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Abstract

Label propagation is a popular semi-supervised
learning technique that transfers information from
labeled examples to unlabeled examples through a
graph. Most label propagation methods construct a
graph based on example-to-example similarity, as-
suming that the resulting graph connects examples
that share similar labels. Unfortunately, example-
level similarity is sometimes badly defined. For
instance, two images may contain two different
objects, but have similar overall appearance due to
large similar background. In this case, computing
similarities based on whole-image would fail prop-
agating information to the right labels. This paper
proposes a novel Instance-Level Label Propagation
(ILLP) approach that integrates label propagation
with multi-instance learning. Each example is
treated as containing multiple instances, as in the
case of an image consisting of multiple regions.
We first construct a graph based on instance-
level similarity and then simultaneously identify
the instances carrying the labels and propagate the
labels across instances in the graph. Optimization
is based on an iterative Expectation Maximization
(EM) algorithm. Experimental results on two
benchmark datasets demonstrate the effectiveness
of the proposed approach over several state-of-the-
art methods.

1 Introduction
Semi-supervised learning is designed to leverage the abun-
dance of unlabeled data to improve subsequent supervised
learning tasks. Given a dataset with both labeled and
unlabeled data, the goal of semi-supervised learning is to
assign labels to the unlabeled examples. Label propagation,
(LP) [Zhou et al., 2003; Belkin et al., 2006; Gong et al.,
2015], is one major technique in semi-supervised learning
[Zhu, 2006]. In label propagation, knowledge about a label is
propagated through a similarity graph from labeled examples
to unlabeled ones under the assumption that examples (nodes)
that are connected in the graph are likely to share the same
semantic label.

Label propagation has been widely adopted in many
learning tasks, including image classification [Wang and
Tsotsos, 2016; Kim et al., 2015], text categorization [Jin et
al., 2007; Kim et al., 2009] and information retrieval [Hadiji
et al., 2015; Ding and Riloff, 2016]. Most existing label-
propagation methods propagate label information across
examples through a graph built on example-to-example
similarities. These methods treat each example as a single
entity, and represent it using one feature vector. In many
cases, however, the label of each example may be represented
by one or more instances inside the example, rather than the
whole entity. For example, when applying label propagation
to images (Fig.1), the label of an image often corresponds
to one key concept in an image, and that concept is often
localized to a limited region of the image. The other
parts of the image outside that region could introduce
heavy noise when computing similarities based on full
images, resulting in poor propagation performance. Similarly,
for text categorization, text documents often consist of
multiple passages addressing different topics, and computing
similarity between two documents based on the overall
content is often too coarse.

Some approaches, such as MISSL [Rahmani and Goldman,
2006], directly address the above problem of label propaga-
tion over multi-instance examples with two steps. They first
assign the concept label of each example to its instances
using multi-instance learning (MIL) [Zhou, 2004], and then
apply standard LP among the labeled instances. While this
approach sometimes performs better than example-level LP,
it has two main drawbacks. First, the instance labels obtained
from MIL methods are fixed and treated as ground-truth
labels in the following label propagation stage. Any labeling
error is aggregated and propagated during label propagation.
Second, the multi-instance learning and label propagation are
performed separately, preventing these two components from
benefiting each other and limiting the overall performance.

This paper proposes a novel approach, Instance-Level
Label Propagation(ILLP), which combines label propagation
with multi-instance learning in a single framework. Instead
of building a graph over examples, it treats each example
as containing multiple instances with each instance as a
node, and constructs instance-to-instance similarity graph.
Labels are then propagated from instance to instance through
this instance-level graph. Specifically, we design a unified



Figure 1: Illustration of example-level label propagation (top
row) and proposed instance-level label propagation (bottom
row). Examples of Images are from the SIVAL dataset. Top
row: image label, ‘apple’, gets wrongly propagated from (b)
to (c). Bottom row: image (d) obtains the correct label from
(e) via ILLP, which also identifies the regions/instances in (d)
and (e) that contain ‘apple’. Note that only part of the edges
are shown in ILLP for demonstration purpose.

learning framework to incorporate multi-instance learning
(MIL) [Dietterich et al., 1997] into label propagation. This
joint learning framework enforces multi-instance constraints
between example and instances, while at the same time
preserves label similarity between instances connected in
the graph. An iterative Expectation Maximization (EM)
algorithm is then proposed to solve the optimization problem
based on this learning framework. Experimental results on
two benchmarks demonstrate the advantage of ILLP over
several baseline methods.

2 Related Work
2.1 Label Propagation
In many real-world applications, large amounts of unlabeled
data are available, but labeling all data is expensive or
impossible. Semi-supervised learning [Chapelle et al., 2010]
has been proposed to leverage the information from unlabeled
data for achieving better learning results. Label propagation
is a popular graph-based semi-supervised method, which
incorporates the knowledge from unlabeled data through
propagating the labels from labeled data.

Label propagation was introduced in [Zhu and Ghahra-
mani, 2002; Zhou et al., 2003]. They create a similarity graph
among data examples and allow every example iteratively
spread its label information to its neighbors until a global
stable state is achieved. A linear neighborhood propagation
(LNP) method is presented in [Wang and Zhang, 2006],
which assumes that each data example can be linearly
reconstructed from its neighborhood. The labels are then
propagate from the labeled examples to the whole dataset
using these linear neighborhoods with sufficient smoothness.
A non-metric label propagation method [Zhang and Zhou,

2009] is designed that decomposes the non-metric distance
matrix first and then conducts a joint label propagation
on the joint graph. Manifold regularization is employed
in [Karasuyama and Mamitsuka, 2013], which is built
upon a Laplacian graph for label propagation, to capture
the manifold structure of labeled and unlabeled examples.
Several recent work [Gong et al., 2016; Kang et al.,
2006] consider multi-label learning problem with label
propagation, which simultaneously co-propagates multiple
labels by explicitly modeling the correlations between labels
in an efficient manner. More recently, an efficient label
propagation algorithm is developed in [Fujiwara and Irie,
2014] which achieves the optimal solution much faster.

2.2 Multi-Instance Learning
Multi-Instance Learning (MIL) [Dietterich et al., 1997;
Maron and Lozano-Pérez, 1997; Strelow et al., 2016] aims to
solve the label ambiguity problem, namely, assigning a label
that is known at the example level to one or more instances
in that example. In this way, the features for the desired
local object in each example will be less likely affected by
its irrelevant parts, and therefore the learned model can be
more accurate. Most MIL algorithms can be divided into
two groups, generative models [Maron and Lozano-Pérez,
1997; Zhang and Goldman, 2001] and discriminative models
[Andrews et al., 2002; Chen et al., 2006; Wang et al.,
2012]. A comprehensive survey of multi-instance learning is
summarized in [Zhou, 2004; Amores, 2013]. The relation
of MIL and semi-supervised learning has been explored by
several authors. MIL problem is reformulated as a specific
semi-supervised problem in [Zhou and Xu, 2007]. Jia et al.
propose to boost the performance of MIL using unlabeled
data by incorporating a graph Laplacian term in to MIL
framework [Jia and Zhang, 2008]. A direct combination of
MIL and label propagation method is proposed in [Rahmani
and Goldman, 2006], sharing the same goal with this work.
However, as aforementioned, this approach models MIL and
semi-supervised learning in two separate steps, potentially
leading to poor performance if the generated labels are noisy.
This is discussed further in the experiment section.

3 Preliminary
In this section, we briefly review the label propagation
approach described in [Zhou et al., 2003; Fujiwara and
Irie, 2014] that applied to example-level graphs. Let X =
{x1, x2, . . . , xm, xm+1, . . . , xn} represents a set of data
examples, where the first m data examples are labeled with
{y1, y2, . . . , ym} and yi ∈ {l1, l2, . . . , lc}. Here c is the size
of the vocabulary of labels (Note that this work solves multi-
class single-label problem). The remaining data examples are
unlabeled. A graph G = {V,E} is constructed over the data
examples V = {xi}, and the edges of the graph are assigned
weightsWWW = {Wij} that are given in advance. Weights could
be created using k-nearest neighbors (k-NN)[von Luxburg,
2007]. Let YYY ∈ {0, 1}n×c denote the matrix of labels, where
Yip = 1 if example xi is labeled as yi = lp and Yip = 0
otherwise. Let SSS ∈ Rn×c denote a matrix of classification
scores. We denote by SiSiSi and YiYiYi the ith row vector of SSS



and YYY respectively. In label propagation, the classification
scores are defined as the optimal solution to the following
cost minimization problem:

SSS = argmin
SSS

n∑
i=1

‖SiSiSi−YiYiYi‖2+α
n∑

i,j=1

Wij‖
SiSiSi√
Dii

− SjSjSj√
Djj

‖2

(1)
where DDD is a diagonal matrix with Dii =

∑n
j=1Wij , and α

is a hyper-parameter that balances the two terms. The first
term in the cost function represents the fitting constraint,
which ensures that the solution is close to the initial label
assignment. The second term corresponds to the smoothness
constraint, ensuring that the solution assigns similar scores to
nodes that are connected by large weights. Minimizing the
cost function of Eqn. 1 has a closed-form optimal solution:

SSS = ((α+ 1)III − αLLL)−1YYY (2)

where III is an identity matrix of size n × n and LLL =
DDD−1/2WWWDDD−1/2. The final label yi of example xi is
obtained by selecting the label with the highest score yi =
argmaxp Sip.

4 ILLP: Instance-Level Label Propagation
with Multi-Instance Learning

4.1 Problem Setting
We adapt the above notation for ILLP. In ILLP, each
data example xi is represented by ni instances, namely,
xi = {xi1 . . . , xiu, . . . , xini} where xiu is the uth instance
of example xi. The details of generating data instances are
given in the experiment section. The total number of instance
is denoted by N =

∑
i ni. The goal of ILLP is to assign

labels to the unlabeled examples, that is, obtain {yi|i =
m + 1,m + 2, . . . , n}, while at the same time identify the
instances that contain the labels.

4.2 Instance-Level Graph Construction
Unlike traditional label propagation, in IILP the similarity
graph G = {V,E} is constructed over instances instead of
over examples. Namely, each instance xiu is treated as a
node in V , and the set of weighted edges are constructed
among instances. Numerous ways have been suggested for
defining the similarity matrix WWW ∈ RN×N . For example,
in spectral hashing [Weiss et al., 2008], the authors used
the global similarity structure of all data pairs, while in
[Fujiwara and Irie, 2014], the local similarity structure, based
on k-nearest-neighborhood is used. Here we adopt the local
similarity. Specifically, we assume that one can compute a
Euclidean distance between pairs of samples, and set the
weight between instances xiu and xjv to decay exponentially
with the square of the distance, like in a Gaussian function:

WWW iu,jv =

 e
−
‖xiu−xjv‖

2

σ2
ij , if xiu ∈ Nk(xjv) or xjv ∈ Nk(xiu)

0, otherwise
(3)

The variance σij is determined automatically by local scaling
[Zelnik-Manor and Perona, 2004], and Nk(x) represents the

set of k-nearest-neighbors of data instance x. Note that the
k-NN scheme indicates that the number of edges is O(Nk)
with k � N in practical and the graph is symmetric.

4.3 Proposed Formulation
Similar to example-level label propagation, a set of variables
SSS ∈ RN×c is introduced in ILLP representing the
classification scores for all N instances and c classes. Recall
that one of the main challenges in designing ILLP is label
ambiguity, thus we introduce a set of latent variables yiu
to indicate the label on instance xiu. Let YYY ∈ {0, 1}N×c
denote the unknown label matrix over all instances, where
Y p
iu corresponds to the iuth row and pth column of YYY , and
Y p
iu = 1 if instance xiu has label yiu = lp and Y p

iu = 0
otherwise. Let SiuSiuSiu and YiuYiuYiu be the row vectors of SSS and YYY
respectively. In ILLP, the labeling score and instance label
are jointly optimized in the following formulation:

min
SSS,YYY

=

n∑
i=1

ni∑
u=1

‖SiuSiuSiu − YiuYiuYiu‖2

+α

n∑
i

∑
u,v

Wiu,iv‖
SiuSiuSiu√
Diu

− SivSivSiv√
Div

‖2

+β
∑

iu,jv,i6=j

Wiu,jv‖
SiuSiuSiu√
Diu

− SjvSjvSjv√
Djv

‖2

s.t. YiuYiuYiu ∈ {0, 1}c
ni∑
u=1

Y p
iu ≥ 1,

ni∑
u=1

Y q
iu = 0 ∀yi = lp, q 6= p.

(4)

Here, DDD ∈ RN×N is a diagonal matrix computed from
WWW with Diu,iu =

∑N
j=1Wiu,j . The trade-off parameters

α and β balance the three components of the loss. The
first term in the cost function represents the fitting criteria
at instance level, which ensures that good classification
should be consistent with the label assignment. The second
term corresponds to the similarity preservation for instances
from the same example, while the third term preserves
the similarity of instances from different examples. These
similarity preservation terms enable that classification scores
should not vary too much between similar instances. The
reason of adapting two similarity terms in ILLP formulation
is that we want to distinguish edges that are of different types
in the graph. The first constraint in the objective function
is the binary constraint on the instance labels. The second
constraint represents the multi-instance constraint imposed
between example and instances. Essentially, this constraint
can be interpreted as: for example xi with label lp, at least
one of its instance should contain label lp (

∑ni
u=1 Y

p
iu ≥ 1),

while none of its instance contains other labels (since lp is the
only label assigned to xi1). Note that the second constraint
is only on labeled examples {x1, . . . , xm}. It is clear that
the example-level label propagation formulation in Eqn.1 is
a special case of the above ILLP formulation by treating each

1This work focuses on multi-class single-label problem in label
propagation. However, for multi-class multi-label problem, this
constraint could be relaxed.



example as its only instance (i.e., ni = 1 for all i) and
ignoring the second similarity preservation term.

There are three major differences between ILLP formu-
lation in Eqn.4 and previous modeling in Eqn.1. First, the
instance label matrix YYY in ILLP is not known, but needs to
be inferred together with the instance classification/labeling
score matrix SSS. Actually, as we will see in the optimization
section, this label matrix keeps updating during iterations.
Second, the multi-instance constraint and binary constraint
imposed on label matrix makes the joint optimization
problem intractable with no closed-form solution. Third,
the ILLP formulation treats edges that connecting instances
between examples and within same example differently, and
thus is capable of balancing the weights between the two
terms.

4.4 Optimization
Directly minimizing the objective in Eqn.4 is intractable,
since model parameters SSS and YYY are coupled together with
binary constraints, resulting in a non-convex non-smooth
optimization problem. An Expectation-Maximization (EM)
like iterative method is employed to solve this problem. In
particular, we optimize the objective function with respect to
model parametersSSS and YYY alternatively by the following two
steps.

E-Step: Fix labeling scores SSS, update instance labels YYY .
Given the labeling score matrix SSS, the optimization problem
becomes the following n sub-problems for n examples:

Y ∗iuY
∗
iuY
∗
iu = argmin

YiuYiuYiu,1≤u≤ni

ni∑
u=1

‖SiuSiuSiu − YiuYiuYiu‖2 i = {1, 2, . . . , n}

s.t. YiuYiuYiu ∈ {0, 1}c
ni∑
u=1

Y p
iu ≥ 1,

ni∑
u=1

Y q
iu = 0 ∀yi = lp, q 6= p

(5)

For the unlabeled examples {xm+1, . . . , xn}, note that the
second multi-instance constraint in Eqn.5 will not apply. Thus
the optimal solution on unlabeled data can be obtained by
directly binarizingSiuSiuSiu, i.e., YiuYiuYiu∗ = sgn(SiuSiuSiu− 1

21c1c1c) (form+
1 ≤ i ≤ n), where 1c1c1c is a c dimension vector of all ones and
sgn is the sign function.

For the labeled example xi (1 ≤ i ≤ m), the optimal
solution to Eqn.5 can be obtained by the following process.
First of all, due to constraint

∑ni
u=1 Y

q
iu = 0, it is clear to

set Y q
iu
∗ to 0 for all instances of xi, where q 6= p. Then

assigning Ŷ p
iu = sgn(Sp

iu − 0.5) for all instances xiu by
relaxing the constraint

∑ni
u=1 Y

p
iu ≥ 1. If the solution Ŷ p

iu
already satisfies the relaxed constraint, it can be shown that
the optimal solution of YiuYiuYiu∗ to Eqn.5 is the combination of
Ŷ p
iu and Y q

iu
∗. Otherwise, if

∑ni
u=1 Ŷ

p
iu < 1 (i.e., Ŷ p

iu = 0
for all u), which means none of the instances is assigned
with the example label lp. In this case, the optimal solution
can be achieved by assigning label lp to the instance with
the highest labeling score on lp, i.e., set Y p

iu∗ = 1, where
u∗ = argmaxuSiuSiuSiu.

The E-step can also be viewed as instance identifica-
tion/selection in our ILLP optimization. Similar instance
selection method is also adopted in some MIL research
[Andrews et al., 2002; Wang et al., 2014].

M-step: Fix instance labels YYY , obtain the optimal
classification scores SSS. Given YYY , the objective function can
be written as:

SSS∗ = argmin
SSS

n∑
i=1

ni∑
u=1

‖SiuSiuSiu − YiuYiuYiu‖2

+α

n∑
i

∑
u,v

Wiu,iv‖
SiuSiuSiu√
Diu

− SivSivSiv√
Div

‖2

+β
∑

iu,jv,i6=j

Wiu,jv‖
SiuSiuSiu√
Diu

− SjvSjvSjv√
Djv

‖2

(6)

The above sub-problem is less complicated than the problem
in Eqn.4 and it is differentiable with respect to SSS. By taking
the derivative of the above objective and set it to 0, an optimal
solution of SSS can be obtained. We omit the derivation and
directly present the result as follows:

SSS∗ = (III −DDD−1/2(αW IW IW I + βWBWBWB)DDD−1/2)−1YYY (7)

where matrix W IW IW I is the sub-matrix of WWW with elements
representing instances similarity from same example, i.e.,
W IW IW I = {Wiu,jv|i = j}. Matrix WBWBWB is the sub-matrix of WWW
containing instances similarity between different examples,
WBWBWB = {Wiu,jv|i 6= j}. The M-step in the ILLP optimization
is essentially instance label propagation process, which finds
the global optimal solution for the labeling scores SSS on all
instances by propagating the instance labels from the label
matrix YYY . The above EM steps are performed alternatively
until convergence. In our implementation, the EM algorithm
is terminated if the number of iterations reaches 100, or if
labels do not change during two consecutive iterations. The
final label of example xi is then obtained by picking the label
with the highest labeling score in SiuSiuSiu for all instances xiu,
i.e., yi = argmaxp S

p
iu. The full optimization algorithm is

described in Algorithm 1, and its convergence is guaranteed
by the following theorem:

Theorem 1. The iterative EM algorithm described in
Algorithm 1 terminates in a finite number of iterations.

Proof. First, it is clear that the objective defined in Eqn.4
will decrease consistently during the EM iterations. Note
that the E-step is essentially assigning labels to instances,
and there are only finite number of possible assignments. At
each EM iteration, the instance label assignment differs from
previous assignments, otherwise, the objective would remain
unchanged and not decrease. Therefore, the EM algorithm
terminates in a finite number of steps.

4.5 Analysis
This section provides analysis on the training cost of the
EM algorithm. In the E-step, we solve n sub-problems to
obtain the instance labeling scores, one for each example,
through Eqn.5, where the time complexity for computing the



Algorithm 1 Instance-Level Label Propagation with Multi-
Instance Learning (ILLP)

Input: Labeled examples {(xiu, yi)|1 ≤ i ≤ m} with yi ∈
{l1, l2, . . . , lc}. Unlabeled examples {xiu|m + 1 ≤ i ≤
n} and trade-off parameters α and β.

Output: Instance classification scores SSS, instance label
matrix YYY and example labels yi.

1: Construct instance level similarity graphWWW by Eqn.3.
2: Initialize model parameters SSS and YYY .
3: repeat
4: E-step: Instance identification from Eqn.5
5: Set Y q

iu
∗
= 0, Y p

iu
∗
= sgn(Sp

iu−0.5), 1 ≤ i ≤ m
6: If

∑ni
u=1 Y

p
iu
∗
< 1, reset Y p

iu∗ = 1 where u∗ =
7: argmaxuSiuSiuSiu

8: Set YiuYiuYiu∗ = sgn(SiuSiuSiu − 1
21c1c1c), m+ 1 ≤ i ≤ n

9: M-step: Instance label propagation by Eqn.7
10: SSS∗ = (III −DDD−1/2(αW IW IW I + βWBWBWB)DDD−1/2)−1YYY
11: Optimize using sparse power method.
12: until EM converges
13: Obtain example label yi = argmaxp S

p
iu, for all u.

binary labels is proportion to the total number of instances
and total number of class labels, O(Nc). For the M-step,
directly applying Eqn.7 involves inverting an matrix, with
a computation cost of O(N3). However, recall that the
matrix needs to be inverted in Eqn.7 is a sparse symmetric
matrix with O(Nk) non-zero elements. (k is the number of
neighbors). Therefore in our implementation, we employ the
power method [Golub and Van Loan, 2012] to efficiently
obtain the optimal solution without matrix inversion. The
computation complexity then becomesO(Nkt) where t is the
number of iteration in the power method. Moreover, we found
in our experiments that the EM usually converges in less than
80 iterations. Thus, the total time complexity of the learning
algorithm is bounded byO(Nkt+Nc), which scales linearly
with N (given N � t and N � k).

In the experiments, we also found out that the convergence
rate of our learning algorithm is sensitive to the initialization
of YYY . In other words, a better initial instance labeling
will result in much faster convergence speed. In our
implementation, we adopt the instance selection method in
MIL [Fu and Robles-Kelly, 2009] to initialize the instance
label matrix to further accelerate the learning algorithm.

5 Experimental Results
5.1 Datasets and Setting
The proposed ILLP approach is evaluated with three configu-
rations of experiments on two benchmarks: an image dataset
SIVAL2 and a text corpus Reuters (Reuters21578)3. The
SIVAL benchmark is a widely used MIL dataset. It contains
25 image categories with 60 images in each category. Each
image is segmented into multiple regions [Shi and Malik,
2000], which are treated as instances. The total number of
instance is around 45k. A set of low-level features from each

2http://www.cs.wustl.edu/˜sg/multi-inst-data/
3http://www.daviddlewis.com/resources/testcollections/

SIVAL Reuters
ILLP 0.823 ± 0.0140.823 ± 0.0140.823 ± 0.014 0.786 ± 0.0110.786 ± 0.0110.786 ± 0.011
LP 0.750 ± 0.015 0.742 ± 0.013

M3IL 0.763 ± 0.012 0.737 ± 0.016
M3IL + LP 0.781 ± 0.011 0.759 ± 0.016

MISSL 0.722 ± 0.023 0.717 ± 0.024

Table 1: Average AUC on two benchmarks for all compared
methods.

segment is extracted to represent an instance, including color
histogram, color moment, region size, wavelet texture and
shape [Wang et al., 2012]. Reuters is a benchmark dataset
from Reuters newswire in 1987. It has 135 categories/labels,
with 21578 documents. We select the five largest categories
in our experiments. Since this work focuses on multi-class
single-label problem, we remove those documents that have
more than one label, resulting in 5346 documents. Similar to
[Andrews et al., 2002], we treat each document as an example
and use fixed-length passages as instances, resulting in total
137k instances. After removing stopwords and stemming, tf-
idf [Zhang et al., 2013] features are extracted.

In each experiment, we randomly partition the examples
in each category into two splits to form the labeled and
unlabeled sets. The trade-off parameters α and β are tuned
using five-fold cross-validation. We set the number of
neighbors k to 8 to construct the k-NN graph. We quantify
the quality of the models using the average area under the
ROC curve (AUC) measure on unlabeled data.

5.2 Evaluation of Different Algorithms
We compare the proposed ILLP approach with four methods:
(1) LP: The example-level label propagation method by
[Zhou et al., 2003; Fujiwara and Irie, 2014]. Example-level
features are used to construct the similarity graph. We used
the same number of neighbors as in ILLP k = 8. The
hyper-parameter α is tuned with five-fold cross validation.
(2) M3IL: The state-of-the-art MIL approach by [Wang
et al., 2012], which demonstrates superior performance
over many other MIL methods. The number of clusters
is set to be 3. For other parameters λ and β, we used
the values in the original implementation provided by the
authors. (3) MISSL: The method of [Rahmani and Goldman,
2006] that directly combines MIL [Maron and Lozano-Pérez,
1997] with label propagation. (The code is available from
http://www.cs.cmu.edu/˜juny/MILL/). MISSL first applies
MIL method on the labeled data to obtain instance labels.
Then, labels are propagated across the instance graph with
the pre-generated instance labels. (4) M3IL+LP: Similar
to MISSL, it is a combination approach of M3IL and LP
that applies multi-instance learning and label propagation
separately. The same k is used in MISSL and M3IL+LP as
in ILLP. The first two methods, M3IL and LP, can be viewed
as two individual components of our ILLP, while M3IL+LP
and MISSL are methods that sequentially apply these two
components.

The average AUC of all methods are reported in Table 1.
ILLP clearly outperforms all compared baselines on both



Figure 2: Average AUC results on two benchmarks by
varying ration of training (labeled) examples.

datasets. As expected, ILLP outperforms both LP and M3IL
methods which do not combine LP with MIL. Compared
to example-based LP, which is bound to use ambiguous
example-to-example similarity, ILLP clearly benefits from
multi-instance modeling and transfers label information
accurately from instance to instance. Compared with M3IL,
which does not leverage knowledge from the unlabeled
data, ILLP can generate high accuracy labels. ILLP also
outperforms the two combination methods, M3IL+LP and
MISSL, which is consistent with our expectation. The reason
is that both these methods apply MIL and label propagation
separately in a sequential manner, while ILLP jointly models
both two parts in a unified framework and keeps updating the
instance labels and classification scores alternatively during
the optimization. Furthermore, the knowledge contained in
unlabeled data is not used by the MIL methods in the stage of
labeling instances. In other words, any mistake made by MIL
methods during the instance labeling stage is aggregated and
propagated during label propagation.

5.3 The Effect of Labeling Ratio
To evaluate the effectiveness of the proposed ILLP approach
as a function of the fraction of labeled examples, we
progressively increase the number of labeled examples by
varying the labeling ratio, namely, the number of labeled
example divided by number of unlabeled example, in the
set {0.2, 0.4, 0.6, 0.8, 1} and compare ILLP with all the
other baseline methods on the two benchmark datasets. Fig.2
depicts the average AUC as a function of labeling ratio
showing that ILLP outperforms all compared methods on
different training ratios. It can be observed from Fig.2 that
the performance of label propagation methods, ILLP and LP,
suffers less with small ratio of labeled data than M3IL+LP
and MISSL methods. The reason is that the classifiers learned
by MIL methods generate more and more mis-classifications
on instances with the decreasing of training/labeled data.
These errors are then get accumulated and transferred to
the unlabeled data during label propagation, resulting in
even poorer performance. While label propagation methods
utilize both labeled and unlabeled data to achieve global
optimal labeling scores. However, our ILLP consistently
outperforms LP on different training ratios. We attribute this
to the advantage of incorporating multi-instance learning,
which is capable of assigning accurate labels to instances, and

Figure 3: Average AUC results of different number of k on
two benchmarks.

performing better label propagation.

5.4 The Effect of Number of Neighbors k
The performance of label propagation highly depends on
the quality of the similarity graph, on which labels are
propagated. To evaluate the effectiveness of the proposed
ILLP, we test different number of neighbors, by varying k
from the set {2, 4, 8, 16, 32}, and constructing the similarity
graph for each k value . Fig.3 compares the AUC as a function
of neighborhood size, showing that ILLP outperforms the
competing methods (M3IL is not available here since it does
not contain LP part) on all k values. As we can see in
the figure, the AUC value of ILLP gets saturated when the
number of k approaches around 16 on both datasets, which
is consistent with our expectation. Since with the increasing
number of neighbors, more redundant information will be
represented in the graph, resulting in limited performance
boost. Similar patterns are also observed in the figure for
other methods. This is also the reason why we set k to 8 in
our previous experiments.

6 Conclusion
This paper proposes a novel approach of Instance-Level
Label Propagation (ILLP) with multi-instance learning.
The new method constructs instance-level similarity graph
instead of example-level graph for label propagation, which
better captures the semantic similarity between examples.
A unified learning framework is developed which enables
simultaneously label propagation between instances and label
identification within example. The optimization problem is
solved by an efficient iterative EM algorithm. Experimental
results on two datasets demonstrate the advantage of the
proposed ILLP approach against several baselines. In future,
we plan to develop theoretical analysis of the generalization
error of the proposed learning algorithm. We also plan to
extend our ILLP to the multi-class multi-label scenario.
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[Maron and Lozano-Pérez, 1997] Oded Maron and Tomás Lozano-
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