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Abstract

Modern C++ servers have memory footprints that vary widely
over time, causing persistent heap fragmentation of up to 2x

from long-lived objects allocated during peak memory usage.
This fragmentation is exacerbated by the use of huge (2MB)

pages, a requirement for high performance on large heap

sizes. Reducing fragmentation automatically is challenging

because C++ memory managers cannot move objects.

This paper presents a new approach to huge page frag-
mentation. It combines modern machine learning techniques
with a novel memory manager (LLama) that manages the
heap based on object lifetimes and huge pages (divided into
blocks and lines). A neural network-based language model
predicts lifetime classes using symbolized calling contexts.
The model learns context-sensitive per-allocation site life-
times from previous runs, generalizes over different binary
versions, and extrapolates from samples to unobserved call-
ing contexts. Instead of size classes, LLamMA’s heap is orga-
nized by lifetime classes that are dynamically adjusted based
on observed behavior at a block granularity.

LraMA reduces memory fragmentation by up to 78% while
only using huge pages on several production servers. We ad-
dress ML-specific questions such as tolerating mispredictions
and amortizing expensive predictions across application ex-
ecution. Although our results focus on memory allocation,
the questions we identify apply to other system-level prob-
lems with strict latency and resource requirements where
machine learning could be applied.

CCS Concepts + Computing methodologies — Super-
vised learning; - Software and its engineering — Allo-
cation / deallocation strategies;
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1 Introduction

Optimizing interactive web services, many of which are writ-
ten in C++, requires meeting strict latency requirements
while minimizing resource usage. Users abandon services if
response times are too slow and data center costs are directly
proportional to resource usage. Multithreaded services re-
quire large heaps both to minimize the number of deployed
instances and to handle multiple requests simultaneously.
Hardware has not kept pace with these demands. While
memory sizes have increased, Translation Lookaside Buffers
(TLB) have not, because address translation is on the crit-
ical path. One solution is increasing TLB reach with huge
(2 MB) pages, i.e., each entry covers more memory. Huge
pages reduce TLB misses, improving performance by up to
53% [33, 37]. Looking forward, 1 GB pages are already avail-
able and variable-sized ranges can eliminate even more TLB
misses [27, 33]. Future virtual memory systems may hence
predominantly rely on huge pages and ranges.

These trends require workloads to efficiently use huge
pages. While Operating Systems (OS) have explored trans-
parent huge pages [37, 45], they either trade performance for
space, increasing the physical memory footprint by up to 23%
and 69% on server workloads [37], or break up huge pages,
sacrificing performance (TLB hits) and depleting contiguous
physical memory for all workloads on the machine [37, 45].
If the C++ memory allocator is not huge page aware, it may
further defeat the OS. Only one C++ memory allocator in
the literature uses huge pages, but its evaluation uses mi-
crobenchmarks [36]. To our knowledge, no current memory
allocator efficiently manages memory entirely with huge
pages without incurring significant fragmentation.

We identify a root cause of huge page fragmentation in
long-running servers: allocations of long-lived objects at
peak memory usage. Since C++ allocators cannot move ob-
jects, using huge pages increase the probability of one long-
lived object preventing a page from being released to the
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OS. For instance, if 99.99% of objects are short-lived and
their average size is 64 B, then using 4 KB pages, the prob-
ability that any given page contains a long-lived object is
less than 1% (1— (0.9999)0%6/64) Using 2 MB huge pages, the
probability is 96%. Figure 1 shows that heap fragmentation
with huge pages for a production image processing service
on a synthetic workload grows over time as a function of
peak memory consumption. Many web services exhibit such
highly variable memory consumption [37, 40] and allocate
critical long-lived session state.

Solving this problem fundamentally depends on reason-
ing about object lifetimes and grouping objects with similar
lifetimes together [4, 11, 16, 17]. Prior lifetime region and
pool memory management techniques [6, 34, 43] depend on
programmer intervention and are limited because not all life-
times are statically known, software can change over time,
and libraries are used in multiple contexts. Previous object
lifetime predictors for C++ and garbage collected languages
use profiling to classify objects as short or long lived, but are
used in settings (such as pretenuring) where mispredictions
are tolerable [4, 11, 16, 30]. In contrast, because every wrong
prediction may retain up to 2 MB and errors accumulate
on long-running servers, we require an approach that does
not induce fragmentation upon misprediction, and need to
address the following challenges:

Lifetime accuracy and coverage. Full coverage and per-
fect accuracy are not achievable because exercising all
possible application behavior ahead-of-time is challeng-
ing, especially for evolving servers configured in myriad
ways with different libraries.

Overheads. Continuous profiling in deployment is not prac-
tical because it adds 6% overhead [13, 42], which can be
more than memory allocation itself [31].

These challenges require accurate predictions in previously
unobserved contexts and a memory manager that explicitly
reasons about lifetimes to recover from mispredictions. Our
contributions are as follows: (1) The design of a recurrent
neural network predictor that trains on samples and general-
izes to different application versions and build configurations
with accurate, but not perfect prediction. (2) A novel Learned
Lifetime-Aware Memory Allocator (LLaMA) with low fragmen-
tation that only uses huge pages, but subdivides them into
blocks and lines. It then manages huge pages and blocks
using their predicted and observed lifetime class. (3) Some
lessons for applying ML to other systems problems.

To increase coverage and accuracy, the predictor can be
trained on different server versions and configurations. To
reduce profiling overhead, we sample allocations and frees
to produce training data with allocation calling context (i.e.,
stack traces) and object lifetimes. We classify objects into
lifetime classes separated by orders of magnitude: < 10 ms,
100 ms, 1, 10s, etc. Based on the insight that program sym-
bols in stack traces carry meaning similar to words in natural
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Figure 1. Image server memory usage resizing groups of
large and small images either backed by huge (red) or small
(yellow) pages in the OS, derived from analyzing an allo-
cation trace in a simulator. Huge pages waste systemically
more memory and increasingly more over time.

language, we train simple language models on symbolized
calling contexts. We use a Long Short-Term Memory (LSTM)
recurrent neural network model to learn common and rare
contexts (Section 5). Whereas other lifetime predictors are
simple binary classifiers for exactly matching contexts or
single allocation sites [4, 11, 16], LLaMA’s predictor learns
multiple lifetime classes and accurately predicts unobserved
contexts because it uses program symbols, rather than match-
ing stack traces or hard-coded allocation sites. However, per-
forming inference on every allocation is too expensive, so
Lrama caches inferences and periodically re-evaluates them.

In contrast to C/C++ free-list allocators that organize the
heap based on object size classes [5, 9, 19, 21, 38], LLaMA or-
ganizes the heap based on lifetime classes. It manages huge
pages by subdividing them into 8 KB blocks and 128 B lines.
It assigns each huge page and block a lifetime class (LC).
LLAMA maintains two invariants: 1) it fills blocks with one
predicted lifetime class (LC) at a time and 2) this LC is the
same or shorter than the huge page’s LC. The huge page’s LC
thus matches or over-predicts its blocks to tolerate mispre-
dictions. To limit fragmentation and handle mispredictions,
Lrama dynamically reclassifies a huge page’s LC based on
its observed block lifetimes.

LiaMma assigns each huge page a predicted LC and a dead-
line, by when all objects should be dead. It first fills blocks in
huge pages with objects of the same LC, marking these same-
LC blocks residual. When blocks are freed, LLama aggres-
sively reuses them for predicted shorter-lived (non-residual)
LC blocks. These shorter-lived blocks are likely to be freed
before the huge page’s deadline. This policy limits fragmen-
tation without extending huge page lifetimes. If the deadline
expires and any residual blocks are still live (i.e., lifetime was
under-predicted), LLaMA promotes the huge page to the next-
longer-lived LC. If all residual blocks have been freed (i.e., life-
time may be over-predicted since all live blocks have a lower
LC than their huge page), LLaAMA reduces the huge page’s LC
and its remaining blocks become residual. LLaAMA tracks line
liveness in a block and recycles partially free blocks. LLAMA’s
hierarchical heap organization (huge page, block, line) fol-
lows Immix’s (block, line) mark-region design [10, 48]. Its
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Figure 2. Long tail of object lifetimes from a single run; x-
axis is log-scale. The vast majority of objects are short-lived,
but rare long-lived objects impact fragmentation.

lifetime organization is similar to generational and lifetime-
based copying garbage collectors [8, 10, 18, 49, 51]. How-
ever, unlike a managed runtime where GC can move objects
between regions, LLAMA cannot move objects and instead
reclassifies huge pages. LLama is the first C/C++ allocator to
organize the heap based on lifetime versus object size.

We prototype LLama and compare to TCMalloc, a popular
and highly tuned allocator, backed by OS huge pages. LLama
never breaks up huge pages while simultaneously reducing
fragmentation by up to 78% on several production code bases.
We compare LLaMA to Mesh [46], which uses allocation ran-
domization and page combining to combat fragmentation
for small pages. Using Mesh’s publicly available scripts on a
worst case microbenchmark that emulates address random-
ization for long lived objects, LLaMA reduces fragmentation
over Mesh on huge pages by an order of magnitude. We
further show Lrama accurately predicts new contexts, adds
little overhead, and recovers from mispredictions. We also
draw lessons for applying machine learning in other latency-
critical systems settings.

2 Motivation and Background
2.1 Server Fragmentation

We demonstrate huge page fragmentation on a production
C++ image server that applies filters and transforms images.
We drive this server using a request generator that mimics
workload shifts over time. One iteration running for 448 s
with an average live set of 628 MB has ~110 M allocations
from ~215K allocation contexts. It allocates (with malloc()
or new) objects of different sizes and frees (with free() or
delete) allocated memory using TCMalloc [21]. Like all
C/C++ allocators, once TCMalloc places objects in virtual
memory, it never moves them. We extended TCMalloc to
record every object allocation and free with the address, size,
thread, dynamic stack trace, and timestamp.

We replay these traces in a simulator that determines
which pages contain live objects at a given time by modeling
the OS giving out 4 KB or 2 MB pages for unmapped virtual
addresses. Figure 1 shows the average fragmentation (ratio
of memory occupied by live pages to actual live memory)
is 1.03x when the OS backs memory with 4 KB pages, but
increases to 2.15x with huge pages and gets worse over time.

Figure 2 shows object lifetimes. While 92% of the over 100 M
allocations live for less than 1's, 4% (millions) of allocations
live for over 10 s and 1% (thousands) live for over 100s.

These long-lived objects cause excessive fragmentation.
Workloads with varying memory footprint are more suscep-
tible to this problem because small numbers of long-lived
objects on a huge page prevent reusing it for large alloca-
tions. In the image server, short-lived objects that cause the
heap to grow temporarily include data structures to process
each request and image data. At the same time, it allocates
long-lived objects that are used for tracking the cluster envi-
ronment, system statistics, log tracing, and long-lived session
state. Long-lived state per request is application critical and
is not the result of poor software engineering.

Highly varying memory footprints are typical of servers [37,
40]. Fragmentation remains an open problem, recently re-
ported for many applications and allocators beyond TCMal-
loc [36,37, 46]. However, strategies for addressing fragmenta-
tion in these allocators are designed for 4 KB pages [5, 46]. As
our probabilistic argument in Section 1 points out, address-
ing fragmentation for huge pages is fundamentally more
difficult, particularly without lifetime information.

2.2 Lifetime Prediction Challenges

Prior work predicts object lifetime as long or short based on
allocation site and precisely matching calling context [11, 16]
(although Cohn and Singh did use stack data for predictions
instead [17]). Current approaches typically store a table of
allocation sites, together with a summary of observed per-
site lifetimes [13]. They either 1) collect lifetime information
at runtime, i.e., dynamic pretenuring [16, 30] or 2) use profile-
guided optimization (PGO), collecting lifetimes offline with
special instrumentation, analyzing it offline, and then using
it in deployment [11]. Lifetime prediction faces the following
significant challenges:

Overheads. Collecting allocation lifetimes incurs a substan-
tial overhead, e.g., stack tracing adds 14% end-to-end over-
head and writing to disk further increases the cost, making
continuous profiling infeasible in production. Looking up
a predicted object lifetime also incurs overhead, including
recording the calling context. Table 1 shows recording the
calling stack for an allocation can take an order of magnitude
longer than the allocation, which is problematic. Solutions in-
clude instrumenting the stack prologue and epilogue to keep
track of the current stack through a series of bits stored in a
register [12, 13, 29]. However, overheads of this approach are
~6% and higher, exceeding all the time spent in memory al-
location [31]. We solve these problems by using stack height
and object size for per-site prediction and cache lookups.

Coverage and Accuracy. Encountering a sufficient fraction
of allocation sites for accurate prediction is critical. When
collecting lifetime data online, we cannot make a prediction
unless we have seen its context at least once. However, in



TCMalloc Fast Path (new/delete) 8.3 ns

TCMalloc Slow Path (central list) 81.7 ns
Capture full stack trace 396 ns =+ 364 ns
Look up stack hash (Section 7) 22.5 ns

Table 1. Timescale comparisons

Version Difference Matching/Total # Traces

Revisions 1 week apart
Revisions 5 months apart

20,606 / 35,336 (58.31%)
127 / 33,613 (0.38%)

Opt. vs. non-opt. build 43 / 41,060 (0.10%)

Table 2. Fraction of individual stack traces that match be-
tween different binary versions (using exact match of sym-
bolized function names).

our example workload, 64% of distinct allocation contexts
are seen only once and 17% of all permanent allocations (i.e.,
allocations that never get freed) are from contexts that are
only encountered once. PGO avoids this problem by using
profiles from previous runs, but is more difficult to apply to
lifetimes than in traditional scenarios, such as inlining [15].
First, these decisions do not depend on the dynamic calling
context. As such, each call site only needs to be observed
once (in any context). In contrast, lifetime prediction requires
observing every context for full coverage. For instance, in-
lining data only needs to collect a single event per sample,
while lifetime profiling requires observing both the alloca-
tion and free. As such, profiling data is more scarce in our
setting than typical PGO scenarios.

Instability. Stack traces are brittle when used across exe-
cutions. Even stack traces on the exact same binary may
differ due to address layout randomization. Using symbol
information, it is possible to reconstruct the original method
name for each stack frame, but different builds of the same
binary may still differ. For example, changing libraries can
affect inlining decisions, different compiler settings lead to
slightly different symbol names, and function names and
interfaces change over time. This problem also occurs when
collecting traces across a large number of instances of the
same server with different build configurations and software
versions. Table 2 shows that the fraction of matching stack
traces between builds with even minor changes is low and
decreases over time. This result explains why almost all prac-
tical lifetime predictors today use online profiling instead of
PGO, or rely on site instead of the full dynamic stack.

We solve coverage and instability problems by enhancing
PGO to work without observing all contexts. We design an
ML-based predictor that learns on calling contexts of tok-
enized class and method names to produce accurate predic-
tions for unobserved contexts. If a single binary is deployed
sufficiently often to achieve full coverage, our approach re-
duces to conventional PGO. However, these situations are
rare — most companies have different software versions in
production at the same time [7, 47].
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Figure 3. Overview of our ML-based Allocator

3 Overview of Lifetime Prediction

We address overhead and coverage challenges by sampling
multiple executions. Sampling is suitable for both server
applications in datacenters and multiple runs of a popular
application (e.g., a web browser) on a client. We connect to
a given application for a sample period and collect lifetimes
for a small fraction of all allocations that occur during this
period (Section 4).

Sampling may not observe all allocation calling contexts
and we must combine samples from a heterogeneous set of
different software versions, while the code bases are con-
stantly updated. We therefore cannot simply use a lookup
table, as shown in Table 2. Our solution is to use ML on the
observed samples of tokenized calling contexts (i.e., symbol-
ized/textual stack traces) to predict object lifetimes. We train
a model that maps from calling context to lifetime, while
generalizing to previously unseen contexts. The predictions
drive our novel C++ memory allocator that organizes the
heap based on lifetime to reduce fragmentation. While our
prototype focuses on learning a mapping from contexts to
lifetime, we could add other input features, such as perfor-
mance counters or user-level statistics.

Another challenge is to perform prediction without sig-
nificant overhead. The allocation fast path is 8.3 ns (Table 1),
which is too short to obtain a prediction from an ML model.
In fact, it is not even sufficient to gather all the required
features since collecting a deep stack trace takes 400 ns. We
address this problem by not invoking the model for every
allocation. Instead, we use a hashing-based mechanism (Sec-
tion 7) to identify previously seen contexts by using values
that are already in registers (the return address and stack
pointer) to index a hash table and execute the model only if
the lookup fails. We thus amortize model executions over the
lifetime of a long-running server. We discuss other strategies
to reduce this cost even further (Section 10). We now explain
each component in detail.

4 Sampling-based Data Collection

Our sampling approach periodically connects to servers (for
a time period such as ~5 minutes) and samples a subset of
all memory allocations. Each sample includes stack trace,
object size and address at allocation and deallocation time.
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This approach follows continuous profiling tools used in
production settings [31].

We integrate this approach into TCMalloc [21]. Its existing
heap profiling mechanism identifies long-lived objects well
by producing a list of sampled objects at the end of the appli-
cation’s execution, most of which are long-lived, including
their allocation sites. It misses the more prolific allocations
of short-lived objects that are not live at the end of the pro-
gram. We therefore extend the heap profiling mechanism to
record frees (deallocations) as well. We do so using hooks (i.e.,
functions) that are called periodically, based on the number
of allocated bytes. These hooks incur virtually no overhead
when they are disabled. When enabled, each sampled allo-
cation triggers TCMalloc to store it at a special address in
memory and then deallocation can identify those sampled
objects and call the corresponding deallocation hook.

We install an HTTP handler accessible by pprof [25], an
open-source profiling and analysis tool. When invoked, the
handler registers two hooks, one for allocation and one for
deallocation. It also allocates a new data structure (outside of
the TCMalloc-managed heap) to store observed stack traces.
The allocation hook stores the allocation’s full stack trace, a
timestamp of the allocation, object size, alignment, and the
stack and processor ID of the allocation into a hash table,
indexed by a pointer to where the object was allocated. The
deallocation hook matches its pointer to the hash table and if
it finds an entry, records its own stack trace, timestamp and
thread/CPU where the deallocation occurred. This pair of
entries is now stored in a different hash table, which is used
to deduplicate all samples. For each entry, we keep a running
tally of the distribution of lifetimes, by storing the maximum,
minimum, count, sum and sum of squares (the latter two
allow us to calculate mean and variance of the lifetime at
a later point). We also store how many of these allocations
were allocated and deallocated on the same CPU or thread
(we do not currently use this information, but explain in
Section 10 how it might be used). At the end of a sampling
period, we store the result into a protocol buffer [24].

In deployment, we would periodically connect to servers
in the fleet and collect samples. For this research, we run
smaller-scale experiments to understand the trade-offs of
our approach and mostly rely on full traces collected by
instrumenting allocation and free calls. While too expensive
for production, this approach is useful for understanding
coverage of different sampling rates (Section 9), or to replay

the entire trace in simulation (Section 2). The two approaches
produce consistent results (Section 9.3).

5 Lifetime Prediction Model

Our goal is to predict object lifetimes based on our collection
of past lifetime samples. As shown in Section 2, a simple
lookup table is insufficient and brittle to changes in the ap-
plication. We instead construct a dataset of samples from a
range of scenarios and train a machine learning model on
this dataset to generalize to previously unseen stack traces.

5.1 Data Processing

We pre-process our sample data using a distributed dataflow
computation framework [2, 14]. We group inputs by alloca-
tion site and calculate the distribution of observed lifetimes
for each site. We use the 95th percentile T} of observed
lifetimes of site i to assign a label L; € {1,...,7, oo} to the
site such that T < T(L;) = (10)" ms. Objects the program
never frees get a special long-lived label co. This produces life-
time classes of 10ms, 100ms, 1s, 10s, 100s, 1000s, >1000 s,
and co. Our model classifies stack traces according to these
labels. To ensure that our model assigns greater importance
to stack traces that occur more often, we weight each stack
trace according to the number of times it was observed and
sample multiple copies for frequently occurring traces. The
resulting datasets for our applications contain on the order
of tens of thousands of elements.

The use of wallclock time for lifetime prediction is a de-
parture from prior work that expresses lifetime with respect
to allocated bytes [4], which can be more stable across en-
vironments (e.g., server types) at short timescales. We ex-
perimented with logical time measured in bytes, but for our
server systems, wallclock time works better. We believe time
works better because 1) our lifetime classes are very coarse-
grained (10x) and absorb variations, 2) if the speed difference
between environments is uniform, nothing changes (lifetime
classes are still a factor of 10X apart). Meanwhile, variations
in application behavior make the bytes-based metric very
brittle over long time ranges (e.g., in the image server, the
sizes of submitted images, number of asynchronous external
events, etc. dilate logical time).

5.2 Machine Learning Model

We use a model similar to text models. First, we treat each
frame in the stack trace as a string and tokenize it by splitting
based on special characters such as: , and : :. We separate
stack frames with a special token: @ We take the most com-
mon tokens and create a table that maps them to a particular
ID with one special ID reserved for unknown or rare tokens,
denoted as UNK. The table size is a configuration parameter
(e.g., 5,000 covers most common tokens).



1 __gNU_CXX::__g::__string_base char, std::__g::char_traits
char,std::__g::allocator char::_M_reserve(unsigned long)

2 proto2::internal::InlineGreedyStringParser(std::__g::
basic_string char, std::__g::char_traits char,std::__g::
allocator char*,char constx,proto2::internal::ParseContextx)

3 proto2::FileDescriptorProto:: _InternalParse(char constx,
proto2::internal::ParseContextx)

4 proto2::MessagelLite::ParsefFromArray(void const*, int)

5 proto2::DescriptorPool::TryFindFileInFallbackDatabase(std::
__g::basic_string char, std::__g::char_traits char , std::
__g::allocator char const ) const

6 proto2::DescriptorPool::FindFileByName(std::__g::
basic_string char, std::__g::char_traits char , std::__g::

allocator char const) const proto2::internal::
AssignDescriptors(proto2::internal::AssignDescriptorsTablex)

7 system2::Algorithm_descriptor ()

8 system2::init_module_algorithm_parse()

9 Initializer::TypeData::RunIfNecessary(Initializerx)
10 Initializer::RunInitializers(char constx)

11 RealInit(char const*x, intx, char*xx, bool, bool)

12 main

Figure 5. An example of an altered but representative stack
trace used to predict object lifetimes.

We use a long short-term memory (LSTM) recurrent neu-
ral network model [28]. LSTMs are typically used for se-
quence prediction, e.g., for next-word prediction in natural
language processing. They capture long-term sequential de-
pendencies by applying a recursive computation to every
element in a sequence and outputting a prediction based
on the final step. In contrast, feed-forward neural networks
like multi-layer perceptrons [23] or convolutional neural
networks [20, 39] can recognize local patterns, but require
some form of temporal integration in order to apply them to
variable-length sequences.

Our choice of an LSTM is informed by stack trace structure.
Figure 5 shows an example. Sequentially processing a trace
from top to bottom conceptually captures the nesting of
the program. In this case, the program is creating a string,
which is part of a protocol buffer (“proto”) parsing operation,
which is part of another subsystem. Each part on its own is
not meaningful: A string may be long-lived or short-lived,
depending on whether it is part of a temporary data structure
or part of a long-lived table. Similarly, some operations in
the proto might indicate that a string constructed within it
is temporary, but others make the newly constructed string
part of the proto itself, which means they have the same
lifetime. In this case, the enclosing context that generates
the proto indicates whether the string is long or short-lived.

For our model to learn these types of patterns, it must step
through the stack frames, carrying through information, and
depending on the context, decide whether or not a particular
token is important. This capability is a particular strength of
LSTMs (Figure 4). We feed the stack trace into the LSTM as a
sequence of tokens (ordered starting from the top of the trace)
by first looking up an “embedding vector” for each token in a
table represented as a matrix A. The embedding matrix A is
trained as part of the model. Ideally, A will map tokens with
a similar meaning close together in embedding space, similar
to word2vec embeddings [41] in natural language processing.

Here lies an opportunity for the model to generalize. If the
model can learn that tokens such as ParseFromArray and
InternalParse appear in similar contexts, it can generalize
when it encounters stack traces that it has not seen before.

Note that our approach is not specific to LSTMs. We chose
the LSTM architecture since it is one of the simplest se-
quence models, but future work could explore more sophis-
ticated model architectures that could incorporate more de-
tails of the underlying program (e.g., Graph Neural Networks
trained on program code [3]). Our specific model architec-
ture is a standard single-layer LSTM with a hidden state size
of 64 (we experiment with 16 as well), embedding size of
32, uses a softmax output, and is trained against a standard
cross-entropy classification loss via gradient descent. The
final state of the LSTM is passed through a fully connected
layer. Training uses the Adam optimizer [35] with a learning
rate of 0.001 and gradients clipped to 5.0.

5.3 Model Implementation

We implement and train our model using TensorFlow [1].
Calling into the full TensorFlow stack to obtain a lifetime
prediction would be prohibitively expensive for a memory
allocator, so after training, we use TensorFlow’s XLA com-
piler to transform the trained model into C++ code that we
compile and link into our allocator directly. The model runs
within the allocating thread. To allow multiple threads to use
the model concurrently, we instantiate the model’s internal
buffers multiple times and add concurrency control.

6 Lifetime Aware Allocator Design

This section introduces a fundamentally new design for
C/C++ memory managers based on predicted object life-
times. Instead of building an allocator around segmenting
allocations into size classes [5, 9, 19, 21, 36, 38], we directly
manage huge pages and segment object allocation into pre-
dicted lifetime classes. We further divide, manage, and track
huge pages and their liveness at a block and line granularity
to limit fragmentation. We implement our allocator from
scratch. It is not yet highly tuned, but it demonstrates the
potential of a lifetime-based approach. We address two chal-
lenges required to incorporate ML into low-level systems: 1)
how to deal with mispredictions and 2) prediction latencies
that are orders of magnitude longer than the typical alloca-
tion latency. We first describe the structure of the memory
allocator, then how we make fast predictions, and follow
with key implementation details.

6.1 Heap Structure and Concurrency

We design our memory manager for modern parallel soft-
ware and hardware. LLAMA organizes the heap into huge
pages to increase TLB reach. To limit physical fragmentation,
we divide huge pages into 8 KB blocks and track their live-
ness. LLaMA assigns each active huge page one of N lifetime



classes (LC), separated by at least an order of magnitude (e.g.,
10 ms, 100 ms, 1000 ms, ..., o0). Our implementation uses a
maximum of N = 7 lifetime classes. LLAMA exploits the large
virtual memory of 64-bit architectures, as fragmentation of
virtual memory is not a concern. LLAMA divides virtual mem-
ory into 16 GB LC regions, one per lifetime class. Section 8
describes enhancements when an LC region is exhausted.

The global allocator manages huge pages and their blocks.
It performs bump pointer allocation of huge pages in their
initial LC regions, acquiring them from the OS. It directly
manages large objects (>= 8 KB), placing them into contigu-
ous free blocks in partially free huge pages or in new huge
pages. A huge page may contain large and small objects.

Lrama achieves scalability on multicore hardware by us-
ing mostly unsynchronized thread-local allocation for small
objects (<=8 KB). The global allocator gives block spans to
local allocators upon request. When a thread-local allocator
allocates the first object of a given LC or it exhausts its cur-
rent LC block span, it requests one from the global allocator.
Block spans consist of M blocks and reduce synchronization
with the global allocator. Our implementation uses M = 2
(16 KB block spans) with 16 KB alignment. LLama further
subdivides block spans into 128 B lines and recycles lines in
partially free block spans for small objects (see Section 6.6).
It tracks line and block liveness using object counters. Small
objects never cross span boundaries, but may cross line and
block boundaries. Each thread-local allocator maintains one
or two block spans per LC for small objects.

Lrama tracks predicted and actual block lifetimes and uses
them to decrease or increase their huge page’s LC. LLama
maintains the following invariants. 1) It allocates only objects
of one predicted LC into a block or span at a time. 2) A huge
page contains blocks with the same or shorter predicted LC.

We next describe how we use LC predictions to manage
huge pages and blocks. Sections 6.3 and 6.4 describe the
policies that limit fragmentation and dynamically detect
and control the impact of mispredicted lifetimes. Section 6.6
then describes how LLAMA uses lines to identify and recycle
memory in partially free block spans.

6.2 Lifetime-Based Huge Page Management

Each huge page has three states: open, active, and free. Open
and active blocks are live. The first allocation into a huge page
makes it open and determines its LC. Only one huge page
per LC is open at a time. While a huge page is open, LLaMA
only assigns its blocks to the same LC. LLaMA transitions a
huge page from open to active and assigns it a deadline after
filling all its constituent blocks for the first time. The huge
page remains active for the rest of its lifetime. The OS backs
huge pages lazily, upon first touch. A huge page is free when
all its blocks are free and is immediately returned to the OS.

All blocks in a huge page are free or live; open or closed
for allocation; and residual or non-residual. All blocks are
initially free. When the global allocator returns a block span

to a local allocator, it marks the blocks open for allocation.
If the blocks are on an open huge page, it also marks the
blocks residual. Residual blocks are predicted to match the
LC of their huge page. An active huge page may also contain
other live (non-residual) blocks, but these blocks will contain
objects of a shorter lifetime class, as explained below. Thread-
local allocators bump-pointer allocate small objects in block
spans. When they exhaust a span, they mark it closed.

Liama first fills a huge page with same LC blocks and then
transitions it from open to active. At this point, the huge
page contains residual blocks and maybe free blocks. Figure 6
shows an illustrative, but simplified, example of the logical
LC Lrama heap (huge pages and blocks) and its behavior
over time. This heap has three lifetime classes, separated by
orders of magnitude. A large amount of initial allocation in
Figure 6a, including a large object allocation into huge page
11 and 12, is followed by a large number of frees in Figure 6b.
LLaMA returns free huge pages 2 and 6 to the OS.

6.3 Limiting Fragmentation by Recycling Blocks

Notice in Figure 6b active huge pages contain free blocks and
live residual blocks of the same LC. LLamA limits fragmen-
tation by aggressively recycling such free blocks for objects
in shorter LCs (except for the shortest LC, since no LC is
shorter). Section 6.5 explains the fast bit vector operations
that find recyclable blocks of the correct size and alignment.

Given a request for LC Ir, the global allocator prefers to
use free blocks from a longer-lived active huge page (LC
> [Ir). These recycled blocks are allocated non-residual, as
illustrated in Figure 6c. If no such recyclable blocks exist, the
global allocator uses block(s) from the open huge page of
the same LC = Ir. Intuitively, if the predictor is accurate or
overestimates lifetime class, the program with high probabil-
ity will free shorter-lived objects on recycled blocks before
it frees residual blocks with the same LC as the huge page.
Because lifetime classes are separated by at least an order
of magnitude, the allocator may reuse these blocks many
times while the longer-lived objects on the huge page are
in use, reducing the maximum heap footprint. If the predic-
tor underestimates lifetime, the objects will have more time
to be freed. This design is thus tolerant of over and under
estimates of lifetime.

For large objects, the global allocator assigns blocks di-
rectly. For example, given the heap state in Figure 6b and a
request for a two block large object with [r < 10 ms, the global
allocator allocates it into huge page 7 with LC < 100 ms and
marks the blocks non-residual, as illustrated in Figure 6c.

When Lrama recycles a block span (assigning it to a local
allocator), it marks the blocks open and non-residual. The
local allocator assigns the span to the requested LC Ir, even
if the span resides on a huge page assigned to a longer
lifetime class. The local allocator only allocates objects of
this predicted lifetime Ir into this span. After it fills the span
with Ir object allocations, it marks the blocks closed. This
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(b) After objects free, some blocks and huge pages are free (white). LLamA
immediately returns free huge pages to the OS to control maximum heap size.

A D A A @ O ®
<tomsll W (T ﬁ BN B EEEE |
A @ O ®
<100 ms [l

<1S.

| | freed to OS | |

(c) Subsequent allocations of shorter LC small objects first fill free blocks in
the highest LC in A(ctive) huge pages 9 and 10, and then blocks in huge page
7. These blocks are not residual (no dot) and expected to be freed before the
residual blocks. O(pen) pages 5, 8, and 12 are ineligible for such allocation.
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(d) When huge page 1’s deadline expires, residual blocks are still live (mis-
prediction). LLAMA increases the huge page’s LC by one, from 10 to 100 ms.
Residual blocks remain residual; their expected lifetime is now at least 100 ms.
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(e) Huge page 9 only contains non-residual blocks and consequently, LLama
decreases its LC. It marks all live blocks residual since they match or are less
than the huge page’s LC.

Figure 6. LLaAMA’s logical heap organization with three life-
time classes (< 10 ms, < 100 ms, < 1s). Each live huge page is
A(ctive) or O(pen) and divided into blocks. Block color de-
picts predicted LC or free (white). Residual blocks are marked
with a dot. Deadlines and lines are omitted.

policy guarantees that when a block is open for allocation,
it receives only one LC.

LLaMA’s recycling policy is configurable. In the current
implementation, LLAMA prefers [r + 1 for large objects and
the longest available LC for small objects.

6.4 Tolerating Prediction Errors

Lifetime prediction will never be perfect. LLamA tolerates
mispredictions by tracking block and huge page lifetimes us-
ing deadlines. It promotes huge pages with under-predicted

object lifetimes to the next longer LC and huge pages with
over-predicted objects to the next shorter lifetime class.

We detect under-prediction of lifetimes using deadlines.
When a huge page becomes full for the first time, the global
allocator transitions it from open to active and assigns it a
deadline as follows:

deadline = current_timestamp + K X LCHygePage

When Lrama changes the LC of a huge page, it assigns the
huge page a new deadline using the same calculation and the
new lifetime class. We experimented with K = 2 and K = 4.

When a huge page’s deadline expires, then the predictor
made a mistake. To recover, LLAMA increases the huge page’s
lifetime class and gives it a new deadline. Figure 6d depicts
this case. The residual blocks in huge page 1 outlive their
deadline and Lrama increases its LC to 100 ms. A huge page
may also contain non-residual blocks which it leaves un-
changed. LLama essentially predicts that the residual blocks
were just mispredicted by one LC and non-residual blocks
are shorter lived than this LC. If either live longer that this
LG, this process will repeat until the blocks are freed or reach
the longest lived LC. This policy ensures that huge pages
with under predicted objects eventually end up in the correct
lifetime class, tolerating mispredictions.

LraMA’s recycling mechanism works well for both accu-
rate and under-predicted lifetimes. If all lifetimes are accurate
or under-predicted, a program will free all residual blocks be-
fore their huge page deadline since the deadline is generous.
As blocks become free on active huge pages, the allocator
may recycle them for shorter lifetime classes, as explained
above. LLaAMA may repeatedly recycle blocks on active huge
pages, each time they are freed. Before the deadline expires,
if all blocks in the huge page are free at once, LLaMA simply
releases it to the OS. Otherwise given accurate or under pre-
diction, the huge page will at some point contain only live
non-residual (shorter LC) blocks when the deadline expires.
Lrama will then decrease the huge page’s LC by one and
compute a new deadline using the current time and new LC.

Figure 6e shows such an example. Because huge page 9
contains only non-residual blocks, LLAMA decreases its LC
and marks all live blocks residual. With accurate and under-
predicted lifetimes, this process repeats: either the huge page
is freed or its LC continues to drop until it reaches the short-
est LC. In the shortest LC since no blocks are recycled and
when prediction is accurate, all blocks are freed before the
deadline and the huge page is released.

6.5 Data Structures

Lrama tracks liveness at the huge page, block, and line gran-
ularity. It stores metadata in small pages at the beginning
of each 16 GB LC region. Each huge page in a region corre-
sponds to one 256 B metadata region in the metadata page.
Mapping between a huge page and its metadata therefore
consists of quick bit operations.



The global allocator tracks active huge pages in a list for
each LC and open blocks in each huge page in bit vectors.
The metadata for huge pages stores bitmaps with 256 bits (<
one cache line). One bitmap stores whether a block is live
(i.e., contains live objects). Another bitmap identifies residual
blocks that contain live objects of the same LC as the huge
page. Non-residual live blocks thus contain shorter-lived
objects. When the global allocator assigns a block from the
same LC as the request, it marks the block residual.

When Lrama frees a block, it clears the corresponding
bits in both bitmaps. If all blocks in a huge page are free (the
live bitmap is all zeros), it returns the huge page to the OS.
Otherwise, it examines the residual bitmap. If it is all zeroes,
any live blocks must contain objects with shorter predicted
lifetimes. LLaMA therefore assign the page to the next-lower
lifetime class (huge page 9 in Figure 6d), copies the current
live bitmap into the residual bitmap and continues. The huge
pages in the shortest LC contain no recycled blocks.

6.6 Recycling Lines in Block Spans

This section describes how LLaMA limits fragmentation by
further subdividing block spans into lines, recycling lines
in partially free spans, and using the overflow allocation
optimization [10]. For spans with small objects, LLamA keeps
live object counts for each line, and a count of live lines per
span. Small objects occupy one or more contiguous lines and
only one span. Once a span is closed (filled at least once),
subsequent frees may create a partially free span.

Multiple threads can free objects in a span, thus counting
live objects requires synchronization. For each small object
allocation, local allocators perform an atomic increment on
its span’s and line(s)’s object counts. For each free, an atomic
decrement is performed on the counts. Section 8 describes
this synchronization in more detail. If the span count be-
comes 0, the thread that drops the count to zero returns it
to the global allocator. Free spans on active huge pages are
immediately available for recycling. When a line count drops
to zero, the freeing thread updates the span’s count.

A span with free lines and live lines is partially free. The
global allocator recycles partially free spans only after the
deadline of their huge page expires. It scans the huge page
and adds any closed partially free spans to a list. When it
assigns spans to a thread-local allocator, it marks them as
open. A local allocator may have one or two open spans per
LC: one initially partially free and one initially fully free.

Each span is exclusive to the requesting local allocator
which only allocates objects of the lifetime it requested, re-
gardless of the huge page’s LC. When a block is full, the local
allocator marks the block closed and releases it. Each time
a span is open for allocation, it only receives one LC. Each
time a partially free span is opened, it may however receive
a different LC, mixing lifetimes. The LC of these objects will
always be shorter than the LC of the huge page.
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Figure 7. High-level overview of low-latency prediction. We
use the model only when the hash of the current stack trace
is not in the cache. Discarding cache entries periodically
helps dynamically adapting to workload changes.
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Lrama bump-pointer allocates small objects into partially
free spans until it encounters an occupied line or the end of
the span. When it encounters an occupied line, it skips to
the next free line(s). For tiny objects less than or equal to
the line size (128 B), if the current line has insufficient free
memory, it skips to the next free line which is guaranteed to
be sufficient, wasting some memory. For other small objects
(> 128 B), LLaMA limits line fragmentation using demand
driven overflow allocation [10]. If a small (not tiny) object
does not fit, the allocator instead obtains a second completely
free overflow span from the global allocator for this object
and any future such allocations. It thus avoids searching for
n > 1 free contiguous lines or wasting free lines. A local
allocator may thus have two spans per LC: one partially free
and one overflow span. The local allocator prefers to allocate
in the partially free span, but once exhausted, it will fill the
overflow span before requesting a new span.

7 Low-Latency and Accurate Prediction

The allocator must predict object lifetimes quickly to meet
latency requirements. TCMalloc allocation times are <100
cycles, but even a simple neural network takes microseconds.
We therefore cache predictions. Figure 7 shows how at each
allocation, we compute a hash of the return address, stack
height and object size, and index a thread-local hashmap.
Because stack traces have temporal locality, we expect the
lookup will usually hit in the L1 cache. Prior work shows
stack height identifies C/C++ stack traces with 68% accu-
racy [42]. We find adding object size increases accuracy. If
the hash hits, we use the cached prediction. Otherwise, we
run the compiled model which takes hundreds of ys (depend-
ing on the stack depth), and store the result in the cache.
When stack hashes with very different lifetimes alias or
workloads change, prediction accuracy suffers. For example,
if we store a hash for an allocation site that is predicted
short-lived, but a second site, more common and long-lived,
aliases, then LramA may allocate a large number of long-
lived objects into short-lived block spans. We found that 14%
of predictions disagreed with the currently cached value.
To address this problem, we periodically discard cached
entries. Every, e.g., 1,000 cache hits, we run prediction again.



If the result agrees with the current entry, we do nothing.
Otherwise, we set the cache entry to the maximum lifetime
of the old and new prediction. We use maximum because the
allocator is more resilient to under-predicted lifetimes than
over-predicted lifetimes.

8 Implementation Details

Allocation size lookup. When freeing objects, we need to
know their size. We use a 256-entry bitmap representing
each block in a huge page. We set a bit to 1 if and only if
the corresponding block is the last block occupied by an
object. Given an address, we find the blocks it occupies by
rounding it down to the closest block size and using the
bitmap to find the next set bit. This approach does not work
for the last object (which may span multiple huge pages).
We therefore store a 64-bit value in the huge page metadata,
which contains the size of the last object on the huge page.
A similar approach tracks small objects that span lines, but
since small objects cannot straddle spans, it needs only one
byte to store the number of lines occupied by an object.

C-stylemalloc/free API. Our allocator is designed for C++,
but supports legacy C code, which requires storing the pre-
cise allocation size to support realloc calls. If we encounter
legacy malloc calls, we pad the object with a header that
contains the object size.

Alignment. Our allocator handles alignment and aligns all
objects to at least 8 B. The huge page allocator handles com-
mon alignments automatically, as blocks are 8 KB aligned.
For larger alignments, we increase the allocation size as
necessary and shift the start pointer to match the required
alignment. When we search for a free gap in a page, we try
gaps individually to find ones that fit the object with the
correct alignment.

Lifetime region management. Above, we assume one 16
GB virtual memory region per lifetime class. LLaAMA never
reuses huge page virtual memory. Even after it frees a huge
page, LLama still continues to use fresh virtual memory space
if it needs to allocate another huge page in this region. This
approach is practical because 64 bit architectures provide
virtual address space that exceeds the physical address space
per-process by orders of magnitude. If we run out of virtual
memory in a region of a given lifetime, we allocate an ad-
ditional 16 GB virtual memory region for this lifetime class.
LraMA manages these regions in an array. The OS only maps
small and huge pages when the program accesses them and
unmaps pages when the allocator releases them.

Locking. The main scalability bottleneck in LLaMA is a sin-
gle lock in the global allocator that performs huge page and
block allocations. We leave adding per-huge-page locks and
concurrency to the global allocator to future work. LLama
also uses synchronized reference counting. Each block span

has at most one owner thread, which performs unsynchro-
nized allocation and atomic reference count increments. Since
different threads can free objects, span and line reference
count increments and decrements must be synchronized (or
queued in a buffer for later processing [48]). The thread that
drops a span reference count to zero is responsible for free-
ing it. The owner of an open span increments its reference
count by 1 when it acquires a span and decreases it by 1
when it releases it since no thread can free the span while an
owner is still allocating into it. We apply the same technique
to lines — the allocator increments the reference count for a
line when it partially allocates into it and then decrements
it when it moves on to the next line.

Potential optimizations include eliding the increment and
decrement pair when an object crosses lines and deferral,
similar to reference counting Immix [48]. We note that highly
tuned allocators perform a large number of additional opti-
mizations (such as prefetching, restartable sequences, hand-
tuned assembly sequences [32]) that are missing from this
research allocator.

Bootstrap allocator. LLamA needs some basic functionality
during initialization, such as querying the binary’s symbol
table. For prototyping, LLAMA uses a bootstrap allocator that
handles initial allocations before executing the program. Our
prototype uses TCMalloc as this bootstrap allocator. The
memory usage reported in this paper consists of memory
allocated by both allocators, including fragmented memory.
Bootstrap memory is a small fraction of the heap. A full im-
plementation would likely use a simpler bootstrap allocator.

9 Evaluation

We evaluate LLaMA on four workloads. Except for Redis, they

are large production code bases:

Image Processing Server. A Google-internal production
image processing server that filters and transforms images.
We use synthetic inputs, but the fragmentation in our
experiments is consistent with production.

TensorFlow. The open-source TensorFlow Serving frame-
work [44] running the InceptionV3 [50] image recognition
model. This workload exercises libraries with complex
memory allocation behavior, such as the Eigen linear alge-
bra library. It runs 400 batches of requests in a harness.

Data Processing Pipeline. A Google-internal data process-
ing workload running word count on a 1 GB file with 100 M
words. We run the entire computation in a single process,
which creates very high allocator pressure, resulting in
476 parallel threads and 5M allocations per second.

Redis. The open-source Redis key-value store (v. 4.0.1) run-
ning its standard redis-benchmark, configured with 5K
concurrent connections and 100K operations of 1000 B. We
rename its zcalloc function to avoid a name collision.

The goal of the evaluation is to 1) demonstrate this approach
is promising and works on large production code bases; 2)



Workload

Prediction Accuracy

Final Steady-state Memory | Fragmentation

Weighted Unweighted | TCMalloc Liama Live reduction
Image Processing Server 96% 73% 664 MB 446 MB 153 MB 43%
TensorFlow InceptionV3 Benchmark 98% 94% 282 MB 269 MB 214 MB 19%
Data Processing Pipeline 99% 78% 1964 MB 481 MB 50 MB 78%
Redis Key-Value Store 100% 94% 832MB 312MB 115MB 73%

Table 3. Summary of Model Accuracy and End-to-end Fragmentation Results
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Figure 8. LLamA reduces huge page (HP) fragmentation com-
pared to TCMalloc on the Image Processing Server. TCMalloc
numbers optimistically assume all free spans are immediately
returned to the OS, which is not the case.

understand trade-offs, such as the model’s generalization
abilities; and 3) characterize LLAMA. We use a workstation
with a 6-core Intel Xeon E5-1650 CPU running at 3.60GHz
with 64 GB of DRAM and Linux kernel version 4.19.37.

These workloads stress every part of our allocator. They
use 10s to 100s of threads, a mix of C++ and C memory al-
location, object alignment, have a large ratio of allocation
to live objects, and a large amount of thread sharing. They
frequently communicate objects between threads, causing
the free lists to be “shuffled” and leading to fragmentation.
We believe these workloads are representative of modern
C/C++ server application. They stress the memory alloca-
tor significantly more than workloads used in some prior
C/C++ memory manager evaluations, such as SPEC CPU.
These patterns are similar to Java applications, illustrating
the evolution of C/C++ applications and how they heavily
rely on their memory managers.

9.1 End-to-end Evaluation

Table 3 shows end-to-end fragmentation improvements over
TCMalloc for the four workloads (not from simulation), rang-
ing from 19% to 78%. Figure 8 shows image processing server
fragmentation as a function of time. Since vanilla TCMalloc
does not support huge pages, we reconstruct the number of
occupied and free huge pages from its bookkeeping infor-
mation. This method is a lower bound because it does not
take into account that TCMalloc does not immediately (or
sometimes ever) release pages to the OS. TCMalloc’s actual
occupancy will be between this amount and the largest peak
in the trace, depending on page release rate. Even when com-
pared with the most optimistic variant, we eliminate 43% of
the fragmentation introduced by TCMalloc for the image
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Figure 9. LLAMA’s memory consumption with perfect life-
time predictions (using traces) is close to an oracle and
closely follows the live heap size.

server (in steady state and at termination). Note these results
include the memory overheads of our model.

The data processing pipeline represents a different kind of
workload than the servers. While the heap size variation in
servers results from changing request size patterns, the data
processing pipeline’s heap size varies based on its execution
stages. Fragmentation occurs when long-lived outputs of a
stage are allocated while the heap contains a large amount
of temporary data from an active stage.

Redis illustrates the limitations of a PGO-based approach.
Our model learns the difference between per-connection
data (which is short-lived) and stored data (which is long-
lived). However, Redis servers are often dominated by stored
data and the lifetime of these objects is entirely determined
by client requests and cannot be predicted. As such, Redis
represents workloads where a PGO approach alone is limited.
Redis implements a feature called active defragmentation that
relocates its long-lived stored-data, giving the allocator an
opportunity to compact memory and decrease fragmenta-
tion. Redis thus illustrates fragmentation is a large enough
problem that the developers hand-coded a mitigation. How-
ever, this approach only supports Redis’s stored-data data
structure, and not other objects (e.g., session state). We hy-
pothesize that a model can be effective when combined with
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this mechanism to only predict lifetimes of non-Redis ob-
jects. Further, if client requests have regularity (e.g., when
Redis is used as a cache), the model might be able to learn
this behavior as well.

To isolate the impact of the accuracy of lifetime predic-
tions from LLAMA’s memory management algorithm, we
measure its effectiveness with perfect predictions. We link
the allocator into our simulator and run it using pre-recorded
traces with perfect lifetime information. Figure 9 shows that
with a perfect lifetime oracle, the average fragmentation is
less than 1.1X for both workloads. This result demonstrates
that LLaMA succeeds at packing objects into huge pages.

9.2 Model Evaluation

LSTM Model Generalization. Figure 10 shows accuracy re-
mains high when training our model on one version of the
image server and applying it to another. The same config-
uration in Table 2 shows almost no matching stack traces
(i-e., a lookup table would not work). In contrast, the model
achieves upwards of 80% accuracy when applied to the other
revision, and increases to 95% when ignoring errors where
the prediction is off by at most one lifetime class. We see an
interesting effect for the non-optimized build. This example
achieves few exact matches but higher accuracy for off-by-
one errors. We hypothesize that because the non-optimized
version of the code runs slower, lifetimes are consistently in
a higher class than optimized code.

9.3 Sampling Effectiveness

We measure the overhead of sampling RPC latencies in the
image processing server at an average of =5 %, but with large
variations (1-8%). To evaluate if the sampled data and the
full trace data we use elsewhere in the paper are consistent,
Figure 11a shows the distribution of lifetime classes of full
traces sub-sampled at 1:100 K, compared to the lifetime pro-
filer’s data. Note that this log-scale figure does not imply
that the fractions of the different traces are the same, but
that they are in the same order of magnitude for each of the
classes, the accuracy the system needs.

To evaluate how many samples we need to construct an
accurate model, we run our image processing workload 20
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Figure 11. Validation of sampling and compiled model exe-
cution latency for the image processing server.

times for a total of 2.3 B allocations, and sample each allo-
cation with a particular probability ranging from 1:100 to
1:1,000,000. We then compare the resulting predictions to the
original training data (Figure 10). Even when only sampling
every millionth allocation, the model still produces the same
output as the training data 80% of the time and almost 100%
are off at most by one lifetime class. This demonstrates our
model’s ability to generalize.

9.4 Predictor Overheads

Latency. We next evaluate the computational performance
of our model. Figure 11b shows the prediction latency with
increasing stack sizes. We compare two different models to
understand the trade-off space. The model we use through-
out uses a 64-dimensional vector as the internal state of the
LSTM. We compare to a smaller model with a 16-dimensional
vector that can potentially store less information but exe-
cutes more quickly. In practice, we would tune this parameter
when we train an application-specific memory allocator.

Memory Consumption. We measure the memory consump-
tion introduced by our predictor. First, our allocator loads
the symbol map associated with the binary, which is 17 MB
for the image processing server. Next, every instance of the
model’s internal buffers uses 58 KB (the number of instances
limits the number of parallel threads performing prediction
simultaneously). We use 64 of them (less than 4 MB of mem-
ory). Finally, the allocator maintains a map from symbols
to tokens. We could fold this memory into the symbol ta-
ble to eliminate most of this overhead. The allocator thus
adds 56 MB for prediction for this workload, less than 2% of
the maximum heap size. As we show in Section 9.1, LLamMA
recoups this memory easily.

Stack hashing accuracy. For the image server, 95% of pre-
dictions hit in the cache, which shows stack hashing reduces
model evaluations. To evaluate accuracy, we sample predic-
tions and measure how often they disagreed with the cached
value. They disagree 14% of the time, but only require up-
dates to longer lifetime classes for 1.6% of allocation sites.

9.5 Lifetime Aware Memory Allocator Performance

We now characterize LLaMA’s performance. While our re-
search prototype is not highly tuned, we ensure its perfor-
mance is sufficient to run the full benchmarks at reasonable



TCMalloc Fast path 83 +0.1ns
TCMalloc Global allocator 81.7 + 1.0 ns
Fast path (w/o prediction) 29.1 £09ns
Without lines/recycling block spans 17.1 £ 0.8 ns
With 2 threads 28.6 + 0.1 ns
With 4 threads 28.7+ 0.1 ns
Fast path (prediction cached) 48.8 £ 0.1 ns
Fast path (run ML model, size=64) 144.6 + 1.5 us
Global allocator (w/o prediction) 52.7 £ 2.9 ns
With 2 threads 274.5 + 38.0 ns
With 4 threads 802.2 + 75.0 ns
Global allocator (prediction cached) 88.0 + 7.8 ns
Global allocator (run ML model, size=64) 143.8 + 1.2 us

Table 4. Memory Allocator alloc+free Performance

speed. We now discuss the prototype’s bottlenecks and how
a production implementation could address them. We believe
that none of these bottlenecks are fundamental.

Production memory allocators are highly tuned and ap-
plications are often co-optimized with a particular memory
allocator. Allocator optimizations include rigorous tuning of
every instruction on the fast path, software prefetch instruc-
tions, use of restartable sequences to reduce synchronization
overheads, size class tuning, and fine-grained locking. In
contrast, our allocator contains very few optimizations and
the global allocator is protected by a central lock which is
currently the main performance bottleneck. We also do not
take advantage of sized deallocation in C++11. Compared to
TCMalloc, which handles objects of up to 256 KB using the
fast path, LLama’s cut-off is 8 KB, causing a larger fraction of
allocations to use the slow path. Kanev et al. describe many
fast path optimizations in TCMalloc [32].

We use microbenchmarks to quantify the slowdown of
allocation relative to TCMalloc for a number of common
allocation paths. On average, allocation is currently 2 — 3x
slower than TCMalloc. In practice, the memory allocator
sees much less contention than in this stress test, and end-to-
end slowdowns are less dramatic (Section 9.1). For example,
the image server slows down =~ 12.5% per query compared
to TCMalloc. On the other end of the spectrum, the global
lock is a problem under very high allocator pressure. For
the data processing pipeline with 476 threads mapped to
6 physical cores and 5M allocations per second, LLaMA’s
performance degrades by 2.84X compared to a recent version
of TCMalloc [26]. Note that TCMalloc is highly tuned and
that this benchmark is limited by global synchronization in
LraMma and thus is particularly advantageous for TCMalloc.

The overheads in our allocator could be addressed. In the
fast path, the main bottleneck is the atomic operations re-
quired to update object counts — these operations could be
elided by operating entirely on thread-local counters and
only writing them back when an open block span is released.
In the slow path, the main bottleneck is the global lock.
This is particularly pronounced when the number of threads
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Figure 12. LLaMA reduces fragmentation compared to Mesh.

exceeds the number of physical cores. This lock could be
replaced with a readers-writer lock for the list of active pages
(which is mostly read-only) and a per huge-page lock that is
only acquired when a page is updated. The list could also be
implemented as a lock-free data structure. While these over-
heads mean that our research prototype is not production-
ready, the focus of this work has been fragmentation and
our prototype is suitable for evaluating it.

We also gather statistics to confirm that LLama’s differ-
ent behaviors and execution paths are actually exercised by
our workloads. For the image processing server (spanning
130M allocations and 207 GB allocated), the allocator allo-
cates 640 K block spans, observes expiring deadlines 1,011
times, and demotes huge pages 8,492 times, confirming the
benchmarks exercise LLAMA’s key features.

9.6 Comparison to Mesh [46]

Fragmentation induced by long-lived objects allocated at
peak memory usage is fundamental to most memory alloca-
tors, since avoiding this fragmentation requires the allocator
to know at allocation time which objects are long-lived. As
such, strategies such as size class tuning or best fit allocation
do not address this source of fragmentation.

A recent proposal, Mesh [46], takes a different approach
and reduces fragmentation by combining (meshing) virtual
pages with non-overlapping objects into the same physical
page using copying and page remapping. As such, Mesh
has the potential to address fragmentation caused by long-
lived objects. For example, Mesh reduces fragmentation in
Firefox by 16%. We compare LLAMA to Mesh. A challenge is
that Mesh’s probabilistic guarantees rely both on random
allocation and on small 4 KB pages. The paper states that
Mesh is not designed to work with huge pages. We thus
compare with Mesh first on the Image Server using huge
pages and then — using a microbenchmark that simulates
varying heap sizes — on both small and huge pages.

Image Server (Simulation). For the image server, we use
our simulator to compute occupancy bitmaps throughout
the execution and then give them as input to Mesh’s anal-
ysis scripts to compute meshing opportunities, using the
“greedy” mesher. Figure 12a shows LLAMA saves memory
between a factor of 2 to 5 compared to meshing throughout
the execution of the image server.



Microbenchmark. We compare LLAMA to Mesh and TCMal-
loc on small and huge pages using a microbenchmark that
mimics varying heap size. The microbenchmark allocates a
sequence of short-lived 64 B objects and fluctuates between
a 1 MB and a 1 GB heap size. Every 10,000 allocations, it al-
locates a long-lived object, for a total of 5 MB of long-lived
data spread out evenly across the virtual address space. It
represents a stress-test for the type of fragmentation that
Liama and Mesh address. At the end of the execution, all
but the long-lived objects are freed and we report live pages
in Figure 12b for small and huge pages.

Figure 12b shows vanilla TCMalloc incurs high fragmen-
tation. With 2 MB pages, it frees almost no pages. With 4KB
pages, it frees about half of the memory. Note that not all this
fragmentation is caused by live objects, as TCMalloc has cells
held in caches and free lists. In contrast, Mesh (only counting
memory in MiniHeaps) reclaims most of the fragmentation
in the 4 KB pages case (91.7 MB), as intended. However, when
looking at 2 MB pages, this memory becomes 558 MB, con-
firming that Mesh works well with 4 KB pages but not 2 MB
pages. Meanwhile, our allocator only uses 22 MB in both
cases when supplied with correct lifetime predictions, not
accounting for the bootstrap allocator or any models.

These experiments show Mesh is highly effective for ad-
dressing fragmentation with 4 KB pages. While Mesh alone
does not solve the fragmentation problem for huge pages,
we believe that our approach can be combined with Mesh
to further reduce fragmentation. When LLAMA encounters
long-lived blocks on mostly empty pages, the global alloca-
tor could avoid the corresponding locations on other pages,
making it more likely that these pages can be meshed in the
future. This approach could likely use the same bitmap-based
mechanism already used by LLAMA.

10 Discussion

Extension to other properties. Our model predicts lifetimes,
but the allocator can benefit from other properties, e.g.,
whether or not an object will be freed by the same thread
that allocated it. This information is useful because it allows
us to allocate objects that stay within the same thread in
the same block span, which reduces synchronization and im-
proves performance. As with the page allocator, we need to
consider mispredictions. As we are using atomic operations
to update the reference count, correction is simple. If the
prediction was correct, performance improves from reduced
synchronization. For incorrect predictions, we incur a minor
performance loss by having to synchronize on the cache line,
but these are rare if predictions are mostly correct. A more
generalized predictor could inform various other memory
allocation strategies (e.g., based on object sizes, alignment,
freeing thread, etc.) and learn which strategy to pick for each
allocation. The strategies themselves could be determined

by simulating different scenarios and using techniques such
as Bayesian optimization to choose among them [22].

Improving accuracy and reducing prediction costs. The
cost of our model could be significantly reduced. Currently,
we need to look up each stack pointer within a trace in the
binary’s symbol table, tokenize it, multiply the results with
the embedding matrix, and feed it into the model. While we
cache tokenizations of symbols, these lookups incur addi-
tional delays at runtime. Instead, we could precompute all
of these steps at compile-time when we build the symbol
table, including the execution of the part of the model that
multiplies tokens with the embedding matrix. This approach
is a form of partial evaluation.

We may also be able to reduce the latency of our model
by not feeding sequences of tokens into the model but by
learning an embedding for entire stack frames. This approach
may reduce the LSTM length by an order of magnitude, and
would be particularly effective when combined with partial
evaluation. A final optimization is to memorize our hash
tables across runs to avoid startup overheads.

General implications for ML for Systems. We believe that
many issues this paper addresses for using ML apply to other
systems problems, such as sizing queues and data structures
(e.g., vectors and maps). These predictions are also latency-
sensitive, can benefit from calling context, and need to toler-
ate mispredictions. We think a general approach to system
resource management problems is to decompose the prob-
lem into a supervised learning problem that can be solved by
learning from profiling data and a conventional algorithmic
solution for handling mispredictions.

11 Conclusion

We show that modern ML techniques can be effectively used
to address fragmentation in C++ server workloads that is
induced by long-lived objects allocated at peak heap size.
We use language models to predict lifetimes for unobserved
allocations sites, a problem unexplored in prior lifetime pre-
diction work. We introduce LLAMA, a novel memory manager
that organizes the heap using huge pages and lifetime classes,
instead of size classes. LLama packs objects with similar life-
time together in the blocks of a huge page, tracks actual
lifetimes and uses them to correct for mispredictions. It lim-
its fragmentation by filling gaps created by frees in blocks
and their lines with shorter-lived objects. In this context, this
work solves challenges related to applying ML to systems
problems with strict resource and latency constraints.
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