frequency sensitivity analysis of mission energy for various benchmarks.

earlier in Table 3. Depending on the type of onboard compute system (i.e., TX2, Xavier, i7 or i9),
the compute subsystem will directly consume 3% to 24% of the total system power. Hence, system
designers must pay attention to such breakdowns since power-efficient designs will have a more
significant impact on systems in which compute currently uses a more substantial proportion of total
system power.

8.2 Compute Performance Impact on Mission Energy
Compute impacts mission energy through cyber quantities such as sensing-to-actuation latency,
throughput, and etc, in other words, through the performance cluster (Figure 11a, blue-color/coarse-
grain-dashed paths). All such impacts start with cyber quantities and then go through velocity, a
physical quantity, to ultimately influence mission energy.

Compute performance impacts a MAV’s velocity (Section 7.1), which then impacts power con-
sumption and ultimately impacts the MAVs total energy consumption. To measure this impact, we
used our eLogger V4 setup. As Figure 22b shows, power variation as a result of velocity, be it 5 m/s
(top) or 10 m/s (bottom), is rather minor for our MAV. This is because the majority of the rotor’s
power is spent keeping the drone airborne (𝑇𝑦 from Figure 19a), and a relatively small amount is
used for moving forward during the flight (𝑇𝑥 from Figure 19a) for our allowed velocities.

In addition to the impact on energy through power, velocity can significantly reduce the total
mission energy by reducing the mission time. This is because as was shown in the previous section,
rotors consume a bigger portion of the power consumption pie. Hence, by reducing the mission time,
rotors spend less time in the air and hence consume less power and energy.

Using the models provided in Section 4.3, we profiled the mission time and the energy associated
with the micro and end-to-end benchmarks discussed in the previous section, a SLAM microbench-
mark and the MAVBench end-to-end benchmark suite. For the SLAM microbenchmark, as shown in
the previous section in Figure 15, a higher compute capability increases velocity (bottom graph) and
lowers the total system energy (top graph). We see that by increasing processing speed from 1 FPS
to 8 FPS, i.e., a 8X speed up, we are able to reduce the drone’s energy consumption from 76.9 kJ to
21.1 kJ, i.e., close to 4X reduction. For our end-to-end benchmarks, by conducting a core-frequency
sensitivity analysis, we show that more compute reduces the mission energy by as much as 5.8X (In
3D Mapping energy consumption is reduced from 2213 kJ to 283 kJ). These results are shown as a
heatmap (Figure 23). Note that energy values closely follows the mission time trend discussed in
Section 7, since a faster mission time lowers mission energy.

8.3 Compute Mass Impact on Mission Energy
Compute mass both directly and indirectly impacts rotor power consumption (mass cluster shown in
Figure 11b with green-color/double-sided paths). This is because mass itself, as shown in Section 7.2,
impacts acceleration and velocity, and all three impact power. This can be seen in the mechanical
power model provided in Equation 1 of Section 4.3. Equation 21 present the coefficient values of
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Fig. 24. Impact of compute mass, a physical quantity, on power and energy.

Equation 1 specifically for our DJI quad.
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As mass increases, so does power. Figure 24a shows this effect for the DJI quadrotor across
different compute platforms. An increase in the compute mass from 144 g, associated with the lightest
MAV with a TX2, to 1109 g, associated with the heaviest MAV with an i9, i.e., a 7.9X increase,
causes the total MAV mass to exacerbate from 2544 g to 3509 g, i.e., a 1.4X increase. This then
heightens the power consumption from 527W to 687W, i.e., 20% increase in total power (for SDR
of 4). Note that the slow down ratio has a minor impact on power as all the lines are very close to
one another. This is because the velocity has a minor impact on power as discussed in Section 8.2.

Compute mass impacts energy consumption by impacting both power and mission time. An
increase in compute mass exacerbates the energy consumption by increasing power as was detailed
in the previous paragraph. In addition, an increase in mass exacerbates energy consumption by
increasing the mission time. This is due the reduction in velocity and acceleration that was discussed
in Section 7.2. Figure 24b shows an overall system energy consumption increase from 180 kJ to
490 kJ, i.e. a 2.7X increase, between the lightest (TX2) and the heaviest (i9) platforms (for SDR of 4).
Note that like our observation for mission time, this impact grows with the environment’s difficulty
level, i.e., the environment’s congestion. Therefore, as the environment becomes harder to navigate,
the MAV requires more power-efficient designs.

9 ROLE OF COMPUTE, A HOLISTIC OUTLOOK
The impact of compute clusters needs to be studied not only in isolation, as we have done so far
to gain an in-depth understanding, but also simultaneously. The latter sheds light on the aggregate
impact of all clusters together. Such a holistic outlook is especially valuable when the clusters have
opposite impacts, i.e., one with a positive and the other with a negative impact on a mission metric.

To this end, in this section, we study the simultaneous effect of all three clusters, performance, mass,
and power, on mission time and energy. Our studies, similar to Section 7.2, deploy a combination of
benchmarking and analysis for a package delivery application. First, we uncover various impacts by
performing holistic analysis using the four platforms in Table 3. Subsequently, we expand the design
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space to its boundaries, allowing designers to determine which impact clusters, and hence which
design techniques, are the most beneficial.

9.1 Compute Impact on Four Platforms
Compute mass, power and performance, holistically, impact acceleration, velocity, mission time and
energy. We use a combination of simulation and analysis to examine the various impacts collectively
on a DJI Matrice 100 drone equipped with the four platforms mentioned previously in Table 3.

We find that increasing onboard compute capability impacts acceleration negatively. Figure 25a
shows this impact where we see an acceleration of 9.8m/s2 vs. 2.3m/s2, i.e., a 4.4X decrease, when
our MAV swaps the lightest (TX2) with the heaviest (i9) platform. In contrast, an increase in compute
has both a negative and positive impact on velocity. Through the positive path, i.e., the performance
cluster as we showed in Section 7.1, more compute reduces response time, and hence increases
velocity. Consequently, robot designers should deploy more compute. On the other hand, through
the negative path, i.e., the mass cluster as was described in Section 7.2, more compute increases
mass, and hence reduces acceleration and velocity. Consequently, robot designers should deploy less
compute. A holistic study however enables us to weigh these competing impacts simultaneously.

For our four platforms, when paths are examined in combination, we see that not the least nor the
most compute capable system, but a middle ground compute platform, i7, has the highest maximum
velocity, i.e., 5.8m/s. Our most compute capable platform, i9, has the least velocity, i.e., 4.9m/s.
Compute causes a 1.2X difference between our slowest and fastest MAVs. A DJI MAV with an i7 is
faster than a DJI MAV with either the TX2 or Xavier due to the reduction in response time caused by
more compute capability. However, increasing the compute capability to i9 does not improve the
velocity due to the negative impact of the added mass, which outweighs the benefits of the response
time reduction for this compute platform.

A similar trend to velocity, where the least nor the most compute capable system is ideal, is
observed with mission time. Figure 25b shows this impact where our fastest MAV with i7 has the
shortest mission time, i.e., 686 s, comparing to our slowest MAV with i9 which has the longest
mission time, i.e., 809 s. Between the two, i7 shows 15% improvement. Slow down factor (SDR)
expands the gap between the best (62 s) and the worst (124 s) mission time difference. This again
reminds us that for higher congested spaces, more efficient design has a bigger impact.

More compute negatively impacts mission power consumption (Figure 25c). This is due to the
high impact of mass on power as discussed in Section 8.2. As such, our most compute capable and
hence heaviest platform, i9, consumes the most power, i.e., 770W, comparing to the least compute
capable and hence lightest platform, TX2, which consumes 521W power. Note that the slow down
ratio has a minor impact on power since the velocity (which gets impacted by SDR) has a minor
effect on power, as discussed in Section 8.2.

In the case of mission energy, there are two competing clusters with opposite impacts. Through
the positive path, i.e., performance cluster as we showed in Section 8.2, more compute results in less
energy consumption due to the reduction of mission time. Hence, more compute is desirable. On
the other hand, through the negative path, i.e., the mass cluster as we showed in Section 8.3, more
compute results in more energy consumption. Hence, robot designers should deploy less compute.
However, when combined, we see that not the most nor the least compute capable platforms, but
another middle ground platform, Xavier performs the best. Xavier burns only 407 kJ, comparing to
the least energy efficient design, i.e., i9, which burns 623 kJ (Figure 25d). Higher slow down factor
(SDR) expands the gap between the best and worst design which reminds us that for higher congested
spaces, more efficient design has a bigger impact.

In summary, the MAV with the best mission time is not necessarily the most energy efficient
design or vice versa. For instance, in our example, the MAV with the best mission time which
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Fig. 25. Holistic impact of compute on mission metrics. The data enables cyber-physical co-design
where the designers consider the impact of compute’s cyber quantities on the robot’s physical
quantities and further their ultimate impact on robot’s end-to-end behavior and mission success. When
all impacts are considered together, there is no obvious best design choice. For instance, the i7 has
the best (shortest) mission time (highlighted in green) but the Xavier has the lowest mission energy
(highlighted in red).

carries an i7 is not the most energy efficient design which carries an Xavier. This is because, with
i7, the negative impact of higher power consumption outweighs the benefit of lower mission time.
The choice between the Xavier and the i7 depends on whether mission time or energy has more
significance for the task at hand.

9.2 Expanding the Design Space
Understanding the compute subsystem’s design space for a MAV, from both the cyber and physical
perspective, can help guide the design process. This section goes beyond the four platforms from
Table 3 and provides an example of, and the insights gathered from, a full design space investigation.
Concretely, we examine how the entire design space changes as a function of three compute subsystem
quantities and clusters, i.e., compute mass, compute power and performance.

Our evaluation employs the same analytical and simulation-based models discussed in the previous
subsection. We assume that the quantities can be modified independently. For example, we assume
that we can increase or decrease mass without effecting response-time or power. MAV’s constraints
determine the bounds for each quantity. The maximum payload that the drone can carry and still
lift off the ground determines the compute mass upper bound. The total available energy on board
determines the response time and power upper bounds. If the compute power causes the battery to
drain fast enough, or the response time to be long enough (and hence the MAV’s speed low enough)
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Fig. 26. Mission metrics design space with respect to different clusters. Mission metrics are shown as
heatmaps where hotter is less optimal. The design space is sliced and only a selected set of slices
are shown for the ease of visualization.

that the MAV becomes unable to complete its mission before it runs out of battery, we discard this
design point. For power, we also take into account the upper current limit the battery can provide.6

Our results are shown in Figure 26, where we illustrate the mission time (Figure 26a) and energy
(Figure 26b) for a DJI Matrice 100 drone. Each point within the space corresponds to a DJI with
a compute subsystem of a different mass, response time, and power. Mission metrics are shown
as heat maps on the fourth dimension. Hotter colors are higher and hence, less optimal. To aid
the visualization and further understand the internals of the design space, we slice the space with
horizontal cuts, concretely five slices for each mission metric. Furthermore, for selected slices, we
show the gradient plots (i.e., plots of the rate of change in the most optimal direction) to demonstrate
various trends. We spend the rest of this section detailing some essential takeaways from this analysis.

First, as one quantity becomes worse, it shrinks the design space of the other two. This can be seen
by looking at the reduction in the area of the slices for both mission metrics shown in Figure 26. For
example, for mission time (Figure 26a), as the power consumption increases (moving up the 𝑧-axis),
the design space slices see a reduction in area for mass and response time. For example, for a 4X
increase in power quantity, i.e., from 615W to 2415W, we see a 5X reduction in the area associated
with the mission time’s design space. Similar trends are observed for mission energy. Note that such
a reduction in the area leaves designers with less space (area) to explore and design within.

Second, some quantities exhibit diminishing returns, where moving towards more optimal (in
this case smaller) values of that quantity results in lower gains. We demonstrate this by showing
the gradient plots corresponding to one selected slice from Figure 26a and Figure 26b. The other
slices follow the same trend. The slice data are shown in Figures 27a, and 27b for Figure 26a and in
Figures 27c and 27d for Figure 26b. In these plots, gradient magnitude, i.e., mission metrics’ rate
of change, is shown by the size of the arrows overlaid on the figure. A change in the size of these
arrows when moving along the 𝑦-axis or the 𝑥-axis indicates a change in the gradient magnitude.

6Although we assume no relationship between the three quantities, in reality since compute impacts all three simultaneously,
there is an indirect relationship between them all. This narrows the design space beyond the constraints we have already put
into place. We are aware that sharpening such constraints and replacing our high-level models with more accurate ones will
improve the insight details, nevertheless, we believe that lower resolution models have an essential role in the initial stages of
the iterative design and development process. We welcome the community’s assistance in both refining and replacing the
models and constraints while considering the accuracy-performance tradeoffs of such changes.
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(d) Mission energy-power gradient.

Fig. 27. Mission metrics’ gradient, the rate of change in the most optimal direction, and their com-
ponents. Change in the gradient magnitude, shown in the arrow size, for a walk toward the center
indicates diminishing return in (a), (b), and (c). However, in (d), gradient values stay the same since
this gradient is equal to mission time which is not a function of power.

For mission time, lowering the mass reduces the gradient magnitude, indicating a smaller change
in the mission time. Figure 27a shows that the size of the arrows shrinks as we lower the mass, i.e.,
as we move from top to bottom on the 𝑦-axis. Similarly, lowering the response time reduces the
gradient magnitude of the mission time. Figure 27b shows that the size of the arrows shrinks as we
lower the response time, i.e., as we move left along the 𝑥-axis.

For mission energy, a similar trend with respect to mass is observed (Figure 27c). However, such a
trend is not universal across all quantities. For example, lowering power does not impact mission
energy’s gradient with respect to power. Figure 27d shows that the size of the arrows stay the same as
we lower the power, i.e., as we move left along the 𝑥-axis. This is because simply put, this gradient is
equal to mission time which is not a function of power. Hence, a change in power would not impact
mission time, in other words, the gradient, and hence, the size of the arrows would not change.

Finally, different quantities have different impacts on mission time and energy. To demonstrate
this, we use sensitivity analysis by comparing a mission metric’s percentage change with respect to
the quantities’ percentage change. Table 4 shows the mean and variance for the sensitively values of
different quantities throughout the entire design space. Mission time is most sensitive to the response
time since the mean response time, i.e., 0.4, is the highest among the three quantities. In other words,
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Table 4. Design space sensitivity to different compute related quantities. Higher mean means a higher
sensitivity and hence a higher gain if the quantity is optimized. The sensitivity analysis is done by
comparing a mission metric’s percentage change with respect to the quantities’ percentage change.

Mission Time Mission Energy

Response Time Mass Power Response time Mass Power

Mean .40 .31 0 .40 .40 .37

Std .25 .70 0 .24 .72 .19
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Fig. 28. Comparing a fully-onboard compute drone versus a fully-on-cloud drone. Our system allows
part or portion of the MAVBench workloads to be offloaded to the cloud.

improving the response time on average results in the mission time improvement the most. This
means that if the drone’s main objective is mission time optimality, system designers should focus
their efforts on reducing the response time. On the other hand, mission energy shows equal sensitivity
to all three quantities since the mean of all quantities are approximately the same, i.e., 0.4. This
means that the designers who are focused on mission energy optimality should target the quantity
whose improvement costs the least. It is worth noting power consumption does not have an impact
on mission time, hence, the mean and variance are equal to 0. The lack of relationship is also shown
in the cyber-physical interaction graph since there is no edge from power to mission time.

10 COMPUTE OPTIMIZATION IMPACT ON MISSION TIME AND ENERGY
We use our benchmark suite, simulation environment, and the knowledge we acquired through
examining compute’s impact paths toward conducting two system optimization case-studies. We
focus on the first and the third cluster (Figure 11), i.e., optimizations exploiting the impacts through
performance and power while leaving the second cluster for future work. The first case study
examines the performance/power impact through a hybrid cloud-edge MAV complex, and the second
one explores the performance/energy improvements through a runtime optimization.

10.1 A “Cloud-Edge Offloading Optimization” Case Study
We examine a cloud/edge drone where the computation is distributed across the edge and cloud
endpoints. We compare a fully-onboard compute drone equipped with a TX2 versus a fully-in-cloud
drone with a powerful cloud support. The “cloud” computational horsepower is composed of an
Intel i7 4740 @ 4GHz with 32 GB of RAM and a GeForce GTX 1080. For network connectivity, we
utilize a 1Gbp/s LAN, which mimics a future 5G network [19, 38].

We target the planning stage of the PPC pipeline and focus on the 3D Mapping as the application
of choice to offload. As we show in Figure 28, a drone that can enjoy the cloud’s extra compute
power sees a 3X speed up in planning time. This improves the drone’s average velocity due to hover
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(a) Environment’s map. (b) 0.15 m resolution.

(c) 0.5 m resolution. (d) 0.80 m resolution.

Fig. 29. For the environment in (a), OctoMap’s resolution impact on the drone’s perception of its
environment is shown in (b), (c), (d). Large resolution means larger voxel size (lower is better).

time reduction, and hence reduces the drone’s overall mission time by as much as 50% (impact
through compute performance). Reduction in mission time decreases the total system’s energy
consumption (Impact through performance). In addition, by offloading the computation to the cloud,
and hence avoid embedding a powerful i7 machine on edge, drone’s power and therefore total energy
consumption is reduced (impact through power). The overall reduction in energy is 1.3X for a
cloud-edge hybrid system vs. a full-on edge drone.

10.2 A “Context-Aware Runtime System” Case Study
Focusing on energy efficiency, we conduct a kernel/environment sensitivity analysis using the
OctoMap node [43], which is a major bottleneck in three of our end to end applications, namely
package delivery, 3D mapping and search and rescue. OctoMap is used for the modeling of various
environments without prior assumptions. The map of the environment is maintained in an efficient
tree-like data structure while keeping track of the free, occupied and unknown areas. Both planning
and collision avoidance kernels use OctoMap to make safe flight possible, via costly compute cycles,
by only allowing navigation through free space. Due to its implementation efficiency, OctoMap is
widely adopted in the robotics community. Its broad adoption and impact in two out of three stages
(Perception and Planning) make this kernel highly general and important for optimization.

The voxel size in OctoMap, i.e., the map’s resolution, introduces accuracy versus flight-time/energy
tradeoff. By lowering the resolution, i.e., increasing voxel sizes, obstacle boundaries get inflated;
hence, the drone’s perception of the environment and the objects within it becomes inaccurate. We
illustrate the impact of OctoMap resolution on the drone’s perception using Figure 29. Figure 29a
shows the environment and Figures 29b, 29c, 29d show the drone’s perception of the environment
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Fig. 30. (a) Reduction in OctoMap resolution (accuracy) can be traded off with processing time.
Increasing the 𝑥-axis means larger voxels to represent the space more coarsely (less accurately). A
6.5X reduction in resolution results in a 4.5X improvement in processing time. (b) Switching between
OctoMap resolutions dynamically leads to successfully finishing the mission compared to 0.80 m. It
also leads to battery life improvement compared to 0.15 m. The 𝑦-axis in the top graph is the battery
left on the drone upon mission completion.

as a function of OctoMap resolution. When the resolution is lowered, the voxels size increases to
the point that the drone fails to recognize the openings as possible passageways to plan through
(Figure 29d). This results in mission time inefficiency and failures depending on the environment. In
some cases, if the resolution is too large, the drone can’t find a path to complete its mission.

To examine the accuracy versus performance tradeoff, we measured OctoMap kernel’s processing
time (running in isolation) while varying its resolution knob. Figure 30a shows that as planning
resolution increases (i.e., voxels are larger so space is represented more coarsely and hence less
accurately), performance improves dramatically because less compute is needed. Going from one
extreme to another, when the planning resolution goes from less than 0.2 m to 1.0 m (𝑥-axis),
OctoMap’s processing time (or update rate) goes from more than 0.4 seconds to less than 0.1 seconds
(𝑦-axis). A 6.5X reduction in accuracy results in a 4.5X improvement in processing time.

Certain aspects like obstacle density in the environment determine the “ideal” OctoMap resolution.
In low-density environments, where the drone has many obstacle-free paths to take, a low resolution
can suffice. In dense environments, low resolutions can deprive the drone of viable obstacle-free
paths because the drone perceives the obstacles to be larger than they are in the real world, and so
plans to avoid them. Since the drone’s environment constantly changes, a dynamic approach where a
runtime sets the resolution is ideally desirable.

We study two environments during the mission, namely outdoors (low obstacle density) and
indoors (high obstacle density). Figure 30b shows the result of two static (predetermined) resolutions,
0.15 m and 0.80 m, and our dynamic approach that multiplexes between the two appropriately.7 The
dynamic approach allows improvement of battery consumption by up to 1.8X. Intuitively, as compute
reduces, OctoMap bottleneck eases, and therefore, the drone completes its mission faster (impact
through performance). The figure also highlights another interesting relationship that statically
choosing the 0.80 m resolution to optimize for compute (only) causes the drone to fail its mission
since it is unable to plan paths through narrow openings in the indoor environments. Instead, by
switching between the two resolutions according to the environment’s obstacle density, the dynamic

7Resolutions are based on the environment like the door width size. A 0.15 m resolution is chosen to ensure that the drone
(diagonal width of 0.65 m) considers an average door (width of 0.82 m) as an opening for planning.
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approach is able to balance OctoMap computation with mission feasibility and energy, holistically.
In all cases, the dynamic approach uses less energy and retains more battery at mission end time.

11 RELATED WORK
There is prior work that focuses on building analytical models, simulators and benchmark suites to
aid the development of autonomous MAVs. We address some shortcomings of previous approaches
by providing a more detailed, integrated, end-to-end solution.

Analytical Models There are numerous work such as [30, 37, 42, 62] that model the MAV’s
physical quantities’ impact on one another and ultimately MAV’s behavior. These works do not
consider cyber quantities and their influence. There are a few works such as [34, 44, 52] that brush the
surface of cyber quantities’ impact on physical quantities and mission metrics. However, none, take a
detailed and holistic compute subsystem design perspective. For example, [52] and [34] only consider
the relationship between response time and velocity whereas [44] does not consider acceleration,
velocity or system throughput. In addition [44] and [34] only examine one stage of the pipeline, i.e.,
the perception stage, or [28] and [27] only consider the control stage whereas our applications enjoy
the end-to-end characteristics.

Simulators Simulators are essential to the study of aerial robots. Our simulation platform is
built upon Microsoft’s AirSim [64], a UAV simulator that uses the Unreal Game Engine to provide
accurate physics models and photo-realistic environments. MAVBench uses the AirSim core and
extends it with performance, power and battery models that are suited for architectural research, as
well as with a gimbal, and dynamic and static obstacle creation capabilities that are not inherently part
of AirSim. Another very popular simulator used in the robotics community for MAVs is Gazebo [48].
However, Gazebo simulations lack photo-realism, while our work, with the help of AirSim and the
Unreal Game Engine, enables more accurate visual modeling.

There are also numerous simulators widely used in industry and academia for studying autonomous
robots such as [3, 12, 17, 23, 51, 53, 68, 72]. However, they either do not provide MAV models or
does not consider the architectural insights.

A recent work FlightGoggles [63], creates virtual reality environments for drones using the images
streamed from the Unity3D game engine. However, for maximum realism, FlightGoggles requires
a fully functioning drone that must fly during tests, with its sensory data being streamed in from
the game engine. MAVBench, on the other hand, does not have this constraint. Our users may
provide real processors for hardware-in-the-loop simulation, but they are not required to fly the
MAVs physically in the real world.

Benchmarks Most robot benchmark suites target individual computational kernels, such as
odometry or motion-planning, rather than characterizing end-to-end applications composed of
many different kernels. For example SLAMBench [55] and CommonRoad [21] solely focus on the
perception and the planning stage respectively. However, our benchmarks allow for holistic studies
by providing end-to-end applications.

Simulator + Benchmarks: RoboBench [71] provides a common platform around simulators and
benchmarks using software containers to combat software compatibility problems across groups.
This work is complementary to ours.

12 CONCLUSION
We show that a tight interaction between the cyber and physical processes dictates autonomous
mobile machines’ behavior. Hence, a robot design methodology needs to consider such interactions
for optimal results. Furthermore, this consideration can uncover co-design (cyber-physical co-design)
opportunities, similar to hardware-software co-design, to be taken advantage of. This paper sets its
goal as to probe and investigates the cyber and physical interactions of Micro Aerial Vehicles (MAVs)
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as examples of complex robots. We frame this goal as a simple question: what is role of compute
in the operation of autonomous MAVs? To answer this question, we combine analytical models,
benchmarks and simulations showing how fundamentals of compute and motion are interconnected.
For our analytical models, we use detailed physics, capturing compute’s impact on various mission
metrics. For our simulator and benchmarks, we address the lack of systematic benchmarks and
infrastructure for research by developing MAVBench, a first of its kind platform for the holistic
evaluation of aerial robots, involving a closed-loop simulation framework and a benchmark suite.
Using our tool sets, we provide two optimization case studies through which we improve mission
time and energy. While we focus on drones, the lessons learned about the role of computing and
the simulation methodology (i.e., closed/hardware in the loop) readily extend to other autonomous
machines and robots. By open sourcing our tool-sets, we (1) raise the understanding of compute
(sub)system designers of cyber-physical machines, (2) enable the cyber-physical co-design paradigm,
and (3) start a closer discussion/collaboration between the robotics and system design communities.
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