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Abstract

Understanding the relationship between amino acid sequence and protein function

is a long-standing problem in molecular biology with far-reaching scientific implications.

Despite six decades of progress, state-of-the-art techniques cannot annotate 1/3 of

microbial protein sequences, hampering our ability to exploit sequences collected from

diverse organisms. In this paper, we explore an alternative methodology based on deep

learning that learns the relationship between unaligned amino acid sequences and their

functional annotations across all 17929 families of the Pfam database. Using the Pfam

seed sequences we establish rigorous benchmark assessments that use both random and

clustered data splits to control for potentially confounding sequence similarities between

train and test sequences. Using Pfam full, we report convolutional networks that are

significantly more accurate and computationally efficient than BLASTp, while learning

sequence features such as structural disorder and transmembrane helices. Our model

co-locates sequences from unseen families in embedding space, allowing sequences from

novel families to be accurately annotated. These results suggest deep learning models

will be a core component of future protein function prediction tools.

Predicting the function of a protein from its raw amino acid sequence is a critical step
for understanding the relationship between genotype and phenotype. As the cost of DNA
sequencing drops and metagenomic sequencing projects flourish, fast and efficient tools
that annotate open reading frames with function will play a central role in exploiting this
data [1, 2]. Doing so will help identify proteins that catalyze novel reactions, design new
proteins that bind specific microbial targets, or build molecules that accelerate advances
in biotechnology. Current practice for functional prediction of a novel protein sequence
involves alignment across a large database of annotated sequences using algorithms such as
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BLASTp [3], or profile hidden Markov models built from aligned sequence families such as
those provided by Pfam [4, 5].

While these approaches are generally successful, at least one-third of microbial proteins
cannot be annotated through alignment to characterized sequences [6, 7]. Moreover, the
computational costs of methods such as BLASTp scale roughly linearly with the size of the
labelled database, which is growing exponentially [8]. Broad protein families require multiple
HMM profiles to model their diversity [9], while more than 22% of the highly-curated
families in Pfam 32.0 have no functional annotation. More generally, models that predict
function from sequence are limited by pipelines that require substitution matrices, sequence
alignment, and hand-tuned scoring functions.

Deep learning provides an opportunity to bypass these bottlenecks and directly predict
protein functional annotations from sequence data. In this framework, a single model
learns the distribution of multiple classes simultaneously, and can be rapidly evaluated.
Besides providing highly accurate annotations, the model’s intermediate layers can capture
high-level structure of the data through learned representations [10] that can be leveraged
for exploratory data analysis or supervised learning on new tasks with limited training data.

A number of recent papers have applied deep learning to achieve accurate protein
function annotation using classification schemes such as GO terms and EC numbers [11–20],
with some experimental validation [21], and also for DNA-protein interactions [22, 23]. The
resulting learned data representations, also known as embeddings, for protein sequences
also provide new exploratory tools with the potential for significant impact [19, 24–27].
However, existing deep learning work on protein function annotation often focuses on subsets
of the protein universe, relies on additional information beyond primary sequence, or does
not compare performance with existing state-of-the-art methods. These limitations reduce
consideration of these approaches by the community.

In this paper, we ask whether deep learning models can complement existing approaches
and provide protein function prediction tools with broad coverage of the protein universe,
enabling more distant sequences to be annotated. We compare deep learning and existing
approaches on the task of annotating unaligned protein domain sequences from Pfam-seed,
which includes 17929 families, many of which have very few sequences [28]. For protein
sequences, similarities between the test and train data mean it is essential to stratify model
performance as a function of similarity between each held-out test sequence and the nearest
sequence in the train set. We analyze both random and clustered splits, in which sequences
are assigned to the test or train split based on cluster membership [29].

We find that the deep models make fewer errors at annotating held-out test sequences
than state of the art HMM and BLASTp approaches across both the random and clustered
splits. To confirm that the model has captured the structure of unaligned protein sequences,
we use the joint representation learned across protein families in one-shot learning to annotate
sequences from small families that the model was not trained on. These findings demonstrate
that deep learning models can annotate proteins with their functions, and accelerate our
ability to understand and exploit metagenomic sequence data.
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Results

In this section, we use the Pfam-seed dataset to construct benchmark annotation tasks, and
compare the performance of deep learning models with existing alignment-based methods
including BLASTp [30] and profile HMM methods [29]. Our stratified analysis of each
data split takes into account the similarity between each held-out test sequence and the
training set, and finds that the deep learning models perform well across the full range of
sequence similarities. The benchmark includes a random train-test split1 of the 17929 Pfam
families, where 80% of sequences are used for training (alignment retained for the profile
HMMs only), 10% for model tuning (a ‘dev’ set) and 10% are held out as test sequences
(Supplementary Table 1). Because protein sequences are related through evolution, there
is a range of similarities between sequences in the train and test sets that confound the
average reported accuracy. To address this, we stratify our analysis by the maximum percent
identity of each test sequence with sequences in the train set.

Our CNN model (ProtCNN) significantly outperforms the alignment-based methods
for sequences with between 30 and 90% maximum identity with the training set (p < 0.05,
2-sided McNemar test, Fig. 1A). The ProtENN model takes a simple majority vote across an
ensemble of 13 ProtCNN models (Supplementary Fig. 1) to achieve an error rate of 0.16%,
reducing both the HMM and BLASTp error rates by a factor of 9, to 201 misclassified
sequences (Table 1). ProtENN is significantly more accurate than alignment-based methods
for all sequence bins with less than 90% identity to the training set (p < 0.05, McNemar
test, Fig. 1A). We implement profile HMM-based methods both by building a profile per
family with hmmbuild, and then searching with hmmsearch, and also by using phmmer on
unaligned sequences.

The 13457 sequences most distant from the training set are further analyzed in Fig. 1B. We
find that a single ProtCNN model displays similar performance to alignment-based methods
across these remote sequences, while ProtENN obtains significantly greater accuracy across
all bins. These results support the notion that ProtENN generalizes well to unseen parts of
the data space available in the test split. We find 11 sequences that are consistently predicted
incorrectly in exactly the same way by all ensemble elements of ProtENN. Supplementary
Table 2 suggests that there is some ambiguity about their correct family labels (see also
[31]). For example, our models predict that the sequence R7EGP4_9BACE/13-173 from
Pfam family DUF1282, actually belongs to the YIP1 family. The hhsearch [4] tool predicts
that DUF1282 is similar to the YIP1 family, while, BLASTp finds that this sequence is
identical to sequences annotated as the YIP1 family, agreeing with the ProtENN prediction.2

Around 40% of Pfam sequences belong to higher-order clans [28]; groups of evolutionarily
related families constructed through manual curation involving analysis of structure and

1Available for download at https://console.cloud.google.com/storage/browser/
brain-genomics-public/research/proteins/pfam/random_split, interactive notebook at https:
//www.kaggle.com/googleai/pfam-seed-random-split

2DUF1282 will soon be merged with YIP1 in Pfam.
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Figure 1: Model performance on the random split of Pfam-seed. (A) Held-out
test error rate as a function of the maximum percent sequence identity across all training
sequences. Top Pick HMM (Methods) is based on hmmsearch. Data is binned by maximum
percent sequence identity with the training set; the x-labels describe the bin ranges. For
each test sequence we use the Pfam-seed family alignment to calculate the percent sequence
identity with the most similar train sequence in the same Pfam family (see Methods).
ProtCNN makes significantly fewer errors than alignment-based methods for sequence
identities in the range 30-90% and ProtENN is significantly better for sequence identities less
than 90% (p < 0.05, McNemar test). (B) Zoomed plot of model performance for sequence
identities below 40% (13457 sequences). Note that ProtENN is significantly better for all
bins, including the 12-16% bin. The number of sequences per bin in either chart is available
in Supplementary Tables 3 and 4. 4
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Model Error rate Number of errors

Top Pick HMM 1.414% 1784

phmmer 1.531% 1932

BLASTp 1.654% 2087

k-mer 9.994% 12610

RNN 1.800% 2271

ProtCNN 0.495% 625

ProtENN 0.159% 201

Table 1: Performance on randomly-split data.

function and HMM profile-profile comparison [32, 33]. Clans are often constructed in cases
where a single HMM model is not able to capture the full diversity of a large sequence
family [32], and individual protein domain sequences can belong to more than one family
within a clan. The deep learning models were not given any information about the existence
of clan level sequence annotations. Sequence membership in more than one family is
addressed in the supplement.

In Supplementary Fig. 2 we report the accuracy of each model at annotating the 55604
held-out test sequences that belong to Pfam clans at both (i) the clan and (ii) the family
level. Measuring the accuracy of clan level annotation takes into account the fact that the
distinction between different families in the same clan may be less meaningful [31]. Both
ProtCNN and ProtENN are able to accurately annotate protein domain sequences at both
the clan and the family levels. The error rate of ProtENN is significantly lower for sequence
identity in 30-70%; outside this range neither ProtENN or the profile HMMs are significantly
better (p < 0.05, McNemar test). All differences, both positive and negative, between
ProtCNN and profile HMMs are significant for sequence identity < 70%. At the family level,
the neural network models make significantly fewer errors for sequence identities < 80%.

Performance using a Clustered Split

A key frontier for protein sequence annotation is remote sequence homology detection. The
stratified analysis of our random held-out test set suggests that the deep models perform well
for distant held-out test sequences, though only 1522 test sequences have identity less than
25% with the train set. To evaluate performance for distant homologs, we use single linkage
clustering at 25% identity within each family to split the Pfam-seed data, inspired by [29]
(see Methods). This yields a distant held-out test set of 21293 sequences (Supplementary
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Figure 2: Model performance on the clustered split of Pfam-seed. (A) Held-out
test error rate as a function of the maximum percent sequence identity from sequences in
the Pfam-seed clustered training set. For each test sequence we use the Pfam-seed family
alignment to calculate the percent sequence identity with the most similar train sequence in
the same Pfam family (see Methods). Data has been binned by percent sequence identity
with the training set; the x-labels describe the bin ranges. ProtENN is significantly better
for all bins (p < 0.05, McNemar Test), whereas Top Pick HMM often outperforms ProtCNN.
The number of sequences per bin is available in Supplementary Table 5.
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Model Error rate Number of errors

Top Pick HMM 18.1% 3844

phmmer 32.6% 6942

BLASTp 35.9 % 7639

ProtCNN 27.7 % 5882

ProtENN 12.2% 2590

Table 2: Performance on data split by clustering.

Table 10) that have identity < 25%.3 To test the utility of the model identified using the
random split, we retain the same model hyperparameters (model architecture, learning rate,
etc.) for this significantly harder task. The only variables that were tuned using the held-out
clustered dev set were the number of training steps, and the number of ensemble elements
for ProtENN (set at 42; larger ensembles were not tested).

A comparison of methods’ overall accuracy appears in Table 2. In Fig. 2 we stratify
our analysis of model performance for the clustered split by the percent identity of each
held-out test sequence to the closest sequence in the training set. Fig. 2A reports model error
rates sliced by sequence identity into 10 bins. This analysis shows that ProtENN performs
well across the full range of pairwise sequence identities present. An additional potential
performance confounder is family size; large families may be easier to learn, and families
with large test sets could skew the reported accuracy. To address the former, we split the
held-out clustered test sequence data by total family size into ten bins, each containing
⇠2100 sequences. Supplementary Fig. 3B shows model error rates for held-out sequences
from the clustered split; ProtENN performs well across all family size bins. Finally, in
the Supplementary Table 6, we present a table qualitatively similar to Table 2 where the
procedure for selecting which sequences from each cluster appear in the test set follows that
of [29].

Sequence Annotation for Pfam-full

Pfam-seed contains ⇠1.34 million curated sequences, and the 17929 profile HMMs built from
this data are used to annotate the ⇠54 million sequences Pfam-full. Like nearest-neighbour
methods such as BLASTp, the predictive accuracy of deep learning models typically improves
as the amount of well-labelled training data increases. To compare these approaches on
a larger dataset, we randomly split each Pfam-full family, assigning 80% of sequences to

3https://console.cloud.google.com/storage/browser/brain-genomics-public/research/
proteins/pfam/clustered_split
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Figure 3: Model performance on the random split of Pfam-full. (A) Held-out test
error rate as a function of the percent sequence identity from sequences in the Pfam-full
training set. We use the training set as the query database for BLASTp and report the
percent sequence identity of the highest scoring pair found by BLASTp for each held-out
test sequence. Data has been binned by percent sequence identity with the training set; the
x-labels describe the bin ranges. Due to the large test set size the differences between model
performance in all bins are statistically significant (p < 0.05, McNemar test). (B) Data for
the 90210 sequences with 20-40% sequence identity to the training set were split out, and
further subdivided into 10 bins; all differences are statistically significant. The number of
sequences per bin in either chart is available in Supplementary Tables 7 and 8.
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the train set and 10% each to dev and test sets, and carry out a hyperparameter search to
optimize ProtCNN accuracy for this new task. To provide a highly accurate baseline we
impute labels via the top BLASTp hit, using the training set as the query database. We
do not include profile HMM-based methods (Top Pick HMM and phmmer), because the
ground truth data in Pfam full was generated using HMMs.

Our resulting ProtCNN model has an error rate of just 1.26% (⇠69k errors), lower than
the BLASTp error rate of 1.78% (⇠97k errors). ProtENN, ensembled across 13 ProtCNN
models, reduces the error even further to just 0.5% (⇠25k errors). It is important to stratify
our analysis by the similarity of each test sequence to the closest sequence in the training set,
to account for sequence similarity between the train and test data. We use the training set as
the query database for BLASTp and report the percent sequence identity between members
of the highest scoring pair identified by BLASTp for each held-out test sequence. Fig. 3
shows that ProtENN is highly accurate across all bins of held-out test sequences distance
from the training data. To analyze the performance for those held-out test sequences that
are most distant from the training set, Fig. 3B divides the 90210 held-out test sequences that
are most distant from the training sequences into 10 bins, and analyzes model performance
for each bin. We find that ProtENN is significantly more accurate for sequences with identity
>32% to the training set.

Annotation using the learned embeddings

ProtCNN processes an input sequence using two consecutive steps: (1) map the sequence to a
1100-dimensional feature vector (commonly known as an embedding) using multiple layers of
non-linear transformations, and (2) apply a linear transformation to the embedding to predict
a confidence score for each candidate output class. If the overall model performs accurate
classification, then sequences from different families will be well-separated in embedding
space, since (2) needs to be able to discriminate between the sequences’ embeddings. Using
(1) as a general-purpose mapping from sequences to embeddings provides a variety of
opportunities beyond the task that the model was initially trained for, including annotation
of domains of unknown function and supervised learning on small datasets [19, 26].

We first explore whether the learned embedding space provides an informed metric on
unaligned protein sequence data that can be used to accurately annotate sequences that have
not been seen during training. We proceed by computing an average embedding for each
of the 17929 training families in the seed random split. We then perform nearest-neighbor
classification (Per-Family 1-NN ) for each held-out test sequence using cosine similarity
in embedding space with the set of representatives. Note that Per-Family 1-NN has the
same computational cost as ProtCNN: we remove the final linear transformation layer from
ProtCNN and replace it with cosine similarity comparisons to each family’s embedding.
More detail is available in the supplement.

In contrast to Per-Family 1-NN, Per-Instance 1-NN finds the nearest neighbor for each
test sequence among the embeddings of every training sequence (analogous to BLASTp and
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Prediction Method
Overall

Error Rate
Small Family
Error Rate

Large Family
Error Rate

ProtCNN 0.4% 3.0% 0.4%

Per-Family 1-NN 0.7% 0.8% 0.7%

Per-Instance 1-NN 0.5% 2.3% 0.5%

Table 3: Performance when classifying using nearest neighbors in embedding space.

phmmer). Perhaps surprisingly, Table 3 shows that Per-Family 1-NN is particularly powerful
at accurately classifying sequences from small families. Here, performance is analyzed
separately for large and small families using the stratification described in the next section.
We speculate that Per-Family 1-NN performs better than Per-Instance 1-NN due to noise
reduction that results from averaging the embeddings for a family.

In Fig. 4 we apply this approach to the clustered split. We find that Per-Family 1-NN
considerably improves accuracy vs. ProtCNN, nearly closing the gap with ProtENN. This
suggests that the speed-accuracy tradeoff of ProtCNN vs. ProtENN could be avoided using
improved machine learning methods, such as [34]. We also demonstrate that computing
sequence similarity in terms of embeddings extends well to very remote homologs.

One-Shot Sequence Annotation

Finally, we show that embeddings from ProtCNN can be used to accurately classify sequences
from families that the model has not been trained on. This demonstrates further that
the deep model is not simply memorizing the training data, and is also motivated by the
biologically important question of novel family identification, where each novel family is
anchored by a single founder sequence. We proceed by training a ProtCNN model on the
subset of Pfam-seed families that have more than 9 training sequences (12361 of 17929
families). The remaining 5568 families consist of 710 families that have a single held out
test sequence, and the 4858 smallest families that have no test sequences (because they
are so small, see Methods). To simulate the process of introducing new families using a
few founder sequences, we exclude these small families from ProtCNN training, but make
them available when constructing embeddings for the Per-Family 1-NN approach introduced
above.

In Table 4, we compare how various methods perform when given access to only a subset
of the available examples for these small families. The number of significant figures on
error rates is limited by the size of the test set (710). By construction, ProtCNN has a
100% error rate on the the examples from small families (right column). In contrast, if we
include just a single example from each of these families, we can obtain an error rate of 15%,
which can be further decreased to 9% if we include two examples. If we had included all
available examples for these small classes, the error rate would be 1.3%. It is important to
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Figure 4: Model performance on the clustered split using the learned embeddings.
(A) Error rate of ProtCNN, ProtENN, and per-family nearest neighbors in embedding space.
Per-Family 1-NN has the same computational complexity as ProtCNN but is significantly
more accurate (p < 0.05, McNemar test) for sequence identity > 12%, with error rate
comparable to profile HMMs. This suggests that the speed-accuracy tradeoff between
ProtCNN and ProtENN can be side-stepped to yield classifiers that are both faster than
ensembles and as accurate. (B) Performance of Per-Instance 1-NN and BLASTp. On this
data, sequence similarity using the neural network embeddings enables remote homolog
annotation with significantly better accuracy than the pairwise sequence alignment used by
BLASTp and phmmer on all bins > 10 (p < .05, McNemar test). The number of sequences
per bin in either chart is available in Supplementary Table 5.
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contrast this tradeoff between the number of available training examples and classification
performance versus that of HMMER, which is often used by practitioners to grow families
using few initial examples [29, 35]. We find that when using only a single founder, HMMER
significantly outperforms Per-Family 1-NN, but that this gap is closed if we include two
sequences for Per-Family 1-NN. More detail on the few-shot implementations is available in
the supplement.

Prediction Method
# Training Examples Used From

Each Small Family
Overall

Error Rate
Small Family
Error Rate

ProtCNN 0 1.0% 100.0%

Per-Family 1-NN 1 0.8% 14.9%

Per-Family 1-NN 2 0.8% 9.0%

Per-Family 1-NN all available 0.7% 1.3%

Top Pick HMM 1 1.4% 9.3%

Top Pick HMM all available 1.4% 1.1%

Table 4: Contrasting methods’ performance when only a small number of sequences are
made available for certain families. This helps demonstrate the extrapolation capabilities of
ProtCNN embeddings to regions of sequence space unseen during training, as well shows
the these embeddings can help grow families using only a few founder sequences.

Computational Performance

Protein sequence databases like UniProt contain hundreds of millions of sequences and are
growing exponentially [11, 28]. This places a premium on the computational performance of
protein sequence analysis tools, motivating efforts dedicated to optimization over the last
decades [3, 8, 29, 30, 36, 37]. It is therefore critical to evaluate the computational cost of
the deep models to ensure that they aren’t prohibitively expensive. Evaluating the runtime
performance of software is delicate. To ensure reproducibility, we use sandboxed instances on
Google Cloud Platform: a n1-standard-32 (32-core / 120 GB RAM) instance for CPU-only
and a n1-standard-8 (8-core 32GB RAM) + NVIDIA P100 GPU instance for GPU testing.
A full set of commands to reproduce our analysis is provided in the supplement.

Table 5 shows the computational performance of ProtCNN, HMMER4, and BLAST on
our benchmark. ProtCNN on a single CPU processes 9.7 seqs/sec, substantially faster than
BLASTp (1.2 seqs/sec) and hmmscan (2.2 seqs/sec) but 2.5x slower than hmmsearch (24.4
seqs/sec). Using the P100 GPU accelerates the inference speed of ProtCNN by a factor of

4We benchmark two methods of comparing HMMs to sequences, hmmsearch and hmmscan, which are both
provided by the software package HMMER. More detail can be found in the Computational Performance
section in the supplement.
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38, achieving 376.6 seqs/sec. Since both hmmsearch and BLASTp run efficiently in parallel,
equivalent throughput would require ⇠15 CPU cores for hmmsearch and ⇠342 cores for
BLASTp. Our most accurate model (ProtENN) involves an ensemble of 13 distinct ProtCNN
models, implying a throughput of ⇠29 sequences per second when using a GPU, though
distillation [34] would presumably significantly improve this throughput. This demonstrates
that the deep learning models presented here can be used with reasonable turn-around times
using standard computational resources.

Program
Average inference speed

(sequences per core-second)
Estimated runtime on
Pfam-seed test (hrs)

hmmsearch 24.4 1.4
hmmscan 2.2 16.2
BLASTp 1.1 30.5

ProtCNN (CPU only) 9.7 3.6
ProtCNN (GPU) 376.6 0.1

Table 5: Inference speed of hmmscan, hmmsearch, and blastp run on sandboxed n1-standard-
32 (32-core, 120 GB RAM) Google Cloud Platform instances with all data in main memory
and using a single core. The ProtCNN model was run in a similar configuration on a
n1-standard-8 instance (8-core, 32 Gb RAM) using a single CPU thread for ProtCNN (CPU
only), and additionally, one NVIDIA P100 GPU accelerator for ProtCNN (GPU). Additional
details, including commands used, are available in the supplement.

What does ProtCNN learn?

To interrogate what ProtCNN learns about the natural amino acids, we add a 5-dimensional
trainable representation between the one-hot amino acid input and the embedding network
(see Methods for details), and retrain our ProtCNN model on the same unaligned sequence
data from Pfam-full, achieving the same performance. Fig. 5A (left) shows the cosine
similarity matrix of the resulting learned embedding, while Fig. 5A (right) shows the
BLOSUM62 matrix, created using aligned sequence blocks at roughly 62% identity [38].
The structural similarities between these matrices suggest that ProtCNN has learned known
amino acid substitution patterns from the unaligned sequence data.

We next ask whether ProtCNN can distinguish between variants of the same protein
domain sequence with single amino acid substitutions, despite the lack of residue-level
supervision during training. To measure the predicted impact of sequence changes, we
use a single ProtCNN trained on Pfam-full to calculate the model’s predicted distribution
over classes for the original and modified sequences. We then compute the KL-divergence
between these two probability distributions to quantify the effect of the substitution on
the model prediction. Fig. 5B reports this measure for every possible single amino acid
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Figure 5: (A) The amino acid embedding extracted from the trained ProtCNN model yields
cosine similarities in embedding space that reflect the overall structure of the BLOSUM62
matrix [38]. (B) Predicted change in function for each missense mutation in ATPase domain
AT1A1_PIG/161-352 from family PF00122.20. The ProtCNN model (trained using Pfam-
full) appropriately predicts that most substitutions in the disordered region are unlikely
to change the protein’s function. Substitutions to phenylalanine (P), tyrosine (T) and
tryptophan (W) are predicted to have the largest effect on function within the disordered
region, in agreement with their known order-promoting properties [39]. The wild type
sequence is available in Supplementary Table 9.
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substitution within an ATPase domain sequence. Most substitutions in the disordered region
are predicted to have negligible effect, with the exception of mutations to phenylalanine,
tyrosine and tryptophan, amino acids that are known to promote order [39]. This ATPase
domain also contains two transmembrane helices, within which the order of amino acid
(using IUPAC amino acid codes) preference according to ProtCNN is FMLVI YACTS WGQHN
KRPED. The suggestion that charged amino acids and proline are avoided within these regions
again agrees with existing knowledge [40]. An additional example of saturation mutagenesis
prediction is shown in Supplementary Fig. 4.

Discussion

In this work we compare the performance of ProtCNN (a single deep neural network),
ProtENN (an ensemble of ProtCNN models), and methods based on the learned embeddings
from ProtCNN against profile HMMs and nearest-neighbor methods on the task of Pfam
domain annotation. Given ⇠1.1 million training examples across 17929 output families of
vastly different sizes (Supplementary Fig. 5) our deep models are highly accurate despite
having no access to the alignments used by the profile HMMs. These results present a
significant advance over previous efforts applying deep learning methods in terms of the
number of families, and the number of training sequences per family. On randomly split
data, ProtCNN achieves an error rate of only 0.495% and ProtENN has an error rate of
0.159%, compared to 1.14%, 1.531%, and 1.654% for HMMER, phmmer, and BLASTp,
respectively. The difference in performance is significant across a wide range of similarities
between test sequences and the training set. To further evaluate the models’ performance
for even more remote homologs, we consider a clustered train-test split. Here, we find that
ProtENN, with an overall error rate of 12.2%, significantly outperforms HMMer, which has
an error rate of 18.1%, while ProtCNN has an error rate of 27.7%. Methods that use the
embeddings produced by ProtCNN can accurately cluster sequences from unknown families,
providing further confidence that the models learn an informative representation of protein
domain sequence data.

Importantly, we stratify model performance by percent sequence identity with the
training data for every data split we construct, which serves to avoid overestimating the
generalization capabilities of the model. In addition to stratifying performance for a random
split, we construct a clustered split in which all held-out test sequences are guaranteed to be
far from the train set. The community has embraced the second evaluation approach, but we
maintain that the former is at least as important. If future users of such a machine learning
system will issue prediction requests for sequences that are drawn from a distribution similar
to the existing data, the random split helps us evaluate how useful the system will be
to these researchers. Furthermore, performing a stratified analysis of the randomly-split
data reveals how performance varies with sequence identity without introducing systematic
skew in the training data due to clustering. On the other hand, if users will mostly issue
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queries for very remote sequences, then evaluating models in terms of the clustered split is
important.

When choosing between ProtCNN and ProtENN there is a clear speed-accuracy tradeoff.
However, the ability of the embedding-based approaches to improve the single model accuracy,
without adding computational overhead, suggests that this tradeoff is not necessary (Fig. 4A).
Application of more sophisticated machine learning methods have the potential to lead
to further performance gains. Such approaches could involve, for example, distilling the
ensembled CNN models into a single model [34].

The representation of protein sequence space learned by ProtCNN is also used in one-
shot learning to classify sequences from unseen protein families. This suggests an iterative
approach to novel family construction, inspired by current methods such as PSI-BLAST [3],
jackhmmer [29, 35] and hhblits [4]. A single founder sequence is used to find additional
family members, which are then used to update the average embedding for this putative new
family and so forth. Our results suggest that a deep model trained on an existing corpus
of data (here the training sequences from large Pfam seeds) could accurately build a new
family from a single sequence even in the presence of additional sequences from families that
the model was not trained on. Future work will test this approach beyond the confines of
the benchmark Pfam-seed dataset.

Our deep models achieve extremely high accuracy without prior knowledge of protein
sequence data encoded through substitution matrices, sequence alignment or hand-curated
scoring functions. The embedding network in each ProtCNN model maps an input sequence
to a single vector representation that alone can be used for accurate family classification,
pairwise sequence comparison or other downstream analysis. This differs substantially
from approaches such as BLASTp, phmmer and HMMER that perform annotation using
explicit alignment. We note that simpler models provide useful attribution of model decision
making, and we anticipate that similar insights will emerge from work that improves the
interpretation and understanding of deep learning models [41–43].

In this work, we focus on protein domain sequence annotation to provide a benchmark
with broad coverage that enables comparison with the state of the art profile HMMs provided
by Pfam 32.0. Though carefully curated, at least 25% of sequences have no experimentally
validated function [28], and additional functional characterization of protein sequences would
greatly improve model quality. Furthermore, the model training protocol that we describe
can be applied to any set of labelled protein sequence data and our results suggest that
deep learning models can rapidly and efficiently annotate novel protein sequences. Such
approaches have the potential to unlock novel molecular diversity for both therapeutic and
biotechnology applications.
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Methods

Deep Learning Models

We use unaligned sequence data to train deep models that learn the distribution across
protein families through joint optimization of a softmax regression loss function. Fig. 6
depicts the input, embedding and prediction networks that make up each deep learning
model. The input and prediction networks have the same functional form for all models.
The input network maps a sequence of L amino acids to an L⇥ 20 binary array, where each
column is a one-hot amino acid representation (Fig. 6A). Sequences are padded to the length
of the longest sequence in the batch with all-zero vectors on the right. The embedding
network maps the L ⇥ 20 array containing the one-hot amino acid representation of the
sequence to an L⇥ F array that contains an embedding for each sequence residue (Fig. 6B).
F is a tunable hyperparameter, which we set to 1100 for ProtCNN. For residues outside the
set of the 20 natural amino acids, we use a column of zeros. All processing in the subsequent
embedding network is designed such that it is invariant to the padding that was introduced
for a given sequence. Additional detail about network architectures are available in the
supplement, and neural network hyperparameters that were tuned using the development
set are provided in Supplementary Tables 11, 12, 13 and 14.

For the embedding network, ProtCNN uses convolutional residual networks (ResNets [44],
a variant of convolutional neural networks that in practice train quickly and are stable, even
with many layers [44]). Fig. 6C depicts the ResNet architecture, which includes dilated
convolutions [45]. The ProtCNN networks are translationally invariant, an advantage for
working with unaligned protein sequence data. An n-dilated 1d-convolution takes standard
convolution operations over every nth element in a sequence, allowing local and global
information to be combined without greatly increasing the number of model parameters.
An important composite hyperparameter is the receptive field size of each per-residue
feature, which describes the length of the subsequence that affects its value. Using dilated
convolutions enables larger receptive field sizes without an explosion in the number of
model parameters. For this benchmark setup, we find that larger receptive fields generally
correspond to higher accuracy (Supplementary Fig. 1). To our knowledge, this is the first
application of dilated convolutions to protein sequence annotation.

The L⇥F array is pooled along the length of the sequence to produce an F -dimensional
embedding by taking the maximum over each row. The prediction network maps the
output of the embedding network F to a distribution over labels using a multi-class logistic
regression model, where the vector of probabilities is obtained as SoftMax(Wf + b), where
f 2 F and W and b are learned weights and biases. The model prediction is the most likely
label under this distribution. At train time, the log-likelihood and its gradient with respect
to the parameters of the prediction and embedding networks are computed using standard
forward and back propagation.

ProtCNN is orders of magnitude faster at making predictions than BLASTp; the basic
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numerical operations required can be parallelized both along the length of the sequence and
across multiple sequences, and can be accelerated by hardware. In addition to the CNN
models we also trained a recurrent neural network (RNN) with single-layer bidirectional
LSTM [46], which achieved accuracy of 0.982 on the Pfam-seed dataset. Replicate Deep
CNN models trained on different orderings of the same data with different random parameter
initializations make distinct errors, leading to ProtENN, an ensemble of ProtCNN models.

Overall those ProtCNN models that perform best tend to have the largest memory
footprint, to some extent irrespective of how that memory footprint is achieved. Increasing
the number of model parameters via the number of filters, the kernel size and/or the
number of ResNet blocks, and increasing the training batch size can all produce performance
improvements. Fundamentally, the memory footprint of the models we trained was limited
by the amount of memory available on a single GPU, necessitating trade offs among these
different factors. Additional computational resources can overcome this memory limitation:
we didn’t explore TPUs [47], multiple GPUs or CPUs, all of which could result in better
models. This suggests that there is room for future machine learning developments on this
task.

Benchmark Dataset for Random Split

To benchmark different models at unaligned protein domain sequence annotation we turn
to the highly curated Protein families (Pfam) database [28, 48]. The 17929 families of
the Pfam 32.0 release are labelled using HMMs that provide broad coverage of the known
protein universe; 77.2% of the ⇠137 million sequences in UniprotKB have at least one Pfam
family annotation, including 74.5% of proteins from reference proteomes [11, 28]. Many
domains have functional annotations, although at least 22% of Pfam domains have unknown
function [28]. The HMM for each Pfam family is built from a manually curated family seed
alignment, containing between 1 and 4545 protein domain sequences of length 4-2037 amino
acids (Supplementary Fig. 5).

We split each Pfam family with at least 10 seed sequences randomly into disjoint dev5

(10%, rounding down to the nearest integer) and test (10%) sets, allocating remaining
sequences to the training set. Of the 17929 Pfam-seed families, 4858 families have < 10
seed sequences and are only present in the train set. This results in held-out test sequences
for 13071 families, where 2819 families have exactly one sequence in each of the test and
dev sets. Including these additional families in the train set makes the task harder because
there are more ways each test sequence can be misclassified. Note that we do not expect
the HMM-based approach to achieve 100% accuracy because the training data is a subset of
the seed data set used in Pfam.

For reproducibility, we provide the split Pfam seed dataset for download,6 and at
5A dev (development) set is a set used to tune hyperparameters that is separate from the test set to

avoid overfitting on test data.
6https://console.cloud.google.com/storage/browser/brain-genomics-public/research/
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Kaggle, together with an interactive Jupyter notebook.7 For the profile HMMs, we retain
the alignment information from the whole Pfam-seed for all splits to avoid any artifacts
introduced by realignment, and enable optimal performance. During training this provides
the HMM with information about the held-out test sequences used to measure performance,
meaning that the reported accuracy should be taken as an upper bound. In contrast all
alignment information is removed from the data for our deep learning models and for the
other baselines.

Definition of sequence identity

Inspired by the method of [49], we use the Pfam-seed family alignments to compute the
similarity, measured as percent sequence identity, between every held-out test sequence
and the training sequences within the same family. For each pair containing a single
test and train sequence we do not realign, but instead retain their length L alignment
from the family multiple sequence alignment. Following [49], for two sequences of n1 and
n2 residues, if the L aligned sequence position pairs consist in cident matches, cident
mismatches and cident cases where either or both sequence contain a gap character such
that L = cident + cmismat + cindel, then the pairwise sequence identity is defined as:

pid =
cident

MIN(n1, n2)
.

For the Pfam-full data (see Fig. 3) we instead use BLASTp to calculate a measure of
sequence identity. We use the Pfam-full training set as the query database for BLASTp
and report the percent sequence identity of the highest scoring pair found by BLASTp for
each held-out test sequence. This method measures similarity across all Pfam families, in
contrast to the method described above, which computes the distance between the train
and test sets within each Pfam family. Supplementary Fig. 6 compares these two metrics
across the 126171 held-out sequences of the randomly split Pfam-seed data.

Benchmark Dataset for Clustered Split

Fig 1 shows that our randomly split train and test sets contain some examples with high
sequence identity. A model tuned on such data might be suspected to perform poorly
at remote homology detection, [29]. To address this, we apply single-linkage hierarchical
agglomerative clustering to each family to build clustered train, dev and test sequence sets
that are guaranteed to be distant in sequence space from each other, as enforced by the
protocol developed in [29]. Note that our clustering protocol follows that of [29], but we
evaluate models in terms of a different prediction task. We consider multi-class classification,
whereas [29] considers a set of per-family binary detection problems.

proteins/pfam/random_split
7https://www.kaggle.com/googleai/pfam-seed-random-split
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For a given family, we split the sequences into set1 and set2 using the following steps:
(1) Construct the matrix of pairwise distances among family members, where distance is
measured in terms of sequence identity according to the Pfam-seed family alignment. (2)
Run single-linkage hierarchical agglomerative clustering and process the resulting clustering
tree to yield a set of clusters where each element of a given cluster is guaranteed to have at
most ↵ sequence identity with the nearest element of any other cluster. (3) Sort the clusters
by size and add clusters to set1, until its size exceeds a fraction � of the overall family size.

We first use this procedure to split the data into training and non-training sets. We set
↵ = 0.25 and � = 0.5. We then recluster the non-training data at a threshold of ↵ = 0.7,
and follow the procedure above to split the non-training data into a dev and test set. For
the results presented in this paper, we use the clustered dev data to tune the number of
training iterations and the number of ensemble elements, and make no changes to the model
hyperparameters from those identified using the random split.

Overall, our approach follows that of [29] with four main modifications. The first is
that we place multiple clusters in set1, rather than just the largest. This avoids putting
very few examples in the training set for families where the clustering produces a large
number of small clusters, while maintaining the property that the train, dev, and test sets
are well-separated. Second, our formulation uses some of the non-train sequences for a dev
set to make sure that the number of training steps and ensemble elements are not chosen
using the held-out test data. Third, if a family can not be split at sequence identity ↵, we
place the entire family in the training set. This differs from [29], which completely discards
families that can not be split. When clustering non-train data to split into dev and test, we
similarly place the entire family in the dev set if it can not be split. The fourth is that when
we re-cluster the non-training data to produce dev and test sets, instead of selecting single
sequences from each cluster, we include all elements of each cluster. We find that though the
fourth decision simplifies our setup, following more closely [29] yields qualitatively similar
results (Supplementary Table 6).

Finally, when considering aggregate accuracy metrics it is important to consider the test
distribution under which this metric is computed. The randomly-split test data (especially
for Pfam-full) has a natural distribution over families defined by the distribution over
families in Pfam. However, in the clustered data the distribution over families is a complex
consequence of the clustering process. In Supplementary Fig. 6B, we find that many families
are represented very differently in the randomly and clustered data.

An additional potential performance confounder is family size. To address this issue,
we split the held-out test sequence data for the Pfam-seed random and clustered splits and
also for the Pfam-full random split by total family size into ten bins. Supplementary Fig. 3
shows the model error rate for held-out sequences from each data split. These results show
that ProtENN performs well across all family size bins.
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Baseline Classifiers

phmmer

We take the set of unaligned training sequences as a sequence database, and using the
phmmer function from HMMER 3.1b [29] we query each test sequence against this database
to find the closest match. Those test sequences that return hits above the default phmmer
reporting threshold are then annotated with the label of the training sequence hit with the
highest bit score. Out of the 126171 sequences in the test set, 42 did not return a hit using
this approach. All training sequences that are not reported as hits by the phmmer function
are assumed to have a zero bit score match to that query sequence.

Our strategy of working with the Pfam-seed sequence set circumvents the computationally
intensive process of evaluating phmmer on the full set of ⇠54.5 million Pfam sequences.

k-mer

An alignment-free approach is provided by a k-mer (or n-gram) based model, where each
sequence is represented by the set of k-mers that it contains. We train a multi-class logistic
regression model on vectors of k-mer counts using the same stochastic gradient descent
procedure as used by our deep models (Supplementary Table 15).

BLASTp

BLASTp [30] is one of the most well known algorithms for searching for similar sequences,
and among the current state of the art. It uses an alignment to rank sequences according to
their similarity to a target sequence, and from this, a user can impute functional annotation
by ascribing known functions of similar sequences. We use BLASTp as a 1-nearest neighbor
algorithm by first using makeblastdb (version 2.7.1+) with the training data. We then
query sequences from that database using blastp -query, taking only the top hit. This
implementation returns no hit for 259 (0.21%) of the 126171 sequences in the Pfam-seed
test set.

Top Pick HMM Implementation

Profile HMMs are widely regarded as a state of the art modeling technique for protein
sequence annotation. We used hmmbuild from HMMER 3.1b to construct a profile HMM
from the aligned train sequences for each family in Pfam 32.0. We implement a simple top
pick HMM strategy to avoid any handicap from the filters built into HMMER 3.1b. To
further obtain the best possible profile HMM performance, we retain the alignment from
the entire Pfam-seed, avoiding dependence on any particular realignment method. We then
use the hmmsearch function from HMMER 3.1b to search all 17929 profiles against the set
of unaligned test sequences using the default parameter settings.
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The scores for each hit are recorded, and the profile with the highest score called as the
HMM prediction for that test sequence. The HMMs yield no prediction for 445 sequences
(0.35%) of the test set, increasing the number of errors to 2229 over the value given in
Table 1. To ensure the HMMER 3.1b heuristics did not hamper performance, we manually
turn them off to the extent that at least one hit is reported for each test sequence, and take
the top scoring hit. To implement this, for those test sequences with no profile hit after this
first pass, we employ a second hmmsearch pass using the --max option, which turns off all
filters and runs full Forward/Backward inference on every target to increase the sensitivity
of the search at a significant cost in speed [50].

In experiments that retain the HMMER 3.1b filters for hmmsearch, we found that 8.5% of
test sequences returned multiple hits above the family specific gathering thresholds that are
used by Pfam to regulate family membership. Reporting these results would have resulted
in a lower precision score for HMMER than for the deep models, which is one of the reasons
we have chosen instead to remove the statistical filter and report the top hit (Supplementary
Fig. 5).

The positive results obtained in the absence of rigorous statistical filters likely reflect
the fact that we are working with sequences that were originally classified by Pfam, and so
passed the rigorous statistical thresholds set for inclusion in a Pfam family. Those sequences
that did not pass these filters, and hence were not included in any Pfam family, may well
have posed a more significant challenge to our implementation. For this reason we do not
recommend that this HMM implementation is used in settings other than working with
these benchmark datasets. For Pfam-full, we do not use the HMMs as a baseline because
these models were used to label the data, so may achieve 100% accuracy by default. The
Pfam-full dataset has 17772 families overall, and our test and dev sets contain sequences
from 16755 families.

Computational Performance

Table 5 reports the number of sequences processed per core-second, computed using the
runtime to process 10% of the seed test fasta sequences. We limited each program to a
single CPU core to focus on computational efficiency rather than the effectiveness of shared
memory parallelization. To minimize the cost of input/output (IO), all data files were
held in RAM (see Supplementary Materials for details). We ran inference for ProtCNN
both with and without a GPU accelerator. The GPU configuration represents a common
inference environment for deep learning models, while the CPU-only configuration allows
direct comparison with BLASTp and HMMER. We made a good faith effort to build and
run all programs efficiently in this environment; additional details, including command lines
for benchmarking, are available in the Supplementary Materials. Note that GPU-accelerated
versions of BLASTp [51] and HMMER [52] were not evaluated and may have significantly
higher throughput than the CPU-only versions considered here.
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a

b

Figure 6: (A) Comparison of the within Pfam family distance calculated using the formula
given in the text with the BLASTp percent sequence identity for each of the 126171 held-out
test sequences of the Pfam-seed dataset. (B) Number of test-set sequences for each family in
the random and clustered splits. While the clustering process is desirable because it ensures
separation between train and test data, it introduces a distribution over families in the test
data that is significantly different than the overall distribution in Pfam.
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