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Although rapid advances in machine learning have made it increasingly applicable to expert decision-making,
the delivery of accurate algorithmic predictions alone is insufficient for effective human-AI collaboration. In
this work, we investigate the key types of information medical experts desire when they are first introduced
to a diagnostic Al assistant. In a qualitative lab study, we interviewed 21 pathologists before, during, and after
being presented deep neural network (DNN) predictions for prostate cancer diagnosis, to learn the types of
information that they desired about the Al assistant. Our findings reveal that, far beyond understanding the
local, case-specific reasoning behind any model decision, clinicians desired upfront information about basic,
global properties of the model, such as its known strengths and limitations, its subjective point-of-view, and
its overall design objective—what it’s designed to be optimized for. Participants compared these information
needs to the collaborative mental models they develop of their medical colleagues when seeking a second
opinion: the medical perspectives and standards that those colleagues embody, and the compatibility of those
perspectives with their own diagnostic patterns. These findings broaden and enrich discussions surrounding
Al transparency for collaborative decision-making, providing a richer understanding of what experts find
important in their introduction to Al assistants before integrating them into routine practice.
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1 INTRODUCTION

Deep neural networks (DNNs) are increasingly being developed for use in medical applications, such
as cancer detection and grading [66, 70]). Within this space, a significant portion of recent research
has focused on demonstrating that these models can rival the accuracy of medical experts [24].
As these models mature and prove to be reliable and accurate, there is a desire to integrate these
capabilities into actual clinical practice. For example, one promising application of machine learning
(ML) is its use as a “second set of eyes” to inspect a clinical case [6, 26], with the goal of increasing
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the clinician’s accuracy or efficiency. This application of machine learning models falls under the
category of a clinical decision support system (CDSS) [27].

Despite the high-performing nature of these algorithms, prior work has shown that CDSSes can
be difficult to successfully integrate into practice, citing a lack of HCI consideration as one of the
primary reasons for failure [41, 44, 55, 76, 78]. For example, users may resist adopting a tool if they
do not understand its capabilities, its intended use, or its utility over existing practices [48, 72, 74].
Algorithmic aversion has also been an underlying challenge for these systems [18, 40, 47]. To
address this latter issue, there is growing work aimed at providing users more information behind
model decisions at the time of inference [60, 63]. Yet, there are many broader questions that a user
may desire to ask of the system as a whole, even prior to observing any specific model decision,
such as how well it performs, its potential pitfalls, and implications of use. Additionally, a trained
model is the result of numerous design and engineering decisions that users may find useful to
know. For example, there are design decisions made with regards to data collection, source of
ground truth, and model objectives. These types of global transparency questions could be key to
forming an accurate initial impression of an ML-based system, and to developing an appropriate
mental model to work with it cooperatively.

In this paper, we focus on the initial introductory phase of using a DNN-based diagnostic
aid, which we refer to as an Al Assistant! throughout this paper. Specifically, we investigate the
information needs articulated by pathologists during their introduction to an Al Assistant that
detects and grades the severity of prostate cancer. While a substantial body of work examines
user information needs at prediction time [12, 60, 63], or how to design Al assistance to integrate
seamlessly with practices [78], we focus on the initial human-AI onboarding phase, when users
are first being introduced to an Al system, learning its capabilities, and determining how they
will partner with it in practice. Here, we define onboarding as the training necessary for effective
human-AI collaboration, to be delivered at the outset of a user’s introduction to an Al assistant.
This information is ideally situated in a larger training program that includes information and
tutorials for using the system itself. This initial human—-AI onboarding process can be key to initial
impression formation and the development of appropriate mental models and strategies of use.

To identify information needs, we conducted a study with 21 pathologists. Each pathologist
participated in a semi-structured interview to express what information they desired to know about
an Al Assistant before using it. They then interacted with an AI Assistant for cancer diagnosis
on digital pathology images, in a think-aloud manner. After performing assisted diagnosis, they
continued the semi-structured interview to reflect on the experience and to suggest any additional
information that might be useful to know about the Assistant.

Our findings reveal a need for a holistic, global view of the Al Assistant and its capabilities,
limitations, and biases, preferably presented in terms relatable to day-to-day practices. Specifically,
participants desired information across the following dimensions:

(1) Capabilities and limitations: The AI Assistant’s overall performance, including its partic-
ular strengths and limitations under specific conditions (e.g., well-known edge cases).

(2) Functionality: What information the AI Assistant has access to, and how it uses that
information to make a prediction.

(3) Medical point-of-view: The system’s subjective “point-of-view,” or its medical style vis-a-
vis their own, such as the extent to which it tends to be more liberal or conservative when
grading cancer severity.

!While there are differing opinions about when and where to use the terms “ML” and “Al’ our choice of using the term
“Al Assistant” was motivated by the intention of this tool to directly assist a user, as well as the observation that “AI” and
“Assistants” are frequently used to describe these types of end-user systems.
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(4) Design objective: What the Assistant has been optimized for, such as its rate of false positives
versus false negatives, and whether it is tuned to compensate for common human errors (as
opposed to being as independently accurate as possible).

(5) Considerations prior to adoption: The decision factors considered even prior to adopting
or purchasing an Al (e.g., effect on legal liability, impact on existing workflows, cost of use).

The breadth and depth of pathologists’ information needs indicate that it is not enough to simply
provide summary statistics of an Al Assistant’s performance (e.g., its accuracy), along with basic
training on how to use the interface. Instead, clinicians are likely to relate to the AI Assistant
much like they do to a fellow colleague, and ask what its medical point-of-view is, whether it has
specific areas of expertise and weaknesses, and how it complements their skill set. Furthermore,
there is a clear understanding that any such tool will have its biases and limitations, and that it is
critical to learn what these are, prior to use. Collectively, this information not only helps clinicians
understand whether they should use the tool, but also how they can most effectively partner with
it in practice.

In sum, our contributions are:

o A description of the primary types of information pathologists request in considering how to
integrate an Al Assistant with their existing practices (enumerated above and in Table 1).

e Specific examples of how pathologists envision applying that information to collaborate more
effectively with diagnostic Al

o Implications and recommendations for onboarding experts to use Al for collaborative, diag-
nostic decision-making.

Taken together, these findings provide insight into this initial phase of learning about, and
planning to use, an Al Assistant for collaborative decision making, and contribute important
implications to the design of the onboarding experience.

2 RELATED WORK

This paper draws on prior work at the intersection of clinical decision support systems and
algorithmic transparency. Our investigation of human-Al collaboration is also informed by existing
research on collaborative practices in medicine.

2.1 Clinical Decision Support Systems and Computer-Aided Diagnosis

Clinical decision support systems (CDSSes) provide clinicians with knowledge to enhance medical
decision-making, such as support for diagnosing patients [27, 54], making prognostic predic-
tions [78], or selecting treatments [80]. In this work, our focus is on computer-aided diagnosis
(CAD)?.

Prior work has identified many challenges of integrating new CAD technology into existing
practices. These range from the institutional and sociotechnical barriers, to adoption (e.g. competing
stakeholders interests [29] and workflow integration [49]), to the more tactical, in-the-moment
challenges that arise during computer-aided diagnosis. Our research is primarily focused on the
latter. To this end, a wide range of research has uncovered challenges faced during computer-
aided diagnosis [15, 31, 32, 34, 41, 44]. Within pathology, Molin et al’s design studies found that
supporting pathologists’ ability to detect errors is vital in this safety-critical environment, and
suggest Ul design choices for displaying errors in the context of use [52]. In research on early CAD
mammography, it was found that users often misjudged the operational scope of these systems [34],
assuming them to have a level of interpretive sophistication similar to their own [32]. Users can also

2Note that CAD can sometimes refer to computer-aided detection. Our use of this abbreviation should be read as computer-
aided diagnosis, unless otherwise specified.
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be surprised by system errors when they were qualitatively different from the types of errors made
by medical practitioners [34], or when they are inconsistent with their own mental schema [33].
Collectively, this body of work suggests a need for properly setting expectations and prescribing
appropriate use of these computational tools.

While the majority of this prior research examined how experts use CAD systems, our work
specifically focuses on eliciting how clinicians would want to be onboarded to such systems: our
study, for example, intentionally elicits onboarding desires prior to (and at the very outset of)
actual tool use. Most relevant to our work is early research on mammography prompting systems,
which found that reporting error modes as part of training helped users better understand prompt
errors, but providing best practices did not prevent them from misinterpreting the intended use of
the tool [32]. Building on this early work, our research provides a much deeper examination of
onboarding, at a critical juncture in the history of CAD: whereas first-generational CAD systems
focused primarily on detecting suspicious regions (e.g. in Hartswood et al’s aforementioned work),
the rise of modern-day machine learning has enabled new CAD systems that not only detect,
but also interpret and diagnose those regions. This arrival of high-performing, deep learning-
based diagnostic systems, coupled with medical experts’ increasing familiarity with CAD systems,
suggests a pressing need to re-examine how best to introduce medical experts to these ML-based
tools: not only are the diagnostic nature of Als likely to create new questions from end-users, but
the attitudes that practitioners have now developed toward early CAD systems may also frame
and shape new onboarding needs. As such, our work contributes an in-depth investigation of
onboarding for ML-based diagnostic Al assistants. In doing so, it also provides a clinical angle to
recent human-Al interaction guidelines, which state that Al systems should make their capabilities
clear to users upon initial interaction with the system [5].

2.2 Algorithmic Transparency

The growing prevalence of deep learning models and their use in high-stakes decision making have
led to increasing demands for more transparent and explainable Al. However, the interpretation
of deep learning models is challenging due to their complexity and often opaque internal state.
To address this, the machine learning community has produced a myriad of algorithmic and
mathematical methods to explain their inner workings. These methods aim to explain the model
prediction outcome for a single input data point [21, 43, 63, 67], or for a set of data points in a
predicted class [42], often by perturbing model inputs and seeing how the model’s response changes.
Across this work, there is a clear need to ensure usability and efficacy with real users [1]. In light
of this, a recent wave of HCI research has studied what end-users actually desire to understand
about ML systems, and how that transparency affects user attitudes and outcomes. Domains of
study include recommender systems [4], medicine [12, 75], social media [22], creativity [14], and
advertisements [23]. While the majority of this work has tended to focus on explaining the reasoning
behind specific model decisions, our work instead examines the broader questions that a user may
desire to ask of the system as a whole, including components of the ML pipeline that may occur
even before a model is built (e.g., data collection, or selection of model design goals).

Recent work on fairness and accountability has proposed the use of short documents accom-
panying trained ML models to disclose the intended use of models, details of their performance
evaluation procedures, and the potential biases that they may embody [25, 51]. Relatedly, others
have recently studied whether laypeople’s trust in a model varies depending on the model’s stated
accuracy and how it differs from observed accuracy in practice [79]. Our work builds on this
growing interest in studying the broader, global aspects of model transparency, and conducts a
deep exploration of these issues within the domain of medical decision-making.
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2.3 Collaborative Work in Medicine

The design and study of collaborative work in health care has been widely researched. Prior work
has examined the shared awareness maintained between medical experts during collaborative
work [8, 58, 61, 62, 65, 71]. Bardram and Hansen observed that mutual awareness of the activities
and whereabouts of other clinicians is central to determining when and where to seek advice from
colleagues [7]. Work on articulation and coordination of work components [2, 13, 50, 81] is also
extensive. Within this space, Larsen and Bardram found that competence articulation, the articulation
of one’s competence to a co-worker, improves collaboration during telemedical consultations by
allowing clinicians to utilize each others’ expertise [45]; such findings are in line with foundational
social psychology theories [17, 77], which describe how collaborators form and leverage mental
models of each others’ capabilities. Within medical imaging, there is evidence that the informal
sharing of expertise is fundamental to collaboration. Examples of this include practices of developing
a familiarity with others’ awareness of local conditions [37], or making one’s work visible to
others when multiple people need to examine a single scan [30]. Finally, research on the clinical
appropriation of interactive technologies into working practice found that technical systems need
to be amenable to internal examination and reasoning by end-users, in order to be incorporated
in their work [19]. Building on this large body of work, we examine what types of information
end-users desire to know about an Al Assistant during onboarding, and relate these needs to the
existing medical practices of competence articulation and the seeking of input and second opinions
from colleagues.

Prior work also examined the specific challenges of integrating CAD into diagnostic practices
that are inherently collaborative. For example, Hartswood et al [31] found that existing artifacts and
practices (e.g. protocols and annotations) facilitate socialization between clinicians, and that CAD
technology can be challenging to integrate if it lacks this ability to reason through decisions or to
be queried. Jirotka et al. [37] examined distributed digital mammography systems and found that,
because readers orient to local practices, they needed an ongoing understanding of each others’
familiarity with those local processes; likewise, CAD technology may need to express the extent
to which it aligns with local standards. At the organizational level, integrating new technology
requires overcoming the hurdles of existing in professional cultures and institutional politics (e.g.
competing interests by different stakeholders) [29]. In sum, these collaborative diagnostic practices
form a basis for understanding what users may need to know about an Al during onboarding to
develop a productive working relationship with it, and what challenges may need to be overcome
given existing dynamics in human collaborations.

3 BACKGROUND

In this paper, we studied the onboarding needs of pathologists, who diagnose diseases (e.g., cancer)
through the microscopic examination of tissue samples. While human—AI onboarding is relevant
to many medical fields, the application of machine learning to pathology could be particularly
impactful: whereas clinicians may request specialty referrals or additional tests to provide more
evidence if they are uncertain of a diagnosis, pathologists are often responsible for providing a
final, tissue-based diagnosis, especially for cancer. Here, our work is focused on a prostate cancer
use case. Prostate cancer is one of the most common types of cancer, and the subject of significant
attention in recent work on machine learning-powered cancer diagnosis [11, 15, 35, 56, 57, 69].
Pathologists diagnose the severity of prostate cancer through the Gleason scoring system [20].
The Gleason score is one of the most important predictors of prognosis, and is widely-used clinically
to guide patient management decisions. However, like many aspects of medicine, Gleason scoring
also involves an unavoidable degree of subjectivity, and can suffer from suboptimal interobserver
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variability [59, 73]. Because different disease severity levels can adopt similar visual patterns and
features, the same visual patterns can be interpreted differently by different pathologists, due to how
they apply standard guidelines. Thus, even though there is arguably an objective truth (whether
cancer exists or not), variability in cancer grading exists due to differences in the interpretation
and application of guidelines to a given case; for the time being, a subjective element to cancer
diagnosis is inevitable.

Inherent to nearly any diagnostic process is a process of collaboration, both across disciplines and
among specialists of the same discipline, often with the goal of reaching a consensus decision [38].
For breast cancer, the multidisciplinary process has even been formalized into a well established
“triple test" scoring system [39, 53] to integrate information across multiple diagnostic modalities
(clinical findings, radiology, pathology). For prostate cancer pathology, the histopathologic diagnosis
typically stands alone more independently as a diagnostic “ground truth," a notion which likely
results in important differences regarding the overall collaborative nature of the diagnostic process
and user interaction with potential CAD systems. While staging and treatment decisions do
integrate clinical history, laboratory tests, and radiological imaging, these other modalities are
often less reliable for the actual prostate cancer detection and grading, such that the diagnosis is
typically rendered specifically based on the histopathological specimen. In this setting, the most
common collaborative behavior when uncertain about a case is to seek additional input through
consultation with another pathologist, either an immediate colleague or sometimes from an outside
institution or an expert pathologist specializing in prostate cancer, known as a Genitourinary (GU)
pathologist (also referred to as urological pathologist). Taken together, the existing collaborative
practices of medical diagnosis, combined with a diagnostic reliance on the pathologic interpretation
and subjective nature of Gleason scoring, introduce unique challenges surrounding human-AI
collaboration and decision-making that are worthy of deeper investigation.

4 METHOD

The driving research question for this work was to document what pathologists want to know
about an Al Assistant prior to its use. In large part, our goal was to inform the design of onboarding
materials for Al-based assistance in pathology. To this end, we were also interested in understanding
what existing mental models participants held for AI Assistants (e.g., to ensure any onboarding
materials appropriately address potential misconceptions or gaps in knowledge), and to understand
how working with an Al Assistant may be similar to or different from working with colleagues or
existing tests and instruments.

To address these research questions, we first conducted open-ended interviews with three
pathologists to inform a set of semi-structured interview questions. Then, we conducted a three-
phase qualitative laboratory study with 21 pathologists, distinct from those who participated in the
initial interviews. In the first phase (pre-probe), we asked participants what types of information
they would need to know about an Al Assistant before using it. We also asked them to describe how
they were previously onboarded to an existing technology or diagnostic test from their current
practice. In the second phase (probe), we sought to understand users’ information needs while
making a decision with an Al Assistant. Participants diagnosed a prostate case with the aid of an Al
Assistant: in line with sequential read procedure [64], they reviewed the case immediately before
the algorithmic predictions were revealed. The algorithmic predictions (benign, grade 3, grade 4,
and grade 5) were displayed as visual overlays on the image (Figure 1), which the pathologists could
consider when making a final diagnostic decision. Images were from the TCGA Research Network’s
pathology image repository>. In the third phase (post-probe), we asked participants what additional

3https://tcga-data.nci.nih.gov/docs/publications/tcga
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Fig. 1. As a study probe, we presented participants with prostate cancer grade predictions (e.g. grade 3, grade
4, and grade 5) made by a high-performing deep neural network. The predictions were shown as colored
overlays on top of the prostate tissue. The predictions are made at the region-level because, in regular practice,
pathologists identify region-level grades and patterns to produce a final, overall Gleason score.

information they felt they needed to know about the Al in order to work with it effectively. Finally,
we asked how they envisioned being onboarded to using such an Al Assistant. Each session lasted
between 1-1.5 hours.

In identifying a prostate cancer case to use as a probe, our goals were two-fold: the case should
be non-trivial to diagnose, and the model’s behavior on the case should also be representative. To
ensure the task was non-trivial, we first identified cases that had previously been contested between
pathologists, with conflicting diagnosis labels. Because some grade differences have minimal impact
on clinical treatment, we further filtered for cases where the differences in opinion represented
clear differences in clinical impact. In pilot studies, and through conversations with developers
of the Al model, we identified the most common peculiarities of the algorithm (e.g. difficulty on
regions containing processing artifacts), and ensured that the case probe captured these common
model behaviors.

All interviews were screen recorded and transcribed. Five researchers independently familiarized
themselves with the data, and then met as a group to collaboratively generate an initial set of codes
in a bottom-up fashion. Then, two of the researchers revisited the data and identified important
sections of text to attach to codes, working systematically through the data set to apply and refine
codes in a collaborative, iterative process. The five researchers then met again to re-examine codes,
which formed the basis for themes across the data set. The researchers examined relationships
between codes, and iteratively converged on a set of themes [9, 10].

4.1 Participants

21 pathologists participated in the study. All were general pathologists recruited from among a
pool of remote contractors assisting with pathology projects at our institution. Their main practices
spanned a wide range of settings and institutions, including government-funded / community
hospitals (7), private practice (6), academic hospitals (3), private hospitals (2), consulting (2), and
independent laboratories (1). The size of their institutions also ranged widely: the reported number
of general pathologists on staff ranged from 1 to 120 (mean=13). Most of their institutions (14) did
not have any GU pathologists on staff, and the rest had between 1 and 8. Most participants reported
that they sign out prostate cases several times a week (13), one reported several times a day, and the
rest encountered prostate cases several times a month or less (7). This is in line with expectations,
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given that general pathologists tend to see all types of pathology cases, not limited to prostate.
Overall, participants had 1-25 years (mean=10.8) of pathology experience post-residency training.

4.2 Limitations

Our study provides an in-depth investigation of initial onboarding needs, but it does not capture long-
term effects or how these needs might change over time. Furthermore, because participants were
recruited through our institution, and were peripherally involved with pathology data-collection
projects, they may already be aware that machine learning is to some extent based on data. Since
this may narrow the types of information participants ask for, our findings should be interpreted as
representing a lower bound on the scope of all onboarding information needs. As described above,
their main institutions — where they spend the vast majority of their time — were diverse in both
size and clinical setting. Moreover, because we used a single case probe, there may be other model
behaviors or onboarding needs that were not captured as a result. We held consistent the probe to
ensure protocol consistency between participants, and ensured that the case captured the most
commonly occurring characteristics of the model. As shown above and in the rest of the paper, the
information needs reported were quite broad and rich, even in light of this limitation.

To investigate what information pathologists felt they needed to effectively partner with an Al
Assistant, our study design included think-alouds to observe the diagnostic process, and questions
to help paint a picture of the larger diagnostic process and the people, tools, and resources they
interact with during that process (e.g., how they currently obtain a second opinion). While this
study design provided a window into their diagnostic practices, one limitation of this design is
that we did not observe diagnosis in situ. As a result, aspects of their collaborative processes
(actual collaborations with colleagues, interactions with other tools, artifacts, and resources) may be
under-reported or absent from the data we collected. These data could provide additional insights
into the types of information and activities that pathologists might find useful when learning how
to effectively collaborate with an Al Assistant.

5 TYPES OF INFORMATION DESIRED AND HOW THEY INFORM COLLABORATION
WITH Al

As presented in the Introduction, we frame our findings around the five themes that emerged from
participants’ responses about their information needs: capabilities and limitations, functionality,
medical point-of-view, design objective, and considerations prior to adoption (Table 1). After
presenting these information needs, we then describe how participants envision applying this
knowledge to reconfiguring their work with an Assistant. Table 1 summarizes our findings.

Many of the issues brought up by participants are relevant to any tool or instrument introduced
into a medical context. For example, there will be obvious and necessary concerns surrounding the
system’s accuracy across representative cases. However, other concerns are arguably more specific
to an Al Assistant, such as the medical point-of-view represented by the Al Assistant (e.g., due to
choices in training data or labeling). For completeness, we report all of the information participants
desired to know about an Al Assistant, but highlight information particularly germane and unique
to Al Assistants.

5.1 Capabilities and Limitations

For effective collaboration with Al, participants described a wide range of information needs
surrounding desired knowledge of its performance and limitations.

5.1.1  Accuracy and Human-Relative Measures of Performance. Accuracy of the Al Assistant was a
primary concern of participants, with some stating a minimum level of accuracy expected (e.g.,
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Table 1. Summary of findings and implications for onboarding.

Capabilities and Limitations

e Anchor performance metrics to human-relatable benchmarks

e Define accuracy precisely given multiple interpretations (e.g. binary benign vs. cancer,
multi-class accuracy, percent tumor, etc.)

e Gather known human pitfalls (e.g. well-known edge cases) and report Al performance on
those sub-categories

e Describe the diversity (or lack thereof) of the training data to inform generalizability

e Relate volume of training data to what is considered reasonable scale for machine learning

e Describe theoretical limits of Al given current knowledge

Functionality

e Enumerate the inputs / context accessible to the algorithm, particularly inputs that are not
shown in the interface (e.g. patient history)

o Specify the main steps in the AI’s analysis of its inputs, vis-a-vis steps taken in typical
human analysis (e.g. multiple magnification levels, decomposition of input into sub-images)

e Compare and contrast Al schemas relative to known human decision-making schemas (e.g.
the extent to which it has been explicitly trained on higher-level biological concepts)

Medical Point-of-View

e Show subjective thresholds of the model (e.g. examples of Al judgment on borderline cases)

e Include a human-AlI calibration phase, for users to calibrate their own subjective thresholds
to that of the Al, with an authoritative source provided as ground truth

e Specify where the algorithm received its medical source of ground truth (e.g. expertise level
and number of clinicians, prognostic data, etc.)

Design Objective

e Make explicit the Al’s intended utility over the user’s status quo (e.g. efficiency, accuracy,
consistency, etc.)

e Make transparent whether the Al accounts for unequal cost of errors in its objective
function (e.g. false positives vs. false negatives; differential impact on treatment)

o Indicate whether the Al is explicitly tuned to work with a human partner (e.g. designed to
complement certain human weaknesses), versus independently optimized

Considerations Prior to Adoption

e Provide information on regulatory approval (FDA), peer-reviewed publications validating the
tool, impact on existing clinician workflows, impact on legal liability, and cost of purchase

How the information above could inform collaboration with AI assistants

e Attention allocation: User dedicates more attention to Al areas of weakness, and less
energy to Al areas of strength

e Conflict resolution: When user and Al opinions conflict, user considers what context the
AT has access to, and how it processes that information, when determining how much to
trust the Al versus themself

e Upgrading and downgrading: User takes the AI’s subjectivity and biases into account
when considering its suggestions to up-grade or down-grade disease severity

e Mode of collaboration: Knowing what the Al is optimized for (e.g. complementing human
weaknesses at the cost of raw accuracy) sets user expectations for the mode of collaboration
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95%). Although participants were told that the Assistant predicts Gleason grades, many assumed
that accuracy referred to the binary classification of benign versus cancer, suggesting a potential
unfamiliarity with the subtleties of assessing the performance of multi-class classification systems.
This finding suggests that it may be useful to determine the kinds of performance metrics users
are accustomed to seeing, and highlight any differences in the definition of accuracy being used
in onboarding so that stakeholders and end-users are better equipped to understand empirical
measures of an Al Assistant’s performance.

While participants naturally insisted that the Al Assistant be accurate, many were not sure what
should constitute a reasonable performance threshold. Instead, they desired to contextualize and
compare its behavior relative to “human benchmarks.” For example, participants wanted to know
how its diagnoses correlate with a panel of GU pathologists; what its error rates are relative to
personally observed human error rates; or how it compares to published rates of concordance
between general pathologists. In sum, pathologists desired empirical measures of performance,
but in order for these metrics to be meaningful, they may need to be reported relative to human
benchmarks, and with a precise definition of metrics used (e.g., how accuracy is being defined).

5.1.2  Common Pitfalls and Known Edge Cases. Whereas initial needs tended to center on high-level
performance metrics, participants eventually expressed a deeper desire to understand the AI's
specific categorical strengths and limitations. The most common desire was to understand the
pitfalls of the Al system, so that they could anticipate those weaknesses and account for them
during decision-making: “What is difficult for the Al to know? Where is it too sensitive? What criteria
is it good at recognizing or not good at recognizing?” (P18) Participants described parallels to the
current onboarding materials they use in medical practice, which typically highlight known pitfalls
and limitations: “There’s a prep for pap smear and...at the edge, the cells dry out and look bigger, so
it’s a known thing to not evaluate or you might think there’s dysplasia where there’s not. So they point
that out in the training materials.” (P4) Others described learning about pitfalls from colleagues
who have time-tested experience using the technology.

Many participants were able to describe specific scenarios that the AI Assistant should be
validated against. These scenarios are known to be difficult for humans, such as benign mimickers
of cancer (e.g., atrophy) or special sub-patterns (e.g., cribriform, perineural invasion): “Maybe it
has really good accuracy except for perineural invasion. If you see perineural invasion...don’t fall for
that.” (P20) Instinctively, pathologists often assumed that the Al would have difficulty with the
same special cases that they themselves struggle with. However, they usually gave themselves
more credit in being able to properly handle these cases, referring to their own perceived ability
to “correct” for those exceptions: “T would call it not-interpretable. Most pathologists aren’t going
to interpret something right at the tissue margin.” (P17) Several participants eventually wondered
whether the Al could have already corrected for those factors as well: “Tt’s important to know
that the Al is correcting for it or to know that it’s a flaw.” (P4). Given these well-known special
cases, one could imagine stating in onboarding whether the Al has been trained to handle known
edge-cases, to aid participants in building correct mental models. We elaborate on this possibility
in the Discussion section.

5.1.3 Training Data and Generalizability. To understand the Al Assistant’s likely capabilities and
limitations, some participants desired a summary of the volume and types of clinical cases that
the algorithm was created from. However, participants felt they did not have a benchmark for
evaluating what volume of data would be adequate, or what scale is reasonable for machine learning:
‘T am not an Al expert, so I cannot point out the number.” (P16) Some suggested that the number of
data points should be on par with the volume of cases pathologists are typically trained on, with
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some feeling that it would need at least enough cases to have observed the “rare variants that we
come across once every 4 or 5 years.” (P13)

The desire for high case volume may reflect a desire for generalizability. For example, one
pathologist pointed out that having data from diverse sources would be more representative: “More
variation is better...Covering from community hospital small groups, to academic medical centers, it’s
more representative.” (P16) Another wondered if an Al that is “geared toward a certain type of stain”
could generalize to stains at other institutions: “Our staining is really bad and there are days when
the stain is faded...In those circumstances, and with different variables, how good is that system going
to be?” (P13) Overall, providing users a sense of the diversity of training data could help inform
generalizability. However, numerical metrics about case volume may need to be accompanied by
benchmarks to give users a basis for what is reasonable within the scale of machine learning.

5.1.4 Al-Specific Capabilities and Limitations. As they discussed different means of assessing the
capabilities of an Al Assistant, participants also expressed a desire to obtain a basic understanding
of the ultimate limits and capabilities of Al in general. As an example, one pathologist described
the human ability to have an inkling or “sixth sense” that cannot be rationalized, and desired to
know if Al could theoretically ever capture such a human instinct: “Are there certain things that
are natural limits to the technology that could never be supplanted by AI? Or is it just my human
egotism? Is the sixth sense an illusion? ... Maybe I'm romanticizing it or I'm being delusional.” (P18)
Others reasoned that the Al couldn’t possibly capture elements that are imperceptible to the human
eye, such as proteins that currently can only be detected through staining techniques. Still, some
maintained that there are no limits to what an Al can learn, so long as there is sufficient data to
learn from: “As long as they learn enough and can correct itself enough, with enough data, then it can
be perfect.” (P16) Although the theoretical bounds of Al can be challenging to identify given that
the field is still evolving, onboarding materials could at least offer the current state of knowledge,
to set realistic expectations.

In sum, participants desired to know not only the model’s aggregate performance, but also its
specific categorical limitations and potential pitfalls, especially on well-known edge cases that are
difficult for humans. Given variation in performance expectations and lack of knowledge about Al,
numerical metrics about model performance or training data should also be framed in relation to
human-understandable benchmarks.

5.2 Functionality

Differential diagnosis is a process that combines several information streams (e.g., tissue samples,
patient history, lab results) to arrive at a final decision. In this section, we describe what pathologists
desired to know about system inputs, how the Al processes and analyzes those inputs, and how the
Al arrives at a decision.

5.2.1 Inputs and Accessible Context. When using the Al Assistant, participants naturally inquired
how much context is available to the Assistant. For example, one participant wondered whether it
had analyzed other data from the same patient, such as patient history or additional tests: “Does the
Al assistant have access to information that I don’t have? Does it have access to any ancillary studies?”
(P10) One common question was whether the input available to the Al mirrored exactly what was
shown in the user interface (a single image), which contains less context than the multiple levels of
images pathologists typically consider when examining a case: ‘T want to know if the Al is being
generated off of one image or if it’s being generated based on sequential images — the levels. Sequential
I would trust more.” (P14). Without the ability to see the “bigger picture,” participants felt it was
inherently limited in its abilities: “It’s unfair for Al because it just does whatever it was set up to
do, so it doesn’t get a chance to get an overall thing of the big picture.” (P14) Given these insights, it
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would be important to make explicit to users what input the AI does and does not have access to,
particularly if it takes in more information than what is immediately shown in the interface.

5.2.2 Al Analysis of Inputs. In clinical practice, a pathologist examines a slide at multiple levels of
magnification. Accordingly, participants sought to understand how the image was examined by
the system, and whether it matched their own practices: “[Is it] looking mainly on the low power
view, or integrating everything? Is it scanning low power and high power?” (P18) Because some might
assume that these nuances of practice are only learned through human medical training, it could be
important to state upfront how the Al assesses its input, particularly in relation to existing human
clinical practices.

In other cases, a lack of knowledge about how the Al processes inputs could lead to a rapid
degradation of trust. For example, this particular implementation of the AI Assistant first segmented
the image into smaller image patches, then performed prediction on each patch. Consequently, a
well-defined biological structure could occasionally be arbitrarily segmented into two regions and
have two different predictions assigned to it. Some participants were bewildered by this behavior:
“Why did it cut this gland? It should circle the whole gland, not just part of the gland...This does not
exist in nature.” (P16) Not knowing the AI’s process degraded trust, even if the AI’s predictions
would have otherwise been valuable had the clinician been able to look past this behavior.

5.2.3 The Al’s Decision-Making Process. To arrive at its decision, many participants imagined the
Al employed a nearest-neighbor lookup: ‘T think it just uses the picture and compares with what they
have in their database and sees which one it fits. Find something that looks similar in this database.”
(P14). Some postulated that, because the computer classifies images into discrete categories, it is
not aware of the continuity between cancer grades: “Pathologists know these patterns can blend,
but the computer’s doing the best to fit into a 4 or a 3.” (P12) In understanding how it arrives at its
decisions, opinions were mixed as to what concepts the Al actually “knows” through its training.
For example, some guessed it could only learn visual patterns derived from basic visual elements
(“Maybe light and dark? Maybe colors? Maybe shapes, lines?” (P17)), whereas others wondered if it
could learn higher-level biological concepts ( “Does it take into consideration the relationship between
gland and stroma? Nuclear relationship?” (P16)). Without a sense of what level of abstraction Al is
capable of learning, pathologists struggled to determine the extent to which its diagnostic process
could be similar to or different from their own.

This lack of an understanding of how the system arrives at a decision led to the desire for an
Al primer: “If someone can explain in a simple language, this is how it does it...so that intellectually
we can understand what’s going on in [the] Al’s brain, and compare to our brain.” (P1) Participants
contrasted this tool to other clinical technologies for which they typically already have a conceptual
foundation through years of residency and training: “When I bring on a test, I usually know what
method it is. You tell me Al and I have conceptually no idea.” (P17) As a result, pathologists wanted
to get a basic crash course in using Al, with some even acknowledging that such a course would be
an essential prerequisite to practicing modern medicine: “Generationally, it’s going to be one of the
more important ideas that’s happening. How it works, just a primer.” (P18)

In sum, pathologists desired to know the inputs and context accessible to the algorithm, as
well as the basics of how it analyzes those inputs to make a decision. Their natural inclination to
consider Al behavior in relation to their own human schemas suggests that an Al primer could
be particularly fruitful if it compares and contrasts Al processes to that of known human clinical
processes.
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5.3 Medical Point-of-View

In addition to questions and theories regarding how the Al functions, participants also had numerous
questions about the medical point-of-view embodied by the Assistant. They noted the subjectivity
inherent in cancer grading, motivating their need to understand both where the algorithm lies on
this spectrum of subjectivity, as well as where the algorithm receives its source of ground-truth.

5.3.1 Subjectivity in Current Clinical Practice and Implications for Al. Many participants noted
the subjectivity intrinsic in assigning cancer grade levels: “There’s a lot of subjectivity, grade 4
vs grade 5, you ask ten pathologists, four will say one thing and the rest will say another.” (P18)
As disagreements are common and variability is well known, pathologists typically rely on their
knowledge of each others’ grading tendencies when seeking a second opinion: T know one of my
colleagues will call almost anything high grade, and the other one does not like calling high grade
at all.” (P7) Knowledge of these tendencies helps them decide who might be appropriate to ask
for a second opinion. Often, they sought out colleagues with grading tendencies similar to their
own, so that when a disagreement arises, they can trust the legitimacy of those disagreements:
“If the person you do normally see eye-to-eye with tells you that it’s wrong, then you’ll believe that
more.” (P20) To many, an ideal collaborator would be one who shares similar medical points of
view as oneself, but who also adds additional insights: “What are they worried about? And I'll think,
was I worried about those areas as well?...If they overlap [with mine] but then add a little bit [of extra
information] ...I think that would make me more trusting.” (P15)

This practice of learning the clinical styles of one’s colleagues led pathologists to inquire about
where the algorithm lies on the spectrum of subjectivity, similar to how they might calibrate to
their peers: “Tt’d be interesting to know how you calibrate your eye to a system that you're going to
be using. What are you calling and what is it calling? I know what my friend...will call, and what I
call..What would AI call it?..I'm treating it as a peer.” (P18)

As with choosing peers for second opinions, participants expressed a desire for the algorithm
to have similar diagnostic styles to oneself, such as being more liberal or more conservative in
assigning higher-severity cancer grades: “Does it have a bias a certain way? I kind of want it to
think the way you do...I certainly wouldn’t want it to be completely discordant with what I think
are the subtle nuances between 3 and 4.” (P2) Having similar subjective thresholds could be key to
developing trust, so that they could later rely on it when uncertain: “IfI find every time I call [grade]
4, it calls 4, then like a person, you build up trust in each other. Then next time if I can’t decide, then
I would trust the computer. That would build up trust, it’s very important. Let’s say I use it for one
week, and 30% of the time I don’t agree, then I cannot trust 4 is 4.” This suggests that the subjective
operating points of a model may need to be made transparent or even adjustable by end-users.
However, there may exist a tension between the subjective alignment with users needed to establish
trust, and the shift in current user biases needed to improve clinical practice.

5.3.2  Medical Background of the Al Assistant. Due to the subjectivity inherent in cancer grading,
participants desired to know from whom or where the algorithm received its medical source of
ground truth. Whereas pathologists are typically aware of their colleagues’ medical experience and
pedigrees, the clinical background of an Al can be opaque. Participants asked whether the algorithm
had learned from diagnoses made by general pathologists, GU pathologists, or an entire panel of
GU pathologists. Most felt they would not trust an algorithm unless it were based on judgments
made by well-respected GU pathologists or institutions, explaining that expert consultation is how
they typically resolve uncertainty in current practice: ‘T would send it to [name]. He has 50 yrs of
experience in GU pathology and wrote [a critical text in pathology]. So you’re getting someone with a
higher level of expertise to weigh in.” (P7) A few participants asked if the Al was based on an even
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more objective source of truth than GU pathologists, such as patient prognosis or immunostains.
Overall, due to variability in grading, pathologists may not know how to assess the qualifications
of an Al unless it is known to be based on an authoritative source of truth.

5.3.3  Human-Al Calibration. To develop an understanding of the AI's grading competence and
potential biases, some pathologists envisioned assembling a set of cases with ground truth (e.g.,
as assigned by GU pathologists), and comparing their diagnoses and the AI's diagnoses with the
ground truth in a calibration phase. This practice would serve dual purposes: It would give insight
into the Al’s diagnostic tendencies, as well as their own: “[The] AI would look at a slide, I would
look at a slide, and then we would know what the expert said. I think that would be interesting just
to see where I stand.” (P17) Pathologists felt this feedback would be valuable particularly because
they currently lack formal, personalized feedback on subjective thresholds in current practice; they
explained that standardized exams tend to only test classic scenarios rather than grey area cases,
and that most feedback is received through inductive observation when getting a second opinion.

Several participants cautioned that any such human-AI calibration sessions should be tempered
to be as non-confrontational as possible: “The average pathologist, if you say, ‘'Oh you're wrong,’
they’re going to be uncomfortable with that.” (P14). Rather than providing a direct comparison
between the clinician and the AI’s performance, they recommended more implicit approaches that
make the calibration feel less like a comparison, and more congenial: “When it does better than you,
it’s always nice to have a gentle safe environment...Hopefully it’s done in a way where it’s positive,
constructive." (P2) Participants suggested that, rather than providing a raw numerical comparison,
it would be much more meaningful and actionable to illustrate what those differences were, as case
examples.

In sum, participants desired knowledge of the AI’s subjective tendencies, much like how they
might consider the diagnostic patterns of their peers when seeking a second opinion. Many felt a
human-AI calibration phase would be valuable, if done in a positive and non-comparative way.
Critically, they also needed to know the algorithm’s source of ground truth in order to trust its
authority. A calibration session during onboarding could allow users to “practice with" the Al
assistant to develop an understanding of the AI's subjective stance and clinical perspective.

5.4 Design Objective

Pathologists also recognized that the Al Assistant will have a particular medical point-of-view
due to its designed, intended objective. Although all participants were informed that the Assistant
predicts prostate cancer grades, almost all desired an explicit statement on the specific utility of
the tool—in other words, how the AI was intended to benefit them over their existing practices.
Expectations for the intended utility ranged from increasing efficiency and accuracy, to ensuring
consistency and reducing fatigue.

Noting the possibilities, multiple participants debated the inherent trade-offs that the designers
of intelligent systems must navigate in implementing the system. For example, some brought up
the example of existing automated screening tests (e.g., pap smear), which are often optimized
for greater sensitivity at the cost of decreased specificity, given that positively flagged cases are
manually reviewed by physicians. Aware of the different decisions that could be made, some
participants asked if the Assistant had been optimized for a particular metric: “The most important
thing is just seeing how it was tuned..., just the ROC...whether it’s meant to make some trade-offs in
terms of how sensitive it is. It would be nice if we knew it was very sensitive, wasn’t going to miss
things...might have some false positives but you’re going to look at that.” (P2) In addition to sensitivity
versus specificity trade-offs, some asked if the algorithm had been tuned to consider the differential
impact of different grading errors on patient care, since each cancer grade cut-off suggests different
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treatment plans. While a growing body of HCI work argues strongly for encoding such human
values into Al technology [46, 82], our findings suggest that those algorithmic design decisions
should be made transparent to users, along with potential implications for those decisions.

Interestingly, a few participants wondered if the algorithm had been tuned to account for the
fact that it would be collaborating with a human end-user, as opposed to operating on its own.
For example, when the algorithm’s demarcation failed to fully circumscribe a region of cancer,
including only part of it, one user hypothesized that, “Maybe it’s just trying to draw my attention to
the areas of cancer, and I'm still supposed to decide.” (P20) These discussions suggest that end-users
may desire information about an AI’s theory of mind—its awareness of another being’s knowledge
and intents [16]—when making a diagnostic decision. For example, some wondered if “it was
thinking about how I would look at something.” (P18) Rather than viewing the Al as an independent
decision-maker, these participants instead considered what the AI may or may not know about
their own modus operandi.

In sum, it may be useful to not only provide an explicit statement about the Al’s intended utility,
but also make transparent whether the Al is tuned to optimize for certain objectives, whether it
considers the differential costs of errors (e.g. differential impact on treatment), and whether it is
explicitly designed to complement a human partner.

5.5 Considerations Prior to Adoption

Beyond the information needed to make effective use of Al, pathologists also brought up several
key factors that would influence their initial decision to adopt or purchase such a tool to begin
with. These include: evidence of FDA approval and published validation in peer-review journals,
social endorsement by well-respected medical leaders, impact on existing workflows, impact on
legal liability, and cost of purchase. While the focus of this paper is on the onboarding needed for
effective use of Al rather than the initial decision to purchase or adopt it, we view these initial
pre-requisites to be critical to adoption, and should thus be included in onboarding as well.

5.6 Re-envisioning Work with the Al Assistant

The information pathologists desire enables them to consider whether they would adopt the tool,
and if adopted, how it could be applied in practice. In this section, we describe how they imagined
this information about the AI Assistant would inform their use of the tool and potentially alter
their work practices.

5.6.1 Attention Allocation. Participants described how an awareness of the AI's strengths and
weaknesses could support their strategic allocation of attention. Some compared this to the ways
in which they currently allocate energy depending on the known expertise and weaknesses of their
coworkers: “It’d be like working with a partner. Like I know what my coworkers are strong and weak
in...I probably anticipate weaknesses and pitfalls and dedicate more mental energy towards trying to
fill in the gaps...I'd develop a working relationship with AI where my awareness is heightened knowing
the AI's weaknesses and dampened with the AI’s strengths. I'd develop a symbiosis with it.” (P18)
Several described how they would dedicate less energy toward scenarios where the Al is known to
do well (“If I employed Al I would probably just focus on a few areas here." (P18)), and dedicate more
attention and care toward areas that are known weaknesses of the algorithm (“Things to watch out
for that it might miss ...you should actually still put it at higher power and look around for yourself."
(P20)). These descriptions support prior work on competence articulation in medical teams [45],
which enable colleagues to leverage each others’ expertise and complement each other, thereby
enhancing collaborative work.
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5.6.2 Conflict Resolution. Pathologists also described how they would use their knowledge of
the Al to resolve situations in which their own opinion conflicts with the AI’s predictions. This
need for disambiguation is critical to human-AI decision-making: when a pathologist’s opinion
differs from that of the Al, the pathologist must determine the extent to which to trust the Al'’s
opinion over their own, while operating under uncertainty: “It’s hard for me to know how much
to trust when I see things that I don’t completely agree with.” (P10) In these scenarios, pathologists
described how they would use their knowledge of the Al to come to a conclusion. For example, one
pathologist explained how knowing an AI's over-sensitivity to benign mimickers could help them
discount its opinion in those situations (‘T would earmark that...Say it said ‘look at this’, I would
say, oh it would typically flag atrophy which is benign.” (P18)). Conversely, knowing that the Al
had additional context could increase reliance on its opinion, in cases where that context matters
(“If it looked at immunostains, then it has more information than I do. That would make me trust it
more."). Overall, understanding the AI's strengths, limitations, and functionality could be critical to
reaching a decision resolution when their opinion differs from that of the AL

5.6.3 Up-grading and Down-grading. During the study, pathologists also described how an aware-
ness of the AI’s subjective decision thresholds could help them determine how much to trust its
judgments, similar to how they currently calibrate to their colleagues’ tendencies: ‘T would have
a degree of understanding of the degree of swaying that it’s doing...Like if it calls 4, but I know, oh
yeah, but this calls 4 on everything, then I can kind of dial it back in my mind...Just like another staff
or resident, like this guy always calls 4, this guy never calls it. I would have a mental image in my
head of what kind of pathologist is this Assistant.” (P15) Because the distinction between diagnostic
grades is often continuous rather than discrete, having the ability to calibrate to an AI’s subjective
idiosyncrasies could be critical to its effective use. Some felt that a human—AI calibration phase
during onboarding, with expert judgments provided as ground-truth, could help them know when
to trust the Al’s subjective thresholds over their own and even adjust their own thresholds over
time: “T guess I would have more faith in the AL..if maybe my concordance with experts on pattern 4 is
low, but its concordance with experts on pattern 4 is high...then I could maybe adjust my thresholds for
calling something 3 versus 4.” (P20)

5.6.4 Mode of Collaboration. Finally, transparency around an algorithm’s design objective could
affect the user’s expected mode of collaboration. During the study, the algorithm’s predictions
were occasionally over-sensitive, marking a cancerous region along with some surrounding benign
tissue as also being cancerous. Different users reacted differently to this, depending on their mental
model of the AT’s design objective.

To some participants, the Al's objective was to be as accurate as possible, independent of its
end-user. These participants quickly lost trust in the Al when they observed that it fell short of
being a gold standard: “Their grading of 4 is wrong, I would say forget about this, give me a clean slide
and I'll make my own decision...I cannot trust this grading at all.” (P16). To others, however, the AI's
role was to merely draw their attention to suspicious regions, given that the pathologist will be the
one to make sense of those regions anyway: ‘It just gives you a big picture of this is the area it thinks
is suspicious. You can just look at it and it doesn’t have to be very accurate.” (P14) Some compared the
AT’s predictions to the help they typically get from medical residents, who make rough mark-ups
of questionable regions for them to review. Rather than expecting pixel-perfect predictions, these
pathologists interpreted the AI’s objective as that of drawing attention to worrisome regions, which
a human will ultimately interpret. These user expectations surrounding the imperfect nature of
annotations are consistent with prior research on how medical experts communicate decision
thought processes to one another through lightweight, informal mark-ups [30]. As human-AI

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. CSCW, Article 104. Publication date: November 2019.



“Hello AI”: Uncovering the Onboarding Needs of Medical Practitioners for Human-Al
Collaborative Decision-Making 104:17

decision-making becomes more prevalent, it may become even more crucial to make explicit the
extent to which an algorithm’s objective function accounts for the presence of a human collaborator.

6 DISCUSSION

In this study, we found that, beyond the need to explain specific model decisions, clinicians had
broader desires to form an initial impression of a model’s general tendencies, such as its specific
limitations and pitfalls, its medical point-of-view and idiosyncrasies, and its overall design goals.
These global properties of the system could help inform their interpretation of local events and
predictions during critical decision-making. While this work reports on results from a study of
pathologists, our findings are likely applicable to other contexts in which experts partner with Al
Assistants, especially when high-stakes decisions are being made. In light of our findings, we now
discuss the broader implications of this research, and how onboarding materials and the onboarding
process could be designed to better support these information needs.

6.1 Domain-Specific, Human-Relatable Test Cases

Participants implicitly and explicitly understood that no tool (or person) is perfect. In part, this
understanding is derived from their training and on-the-job experiences, both of which have
supplied them with numerous examples of cases that can be challenging (e.g., benign mimickers
of cancer). This knowledge of where they themselves can fail led to a desire to understand how
a new tool will fare in these same situations. The relative ease with which participants were
able to enumerate test cases suggests that it may be fairly straightforward to define a library of
domain-specific test cases for an Al Assistant. These domain-specific test cases represent situations
that experts consider to be challenging and potentially of critical importance, similar to the types
of cases that senior mentors might select as training for a junior colleague or trainee [28, 68].

In part, these test cases represent a desire to understand the AI Assistant in human-relatable
terms. Participants wished to understand how well the Assistant performs relative to them, or a
panel of GU pathologists. Such test cases could be used during an interactive calibration phase of
onboarding, during which a user diagnoses a small set of cases and observes the AI's performance,
as well as that of GU pathologists. This form of interactive testing could offer additional color to
raw performance numbers, while demonstrating the Assistant’s capabilities in ways that users can
immediately relate to.

A larger library of domain-specific test cases could also be leveraged to provide an overview of
a model’s strengths and weaknesses during onboarding, by communicating model performance
on each category of cases prior to use. Performance on these categories may also be re-surfaced
on-demand by users, for reference during diagnosis. For example, when the user’s diagnosis differs
from that of the Assistant, and if there are clear patterns in the Assistant’s accuracy for a given
situation, the user could take this knowledge into consideration when factoring the Assistant’s
prediction into their decision making process. As such, communicating performance on these test
cases could also support competence articulation: similar to the human practice of articulating
one’s competence to collaborators [45], the Al Assistant could articulate its scope and expertise to
the end-user through the report of categorical strengths and weaknesses. Articulating competence
during onboarding is in line with recent human-AI guidelines [5], which recommend making Al
system capabilities clear to users during initial interaction.

Eliciting important, domain-specific test cases may also have benefits when developing the
underlying model and designing the user-facing portion of the Al Assistant. In the case of modeling,
these test cases highlight classes of inputs that should be adequately represented in the training
data, and appropriately handled by the model. For the design of the AI Assistant, these test cases
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represent a set of use cases that can inform design choices, while providing specific cases to use
when conducting formative and summative evaluations of the Assistant.

Our findings also reinforce the idea that it can be useful to engage stakeholders and end-users
in early Al engineering efforts (e.g., in the spirit of participatory design or co-design [36]). For
example, identifying domain-specific test cases may suggest training data needs, as well as cases
useful for onboarding and for validating model behavior. Thus, a potentially fruitful area of future
research is to explore additional ways stakeholders and end-users can inform early Al engineering
efforts.

6.2 Al Primer

Pathologists currently use tools that are grounded in physical and biological phenomena; they
have relatively little exposure to the specialized field of machine learning. As a result, they do
not necessarily know what questions they should be asking about an Al Assistant. Similarly, they
lack a basic understanding of how these systems operate, which can lead to confusion when the
Assistant behaves in ways that do not align with physical and biological realities (e.g., when it
splits biological structures in half, assigning them two separate grades). Accordingly, it may be
useful to provide participants with a basic AI Primer during onboarding, to introduce users to the
basic concepts and process of machine learning.

As an example, an Al primer could introduce users to the basic process of machine learning (e.g.,
that it learns through pattern recognition and iterative tuning from processing many examples).
For a specific Assistant, it could also explain the extent to which that particular model could
have learned higher-order concepts from raw pixels (e.g., it may recognize the visual patterns
of biological entities, but has not been explicitly trained on textbook biological knowledge and
pathways). To caution users upfront about Al-specific behavior that may be surprising, pilot users
could be provided something akin to a Turing Test, where their goal is to distinguish between Al
behavior that is fathomable versus Al quirks that even an inexperienced clinician would not display.
These quirks can then be addressed in the AI Primer.

6.3 Beyond Accuracy: Communicate the Al’s Point-of-View and Design Goal

As we have indicated, we found that knowledge of the AI's accuracy was only one desired charac-
terization of the Al’s capabilities. Much in the way they might assess a colleague when considering
their opinions, participants desired to evaluate the Al not only in terms of its competence, but also
its subjective style (e.g., how conservative or liberal its decisions are, or its specific diagnostic pat-
terns). Moreover, users’ trust in an Al counterpart and expected mode of collaboration can depend
on their mental model of its value criteria (e.g., whether it places more emphasis on sensitivity
at the cost of specificity), and the design decisions that went into its creation (e.g., whether the
goal of complementing strengths and weaknesses of a human counterpart were baked into its
objective function). Hence, in high-stakes decision-making, where there is often grey area between
decisions, providing users with the AI's world view may be just as crucial as providing its accuracy.
For example, given a curated set of grey area cases labeled by a panel of GU pathologists, an
interactive human—AI calibration phase could be useful. In this activity, both the pathologist and
the AI could grade the cases, allowing them to quickly see for themselves how their subjective
thresholds differ from the Al as well as how they differ from a sample of experts. In other cases,
global design decisions can be documented during development and fed into onboarding materials.
Overall, these findings build on and extend research on value-sensitive algorithm design [82]:
For example, an Al may be designed to place a higher value on sensitivity than specificity; on
being somewhat conservative to avoid unnecessary treatment; or on minimizing certain classes of
clinical errors at the expense of others. In addition to incorporating human values into algorithmic
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design, algorithms should also make these value criteria and objectives transparent to end-users.
Communicating the inherent values of Al to end-users will be important future work.

6.4 Onboarding to Modern-Day Al Assistants

On the one hand, our findings echo key information needs surfaced in a rich body of prior CAD
research: as with first-generational CAD tools, there is a need to understand the scope and limita-
tions of an Al system [32, 34], the potentially counter-intuitive errors it may make [31, 32], and its
specific intended use [3].

Beyond this, our study also uncovered new challenges and needs associated with modern-day
machine learning, and suggests concrete ways that onboarding could help address these needs. For
example, some participants desired to know the quantity and diversity of the training data so that
they could get a sense of the AI’s capability and generalizability to their own settings (section 5.1.3).
This finding relates to earlier work on the collaborative use of medical databases in which users
desired to understand others’ local data and contexts [37]. In our case, users desire this context
to better understand the capabilities of a data-driven decision-making Al. These data-specific
questions suggest that, as end-users become more familiar with the concept of ML learning from
examples, data provenance will need to be considered when designing for onboarding.

The shift from detection-based systems toward more interpretive, diagnostic-based systems
also raises new questions and considerations when designing for onboarding. In our study, users
frequently interpreted Al assistants through the lens of their own collaborative practices with
colleagues and medical training. For example, when shown diagnostic predictions, participants
reflected on the subjectivity inherent in medical diagnosis, and thus felt it critical to know how
ground truth was determined (section 5.3.2). In many ways, and perhaps more than ever before,
pathologists were making sense of this new technology in terms of their own clinical practices,
norms, and social dynamics, considering the “clinical perspective" of the Al much as they would a
colleague. As the technical capabilities of Al continue to evolve and reach human performance levels,
considering Al through the lens of existing professional and interpersonal practices may become
increasingly pertinent. Simultaneously, these observations also raise theoretical questions around
how human-AI onboarding ought to be studied: since people seem to think of these assistants
as both tools and a partial stand-in for a human collaborator, it could be useful to adopt several
theoretical lenses (e.g., tool-centric and human-centric) when studying these systems.

Finally, pathologists expressed an awareness that Al systems can be tuned to optimize for a
variety of different competing priorities and use cases; for example, those who had used pap smear
screening tools had developed an awareness that these tools may favor sensitivity at the expense
of specificity. Likewise, they wondered if such design trade-offs were made with the diagnostic
Al used in our study. Relative to detection-based CAD tools, diagnostic CAD may take on a much
wider range of human-Al partnership modalities (e.g. pre-screen, pre-read, second opinion, etc.),
making it perhaps even more critical to divulge the tool’s design objective and intended use (section
5.4). In addition, user expectations of an AI's performance and metrics can be strongly anchored to
their prior experience with detection-based models (section 5.1.1); as seen in our study, this can
sometimes yield unrealistic expectations. Thus, relative to early CAD research, modern-day ML
onboarding may need to take into consideration the evolving body of experience that clinicians
have with CAD systems, and the assumptions they may have developed of Al through this process.

6.5 Onboarding Over Time

Our study focused on users’ initial impressions of what information they felt necessary to effectively
collaborate with an Al Assistant. However, one’s relationship with a tool evolves over time. Likewise,
the tool itself can change. In the case of an Al Assistant, its overall performance can change (e.g.,
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the underlying model may be routinely re-trained, or clinical guidelines may change), even if its
user interface remains the same. While this paper has considered onboarding for first-time use, an
open question is what users’ information needs are after installation of a new model.

One goal of onboarding materials is to educate users about the most effective way to use the
tool (e.g., to indicate in which situations it excels, and in which situations it may be less reliable).
The extent to which users can internalize and reliably apply this information is unclear, and is
likely dependent on how detailed and nuanced the recommendations of use are. As such, it may be
worthwhile to routinely refresh users’ knowledge on the most effective way to use the Assistant,
to increase the chance that they attain the most desirable outcome over time. In this light, we view
onboarding as a process that is critical for first-time use, but also one that unfolds over time.

6.6 Future Work

The findings from this work provide a foundation for further research focused on the initial,
introductory phases of using an Al Assistant for collaborative decision making. Most immediately,
there are clear opportunities to design and test onboarding materials based on the findings of this
research. For example, there are open questions of how Al Assistant onboarding materials can
shape work practices (e.g., to help people develop more effective strategies faster); how they can
instill more accurate and actionable mental models; and how these materials impact assessments
and attitudes toward the Al Assistant (e.g., what are the effects on user trust).

7 CONCLUSION

In this study, we have described the information needs of medical experts during their introduction
to an Al Assistant. While substantial work has been performed on the topic of explaining model
predictions, this study suggests that it could also be useful to provide transparency into the higher-
level design objectives of the model itself, as well as its global behavior and tendencies. Future
work should investigate how to efficiently design onboarding materials based on our results, to
deliver this desired information in practice.

AT Assistants are likely to become more common fixtures of work in years to come. Our research
findings contribute to the growing literature that examines how to make these systems useful,
usable, and understandable partners in conducting work, specifically in the case of high stakes,
expert decision making, an area that will likely continue to rise in importance in the near future.
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