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ABSTRACT
Over the past two years, large pretrained language models such
as BERT have been applied to text ranking problems and showed
superior performance on multiple public benchmark data sets. Prior
work demonstrated that an ensemble of multiple BERT-based rank-
ing models can not only boost the performance, but also reduce the
performance variance. However, an ensemble of models is more
costly because it needs computing resource and/or inference time
proportional to the number of models. In this paper, we study how
to retain the performance of an ensemble of models at the infer-
ence cost of a single model by distilling the ensemble into a single
BERT-based student ranking model. Specifically, we study differ-
ent designs of teacher labels, various distillation strategies, as well
as multiple distillation losses tailored for ranking problems. We
conduct experiments on the MS MARCO passage ranking and the
TREC-COVID data set. Our results show that even with these sim-
ple distillation techniques, the distilled model can effectively retain
the performance gain of the ensemble of multiple models. More
interestingly, the performances of distilled models are also more
stable than models fine-tuned on original labeled data. The results
reveal a promising direction to capitalize on the gains achieved by
an ensemble of BERT-based ranking models.
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1 INTRODUCTION
With the availability of large-scale text-based data sets like MS
MARCO [1] for ranking problems, much attention has been devoted
towards developing effective ranking models that take raw query
and document texts as inputs directly, compared to traditional
learning to rank with only derived numerical inputs [20]. One of the
most popular approaches is to use a large language model such as
BERT [7] as encoder and then fine-tune it for ranking problems [12,
17]. The remarkable performance of BERT-based ranking models
makes them the state-of-the-art text ranking models.

At the same time, the fine-tuned BERT models show high
variances since the performances of different runs of the same
BERT model could be statistically significantly different from each
other [12]. A simple ensemble of these models not only achieves
better results, but also reduces the performance variances. This has
been confirmed by existingwork on public text ranking benchmarks
such as MS MARCO [12] and TREC-COVID [2].

However, serving an ensemble model is always costly as the
computational cost required would be multiplied by the number
of models. This issue is worsened for the ensemble of multiple
BERT-based models due to their gigantic sizes. Serving even a
single BERT-based model online would require non-trivial effort
to address [15, 21]. Hence, it would be prohibitively expensive to
directly serve a text ranking model ensemble containing multiple
BERT-based ranking models for most online products.

In this paper, we study how to retain the advantages of an ensem-
ble of models but reduce their cost by exploring how to distill them
into a single BERT-based student ranking model. For neural net-
works, Knowledge Distillation (KD) [13] was proposed recently to
distill a large and complex teacher model into a small student one. It
has been widely studied for different variants of classification [11],
but has not been well studied for ranking problems. Existing work
on distilling ranking models mainly focuses on using pointwise
regression losses on a single BERT model [10]. There is little work
studying how to distill an ensemble of multiple ranking models. It
is unclear what the best way is to jointly utilize the outputs of mul-
tiple teacher ranking models in the distillation process and whether
a ranking-specific listwise loss is effective in this setting.

The contributions of this paper can be summarized as follows:

• We evaluate a few methods to derive teacher labels from
a set of BERT-based ranking models, including using their
ranking scores directly and their derived reciprocal ranks [6].

• We study KD with various strategies, including different
ways to jointly leverage teacher labels from multiple teacher
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models and different distillation losses. We show that the list-
wise softmax cross entropy loss produces strong and robust
performances with a number of distillation strategies.

• In contrast to the existing KD work, we find that the dis-
tilled BERT-based ranking models have little accuracy loss
compared with the ensemble model. Meanwhile, the distilled
model shows higher stability compared with a BERT ranking
model trained directly with the original labels.

The rest of the paper is organized as follows. We review the re-
lated work in Section 2. The preliminaries are described in Section 3
and our methods are described in Section 4. We then present our
experiments on the benchmark data sets in Section 5 and conclude
the paper in Section 6.

2 RELATEDWORK
Ensemble [8] is a widely-adopted machine learning technique. The
technique takes a set of trained base models and aggregates their
predictions as the ensemble predictions. The set of base models can
contain multiple learning algorithms, different parameterizations
of the same model, or even multiple instances of the same model
trained with random parameter initializations. The ensemble model
reduces the variances of individual models and often improves
the overall performance. Ensemble is particularly helpful in aggre-
gating BERT-based models as they tend to have higher variances
potentially due to their gigantic size [2, 12].

Knowledge Distillation (KD), introduced in [13], is to transfer
knowledge from a teacher model to a student model. Given a larger
teacher model, a smaller student model can be trained using the
teacher predictions as labels. The teacher model can be a model
with the same architecture as the student model but larger capacity
or an ensemble of multiple models with each having the same
capacity as the student [24–26]. Recently, Born Again Networks
(BAN) [9] used identical teacher and student models and found
that the student model can outperform the teacher model. All these
studies are on classification problems and the output of a teacher
model is intuitively meaningful as the probability distribution over
possible classes.

BERT [7] has been quite powerful for many different tasks. Re-
cently, it has been introduced for ranking tasks [5, 12, 17]. Nogueira
and Cho [17] solved the passage re-ranking task by fine-tuning
BERT with a pointwise regression loss. Han et al. [12] used listwise
ranking losses to fine-tune BERT and also showed that an ensemble
is effective to improve the ranking accuracy, but they did not study
ensemble distillation. Gao et al. [10] combined different objectives
in the distillation losses for BERT rankers. However, the ranking
objective is the same as [17] – a pointwise regression loss. Similarly,
Chen et al. [5] studied KD on TinyBERT for document retrieval
and Yang et al. [25] proposed an m-o-m method to distill𝑚 smaller
student BERT models from𝑚 large teacher BERT models in the
application of web question answering. Both also used pointwise
regression losses. None of them studied more advanced ranking
losses or the distillation of ensemble models. Our focus is on the
distillation of a BERT ensemble with ranking losses.

Applying KD to ranking problems has not been extensively stud-
ied and only a couple of works are in the literature. For example,

Ranking Distillation (RD) [23] was proposed for recommender sys-
tems. In RD, the teacher model is trained with a pairwise ranking
loss, but the distillation loss is a pointwise regression loss by treat-
ing the top-𝑘 unlabeled documents ranked by the teacher model for
training queries as additional positives. Zhang et al. [28] followed
a similar setting but applied the teacher model to holdout queries
and their documents as training data for distillation. Both of them
need extra data and it is unclear how effective ranking distillation
can be without it.

3 PRELIMINARIES
In this section, we briefly introduce the notations and the BERT-
based ranking models used in our studies.

3.1 Text Ranking
We represent each query as (𝑞, 𝐷, y), where 𝑞 represents the query
text; 𝐷 = (𝑑1, . . . , 𝑑𝑚) is a set of candidate text retrieved by the
query text 𝑞; y = (𝑦1, . . . , 𝑦𝑚) are real-valued labels where 𝑦 𝑗 in-
dicates the relevance of 𝑑 𝑗 to the query 𝑞. Each candidate text 𝑑 𝑗
can be represented as a sequence of tokens 𝑑 𝑗 = (𝑤 𝑗1, . . . ,𝑤 𝑗𝐿𝑗 ).
Each query can also be regarded as a sequence of tokens similarly.
Labels y are only given for training data.

In a supervised learning-to-rank setting, a training data set
Dtrain = {(𝑞𝑖 , 𝐷𝑖 , y𝑖 )}𝑛1 is given. The objective is to learn a scoring
function 𝑓 , such that for any test data set Dtest = {(𝑞𝑖 , 𝐷𝑖 )}𝑛

′
1 , the

scoring function can output ranking scores 𝑦𝑖 𝑗 = 𝑓 (𝑞𝑖 , 𝑑𝑖 𝑗 ) ∈ R for
each candidate text 𝑑𝑖 𝑗 ∈ 𝐷𝑖 in each query 𝑞𝑖 . Ideally, by sorting
candidates in 𝐷𝑖 for each 𝑞𝑖 based on their predicted ranking scores
𝑦𝑖 𝑗 , we can obtain a ranking where more relevant candidates 𝑑𝑖 𝑗
are ranked higher.

3.2 BERT Ranker
There have been many studies [14, 16, 18, 27] on leveraging the
power of BERT [7] to conduct text ranking tasks. In this study, we
adopt a methodology proposed in [12].

Specifically, for each query-document pair (𝑞𝑖 , 𝑑𝑖 𝑗 ), we concate-
nate the sequence of query text 𝑞𝑖 and candidate text 𝑑𝑖 𝑗 . We then
feed the concatenated sequence into a BERT model and pass the
output [CLS] vector through a single dense layer to obtain the
ranking score 𝑦𝑖 𝑗 .

We initialize the parameters in the BERTmodel from a pretrained
checkpoint. Then we fine-tune the entire model by a ranking loss
which takes into account all the documents in candidate set 𝐷𝑖 .
For each query 𝑞𝑖 , denote all the ground-truth labels as y𝑖 and all
the predicted scores as ŷ𝑖 , we can define a listwise softmax cross
entropy loss [3], which is a simple version of ListNet [4], as:

ℓsoftmax (y𝑖 , ŷ𝑖 ) =
𝑚∑
𝑗=1

𝑦𝑖 𝑗 log
( exp(𝑦𝑖 𝑗 )∑𝑚

𝑗 ′=1 exp(𝑦𝑖 𝑗 ′)

)
(1)

Notice that by training with the listwise softmax cross entropy loss,
the predicted rankings score 𝑦𝑖 𝑗 is merely a ranking score without
any pre-determined semantics. It is not guaranteed that the ranking
score would have roughly the same scale as the original ground-
truth label. We choose this loss as it is shown more effective than
the pointwise regression loss [12].



3.3 Ranker Ensemble
When there are multiple trained learning-to-rank models available,
one can leverage the power of all the models by deriving an en-
semble model. We recall two simple ensemble methods for ranking
models.
Mean score. Suppose that there are 𝐾 base rankers. For each
query 𝑞𝑖 and its candidate text set 𝐷𝑖 , the ranking score of the 𝑗-th
candidate text 𝑑𝑖 𝑗 predicted by the 𝑘-th ranker can be represented
as 𝑦 (𝑘)

𝑖 𝑗
. The most naïve method to obtain the ensemble ranking

score 𝑠𝑖 𝑗 is to simply take the mean of all the base rankers’ scores:

𝑠𝑖 𝑗 =
1
𝐾

𝐾∑
𝑘=1

𝑦
(𝑘)
𝑖 𝑗

(2)

Reciprocal rank fusion (RRF). Another widely adopted ensem-
ble method is reciprocal rank fusion (RRF) [6]. Instead of directly
using the ranking scores from base rankers, we utilize the rank
of each candidate based on the predicted ranking scores. For each
query 𝑞𝑖 , we denote the predicted rank of the 𝑗-th candidate text by
the 𝑘-th ranker as 𝑟 (𝑘)

𝑖 𝑗
. The RRF-based ensemble ranking score is:

𝑠𝑖 𝑗 =
1
𝐾

𝐾∑
𝑘=1

1

𝐶 + 𝑟 (𝑘)
𝑖 𝑗

(3)

where 𝐶 is a user-defined constant. RRF is favored when the base
rankers are trained with very different models as the ensemble
derivation is agnostic to scale of the ranking scores.

4 ENSEMBLE DISTILLATION
An ensemble of multiple BERT rankers often provides further im-
provement over simply adopting a single BERT ranker, but serving
such an ensemble can be prohibitive due to the size of BERT models.
We thus propose our ensemble distillation in this section.

4.1 Teacher Labels
Recall that for query 𝑞𝑖 and its 𝑗-th candidate text 𝑑𝑖 𝑗 , the predicted
ranking score by the 𝑘-th ranker is represented as 𝑦 (𝑘)

𝑖 𝑗
. We denote

the correspondingly transformed teacher label as 𝑠 (𝑘)
𝑖 𝑗

.

Ranking score. The simplest teacher label is to directly use the
predicted ranking score, namely

𝑠
(𝑘)
𝑖 𝑗

= 𝑦
(𝑘)
𝑖 𝑗

(4)

Reciprocal rank. Teacher models can have outputs with very
different scales, whichwouldmake it difficult for the student models
to fit. Similar to the RRF ensemble method, we use the reciprocal
rank to be the teacher label:

𝑠
(𝑘)
𝑖 𝑗

=
1

𝐶 + 𝑟 (𝑘)
𝑖 𝑗

(5)

where 𝐶 is the same constant as defined in Equation (3).

4.2 Distillation Strategies
We study two strategies to leverage outputs from multiple teacher
models.

Aggregated teacher label distillation (AGG). A straightforward
method is to first aggregate all the 𝐾 teacher labels into an aggre-
gated teacher label, then distill the student model from the aggre-
gated labels. Specifically, for query 𝑞𝑖 and candidate 𝑑𝑖 𝑗 , we denote
the aggregated teacher label as 𝑠𝑖 𝑗 and use the mean of all the 𝐾
teacher labels as the aggregated teacher label for simplicity:

𝑠𝑖 𝑗 =
1
𝐾

𝐾∑
𝑘=1

𝑠
(𝑘)
𝑖 𝑗

(6)

Notice that this is equivalent to directly using the ensemble ranker
scores as the aggregated teacher labels: if the teacher labels are
simply ranking scores, the aggregated teacher labels equal to the
ensemble scores in Equation (2); if the teacher labels are reciprocal
ranks, the aggregated teacher labels equal to the ensemble scores
in Equation (3).

For all the candidates 𝐷𝑖 of query 𝑞𝑖 , we denote all of their
aggregated teacher scores as s𝑖 and all of their distilled scores as
ŝ𝑖 (and 𝑠𝑖 𝑗 for 𝑑𝑖 𝑗 ). We can fine-tune the student BERT model by
minimizing the loss function:

ℓdistill-agg (ŝ𝑖 ) = ℓ
(
s𝑖 , ŝ𝑖

)
(7)

where ℓ is a ranking loss function defined based on a list of ground-
truth labels and predicted scores. The concrete definition of ℓ can
be found in Section 4.3.
Multi-objective distillation (MO). Another method is to treat
the distillation as a multi-objective learning problem. Instead of
aggregating the teacher labels of all the 𝐾 base rankers, we can
fine-tune the student BERT model by optimizing 𝐾 loss functions
simultaneously. We use s(𝑘)

𝑖
to represent all the teacher labels from

the 𝑘-th base rankers for query 𝑞𝑖 . The training loss used for multi-
objective distillation is:

ℓdistill-mo (ŝ𝑖 ) =
1
𝐾

𝐾∑
𝑘=1

ℓ

(
s(𝑘)
𝑖
, ŝ𝑖

)
(8)

Again, the instantiation of ℓ is described in Section 4.3.

4.3 Distillation Loss Function
The distillation loss function ℓ (·, ·) can be instantiated by any rank-
ing loss functions.
Softmax cross entropy. The first instantiation we explore is the
softmax cross entropy loss function. We distill the teacher models
by minimizing ℓsoftmax (s𝑖 , ŝ𝑖 ) where ℓsoftmax (·, ·) is defined in Equa-
tion (1). The listwise ranking loss emphasizes fitting the ranking
obtained by the base rankers. The loss penalizes the model more
when top-ranked items are incorrect.
Mean squared error. An alternative distillation loss function is
a pointwise loss function which emphasizes fitting the predicted
scores of each candidate text from the base rankers, regardless of
their ranking. We explore using the mean squared error (MSE) loss
to instantiate the distillation loss:

ℓMSE (s𝑖 , ŝ𝑖 ) =
𝑚∑
𝑗=1

(𝑠𝑖 𝑗 − 𝑠𝑖 𝑗 )2 (9)



4.4 Leveraging Ground-Truth Labels
In addition, we can also leverage the ground-truth labels to further
regularize the distillation process. We can fine-tune the student
BERT model by optimizing a mixture loss function:

ℓmixture (ŝ𝑖 ) = 𝛼 · ℓdistill (ŝ𝑖 ) + (1 − 𝛼) · ℓ (y𝑖 , ŝ𝑖 ) (10)

where 𝛼 is a user-defined constant between 0 and 1. The first term
ℓdistill (·) can be instantiated by either ℓdistill-agg (·) or ℓdistill-mo (·).
The second term ℓ (·, ·) is the ranking loss between the predicted
ranking scores and the ground-truth labels. In our experiments, we
utilize the ranking loss in base ranking model training, which is a
softmax cross entropy loss as described in Equation (1).

5 EXPERIMENTS
In this section, we describe the experiments we conduct to verify the
effectiveness of distillation for an ensemble of BERT rankers. All our
experiments are conducted based on the TF-Ranking library [19].

5.1 Data Sets

MS MARCO. We utilize MS MARCO passage ranking data set [1]
in our experiments. The task is to rank passages based on their
relevance to questions. There are more than 530,000 questions in
the “train” data partition, and the evaluation is usually performed
on around 6,800 questions in the “dev” and “eval” data partition.
The ground-truth labels for the “eval” partition are not published.
The original data set contains more than 8.8 million passages. For
more efficient experiments, we use a BERT-based ranker similar
to the one described in [12] to retrieve the top-50 documents for
each question in the “train” and “dev” partition as candidate text
sets. We train the base rankers and infer their ranking scores for
these top-50 documents in the “train” partition and distill student
models from them. Then we infer the ranking scores of distilled
student models for the top-50 documents in the “dev” partition. The
evaluation metrics are calculated on the “dev” partition.
TREC-COVID. We also conduct experiments on TREC-
COVID [22] data set. The data set contains 50 topics (queries)
and a corpus of around 190,000 abstracts. Topics from Round 1-
4 and about 90% of their relevance judgments are used for training,
and their remaining relevance judgments and all the relevance
judgements for Round 5 topics are held out for evaluation. We use
retrieval methods described in [2] to retrieve a subset of candidate
abstracts for each topic. Further, we use 1 relevant and 5 random
irrelevant abstracts to create ranking lists for training.

5.2 Parameter Configurations
For all the base rankers and the distillation student model, we utilize
BERT-Large pretrained with whole-word masking. During the fine-
tuning, we set the learning rate as 1e-5 and the batch size as 32.
Notice that the batch size indicates the number of queries in the
batch. We train 10 base rankers for ensemble and distillation. For
RRF, we try different constant parameters and eventually set 𝐶 = 0
for MS MARCO and 𝐶 = 50 for TREC-COVID.

Although all the base rankers and the distillation student model
are identical BERT-Large models, the student model is still much
easier to serve than the ensemble of 10 base rankers, because serving

Table 1: Overall performance comparison. The best per-
formances are bolded. Distillation results with ∗ are statis-
tically significantly (𝑝 ≤ 0.05) better than average perfor-
mance of base rankers.

Methods MS MARCO TREC-COVID
MRR@10 MAP

Avg of Base Rankers 0.3995 0.2020
Best of Base Rankers 0.4026 0.2094
Mean Score Ensemble 0.4045∗ 0.2108∗

RRF Ensemble 0.4045∗ 0.2104∗
Ensemble Distillation 0.4053∗ 0.2138∗

Table 2: Comparing different variants of distillation meth-
ods. The best performances are bolded. Distillation results
with ∗ are statistically significantly (𝑝 ≤ 0.05) better than
average performance of base rankers, and those with ↓ are
significantly worse than the ensemble model.

Teacher label Methods MS MARCO TREC-COVID
MRR@10 MAP

Ranking Scores

AGG Softmax 0.4036∗ 0.2095∗
AGG MSE 0.4039∗ 0.2105∗
MO Softmax 0.4053∗ 0.2138∗

MO MSE 0.4023∗ 0.2102∗

Reciprocal Rank

AGG Softmax 0.4041∗ 0.2117∗

AGG MSE 0.3903↓ 0.0906↓
MO Softmax 0.4007 0.2082
MO MSE 0.3915↓ 0.0855↓

the ensemble model online would require 10x computing resources
or 10x time.

We evaluate our models by the official metrics of both data sets.
We use mean reciprocal rank (MRR@10) for MS MARCO and mean
average precision (MAP) for TREC-COVID.

5.3 Results

Effectiveness of distilled models. First we examine whether
the distilled student model remains as effective as the ensemble
model. We calculate the average and the best performance of base
rankers. The average performance reflects the expected perfor-
mance when users train a single base ranker without further selec-
tion, while the best performance corresponds to the scenario when
users can choose from a set of trained models. We also evaluate
the performance of both ensemble rankers before distillation as
the “upper-bound” for distilled rankers. We try distillation methods
with different teacher label derivation methods, different distillation
strategies and different loss functions and report the results from
the best configuration, which utilizes the multi-objective distillation
strategy with Softmax loss. The results are shown in Table 1.

We can observe that before distillation, both the mean score
ensemble and the RRF ensemble outperform any single base ranker.
More importantly, the distilled models successfully retain the ad-
vantage of the ensemble models. The best distilled student models



on both data set achieve similar performances as the ensemble
models, and are still better than any single base ranker.
Distillation configuration comparison. We also analyze the
performances of the distilled student models with different config-
urations on both data sets in Table 2.

First, we can observe that using either ranking scores or recipro-
cal ranks as teacher labels produces a distilled student model with
equivalent performance to that of the ensemble model. Using the
original ranking scores as teacher labels seems to perform well with
different losses and strategies. However, it is worth noting that our
experiments use the same ranking models trained with different
initialization as base rankers, and hence they have very similar
ranking score distributions. These results may not generalize to
base models with different model structures.

In addition, using aggregated teacher labels (AGG) for distillation
or the multi-objective distillation strategy (MO) does not seem to
have much difference in our experiments. Both strategies perform
well when appropriate teacher labels and distillation losses are
selected.

We also compare the listwise distillation loss (Softmax) and the
pointwise distillation loss (MSE) on both data sets. It can be seen
that the student models distilled with the listwise Softmax loss
almost always remain similarly effective to the ensemble model,
while the pointwiseMSE loss does not performwell when reciprocal
ranks are used as the teacher labels. A possible explanation is that
the absolute differences between reciprocal ranks are too small for
MSE loss to distinguish, especially when 𝐶 is large.
Stability of distilled models. We further study the performance
stability of distilling from the ensemble model. We perform the
distillation process with “MO Softmax” (multi-objective distillation
strategy with softmax distillation loss) for 5 times, and measure the
performance of the 5 runs to see how much they vary from each
other. We also fine-tune the base ranker for 5 times as a comparison.
We visualize their performances on both data sets in Figure 1.

It can be observed that the variance of base ranker performances
is extremely large. On the MS MARCO data set the lower end
of the 95% confidence interval reaches below 0.3990 in terms of
MRR@10, and on the TREC-COVID data set the best and the worst
performances of base rankers can be about 0.01 in terms of MAP.
This suggests that, with a fairly high chance, simply fine-tuning a
single BERT-based base ranker can yield a suboptimal model. In
fact, we even observe that the performance between two identical
base rankers fine-tuned in the same manner can be statistically
significantly different (𝑝 ≤ 0.05) from each other.

In contrast, when distilled from multiple base rankers, the model
performance on both data sets is more stable and consistently higher
than the best base ranker performance. Notice that our proposed
ensemble methods and distillation strategies are simple and do
not require any separate validation data sets. If there are sufficient
labeled data to create a validation data set, one can use a more
sophisticated method to obtain the ensemble model which can lead
to a better distilled model.
Impact of ground-truth labels. We also evaluate the idea of
leveraging ground-truth labels during distillation. We conduct ex-
periments on MS MARCO to distill models based on aggregated
teacher labels, while using softmax cross entropy loss to instantiate

Table 3: Impact of ground-truth labels onMSMARCO based
on softmax loss and aggregated teacher labels. The best per-
formances measured by MRR@10 are bolded per column.

𝛼 Ranking Score Reciprocal Rank
1.0 0.4036 0.4041
0.5 0.4053 0.4042
0.1 0.4011 0.4061

both the distillation loss and the training loss with ground-truth
labels in Equation (10). We use both ranking scores and reciprocal
rank as teacher labels. The results are shown in Table 3, where we
tune the parameter 𝛼 ∈ {1.0, 0.5, 0.1}.

For both settings, we can observe that the distilledmodel partially
using ground-truth labels (with an appropriate 𝛼 < 1.0) can achieve
better performance than simply distilling from ensemble of base
rankers (𝛼 = 1.0). The results indicate that ground-truth labels can
still be helpful in the distillation process to provide extra signals
that are not necessarily captured by the ensemble model.

6 CONCLUSION
We explored the effectiveness of distilling an ensemble of multiple
BERT-based ranking models into a student ranking model instan-
tiated by a single BERT. We studied the combinations of different
distillation formulations, teacher labels, and distillation losses. Our
experiments are conducted on the MS MARCO and TREC-COVID
data sets. We showed that the distilled student model can be as
effective as the ensemble model and a listwise ranking loss is more
robust than a pointwise loss in a variety of settings. Moreover, when
ground-truth labels are also leveraged during the distillation, the
distilled model performance can be further improved.

There are a number of potential future directions. An interesting
direction is how to develop more sophisticated teacher label deriva-
tion [29] for ranking model distillation. For BERT-based ranking
models, we mainly show that the advantage of an ensemble can be
retained when distilled into a student model with the same model
size. Studying the effects of distilling into smaller student models
such as BERT-small is an interesting follow-up work.
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