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Abstract: 
Algorithmic reconstruction of neurons from volume electron microscopy data traditionally 
requires training machine learning models on dataset-specific ground truth annotations that are 
expensive and tedious to acquire. We enhanced the training procedure of an unsupervised 
image-to-image translation method with additional components derived from an automated 
neuron segmentation approach. We show that this method, Segmentation-Enhanced CycleGAN 
(SECGAN), enables near perfect reconstruction accuracy on a benchmark connectomics 
segmentation dataset despite operating in a “zero-shot” setting in which the segmentation 
model was trained using only volumetric labels from a different dataset and imaging method. 
By reducing or eliminating the need for novel ground truth annotations, SECGANs alleviate one 
of the main practical burdens involved in pursuing automated reconstruction of volume electron 
microscopy data.  
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Introduction: 
Volume electron microscopy (VEM) methods have enabled nanometer-resolution 

imaging of biological tissue over fields of view that now routinely span millions of cubic microns 
1​. A primary application of VEM is the determination of neural circuit connectivity, in which 
detailed reconstructions of individual neurons are combined with image-based identification of 
synapses ​2,3​. Due to the infeasibility of manually performing reconstruction of thousands of 
neurons ​4​, automation of this task has emerged as a major practical requirement for revealing 
neural circuits in VEM datasets ​5​. 

Significant progress in automated neuron reconstruction has been achieved through the 
development of machine-learning (ML) based image segmentation methods optimized for 
tracing of neurites in VEM data ​6–10​. ML methods require training data that has traditionally been 
created for each specific acquisition context, which differ by choice of species, brain area, 
imaging method, staining protocol, and other sample-specific details. In one recent study, 408 
hours of human time was invested to manually annotate 131 million voxels of songbird brain 
that was then used to train an ML-based segmentation approach ​6​. While the trained algorithm 
reconstructed songbird neurons with high accuracy, the prospect of repeatedly performing 
hundreds of hours of manual annotation for each such study is clearly undesirable ​11​. 

A classical approach to improving the generalization abilities of an ML system is dataset 
augmentation, in which domain-specific modes of variation are computationally “simulated” and 
applied to a database of training examples ​12​. This approach has been used to great effect for 
improving ​intra​-dataset​ ​generalization performance of VEM segmentation methods by 
introducing synthetic forms of rotation and reflection ​13​, elastic deformation ​14​, and image 
defects such as misalignment, missing sections, and out-of-focus sections ​7​.  

Such data augmentation strategies have not, however, succeeded in enabling strong 
inter-​dataset generalization. Therefore we pursued a new approach, Segmentation-Enhanced 
CycleGAN​15​ (SECGAN), in which we learn a model that “translates” raw image content between 
two different VEM datasets. ​By translate we mean we render the images from one dataset in 
the style of another so that it resembles the shapes and textures of the other dataset while 
retaining its original cellular boundaries. ​If one dataset lacks the volumetric ground truth 
necessary to train a segmentation algorithm, we can segment it by translating its raw data and 
then applying a segmentation algorithm trained on the other dataset for which we have ground 
truth (Fig. 1a). Note that this approach does not require any notion of correspondence or 
alignment between images in the two datasets; the translation function is learned in an 
unsupervised fashion. 

 
Results: 

The core of the SECGAN approach is a cycle-consistent generative adversarial network 
(CycleGAN), which is a neural network that bidirectionally translates data between two domains 
15​. In our case, a “generator” function G​X→Y​ takes input data from VEM dataset ​X​ and is trained to 
produce outputs that are visually similar to a target VEM dataset ​Y​; the training of G​X→Y 
principally relies on backpropagation signals from a “discriminator” function D(​Y​) which predicts 
whether its inputs are true samples from ​Y​ or “fake” samples produced by G​X→Y​ ​

16​. A reverse 
generator G​Y→X​ and discriminator D(​X​) are trained in a similar fashion​.​ A “cycle consistency loss” 
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is applied that composes the generators and optimizes G​Y→X​(G​X→Y​(​x​)) ≈ ​x​ for samples from ​X 
and G​X→Y​(G​Y→X​(​y​)) ≈ ​y​ for samples from ​Y​. Each generator must therefore embed enough 
information about the source domain in its output in order for the other generator to be able to 
approximately recover the original input. A key property of the CycleGAN is that its training is 
fully unsupervised and does not rely on any notion of a per-sample correspondence between ​X 
and ​Y​.  

SECGAN enhances a CycleGAN with additional components that bias the generator G​Y→X 
toward producing images that yield plausible automated neuron segmentation results. 
Specifically, samples from ​X​ and the output of G​Y→X​ are provided as input to a flood-filling 
network (FFN), which is a neural network architecture designed for 3d neuron segmentation ​6​. 
The FFN is pre-trained on volumetric ground truth from ​X​ and its parameters are unchanged 
during SECGAN training. A third discriminator D(​S​X​) receives the output of the FFN and tries to 
predict whether those segmentations were generated by data sampled from ​X​ or G​Y→X ​(Fig. 1b). 
D(​S​X​) is trained simultaneously with the other components of the SECGAN and thus provides an 
additional source of backpropagation signals that influence parameters of G​Y→X​ and G​X→Y​. 

We evaluated the SECGAN approach by performing automated reconstruction of a 
mouse somatosensory cortex sample (“SegEM”) imaged using serial block-face scanning 
electron microscopy (SBEM) at a voxel size of 11x11x28nm ​10​. In a control condition, 
“dedicated,” we trained an FFN using ground truth located within the SegEM dataset itself, 
which resulted in excellent segmentation accuracy (Fig. 2 and Fig. 3). We then segmented the 
SBEM dataset using a model trained on a somatosensory cortex dataset (“SNEMI3d”) imaged 
using a different VEM method, automated tape-collecting ultramicrotome scanning electron 
microscopy (ATUM-SEM), at a voxel size of 6x6x29nm ​17​. Without SECGAN transfer of the VEM 
data (condition “CLAHE”), the FFN trained on SNEMI3d reconstructed the SegEM dataset poorly; 
with​ SECGAN transfer, the results were in fact slightly superior to the dedicated model, despite 
the FFN operating in a “zero-shot” transfer mode ​18​ in which no training was performed on 
labeled data from the target volume (note that checkpoint selection used skeleton metrics on a 
subvolume of the target VEM data, see Methods). Standard CycleGAN transfer was also worse 
than SECGAN transfer (see Fig. 3). 

 
Discussion: 

SECGANs alter raw VEM data in order to enable model transfer. Therefore it is 
reasonable to wonder whether the alterations are safe; could using a SECGAN lead to incorrect, 
misleading, or biased analyses? In Figure 4, we highlight specific aspects of the SegEM → 
SNEMI translation that the SECGAN performed. Based on the quantitative and qualitative results 
in Fig. 2-4, as well as the fundamentally local nature of SECGAN processing, we believe there is 
little reason to suspect that the transfer procedure leads to globally biased neuron 
reconstructions (segmentation of even a single neuron relies on the accumulation of predictions 
over millions or billions of voxel locations). Though in our experiments we found the 
ultrastructure to be well preserved by the transfer, the use of methods such as SECGAN for 
more local analyses of VEM data, such as the detection of synapses, needs to be more carefully 
evaluated. Related work has found that using neural networks to significantly alter raw 
microscopy data can be useful for the purposes of super-resolution ​19,20​, alignment and 
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interpolation ​21​, content restoration ​22​, and inferring “virtual” fluorescent labels in the absence of 
physical antibody stains ​23​. 

Dataset augmentation is an important approach to improving the generalization 
capabilities of an ML system. However, augmentation is fundamentally less appropriate when 
addressing modes of variation that are difficult to “a priori” describe algorithmically, such as the 
idiosyncratic, high-dimensional, and locally correlated set of pixel intensity differences that may 
arise from imaging brain tissue using different microscopy methods or different staining 
protocols. Moreover, it is sensible to take advantage of the raw data itself when modeling the 
translation from one dataset to another and in situations where unlabeled raw data is copiously 
available, as is generally the case when dealing with reconstruction and analysis of VEM data. 
Hence SECGANs offer a powerful tool for transferring reconstruction models among VEM data 
and can significantly reduce the practical burden associated with successful connectomic 
reconstruction of diverse datasets.  
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Figure 1​. ​Segmentation-Enhanced CycleGAN.​ (a) Schematic of overall training and inference 
workflow. A flood-filling network (FFN) is trained on ground truth data associated with volume 
X​. The trained FFN is then used to segment ​Y​ by translating data from ​Y​ into ​X​ using the 
SECGAN. (b) Components and information flow of Segmentation-Enhanced CycleGAN training, 
which consists of three discriminator networks, two generator networks, and an FFN. Blue 
arrows indicate pathways along which there is also reverse flow of gradients. 
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Figure 2. Qualitative analysis of results​. (a) Raw (​x-y​) data from SNEMI (left) and SegEM (right) 
VEM data. (b) Bidirectional translations given by CycleGAN: SNEMI→SegEM (left) and 
SegEM→SNEMI (right). (c) SegEM segmentation results using FFN trained on SNEMI ground 
truth: CLAHE-only baseline (top) versus SegEM→SNEMI SECGAN translation (bottom). Scale 
bar 1 ​μ ​m. 
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Figure 3. Quantitative analysis of SECGAN and baseline results​. (a) Number of SECGAN 
checkpoints that lead to transfer results with a particular segmentation (edge) accuracy, as 
derived from a single training run. (b-d) Expected run length and skeleton accuracy metrics of 
SegEM segmentation results generated by SECGAN-transfer and CycleGAN-transfer versus 
CLAHE-baseline and a dedicated (non-transfer) model trained directly on SegEM volumetric 
ground truth.  
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Figure 4. Selected examples of SECGAN results. ​(a) In-section (​x-y​) view of SegEM data 
post-processed with CLAHE (left) versus output from a SegEM → SNEMI SECGAN model (right). 
Note: (X) altered space between membranes, (Y) altered internal structures in the 
mitochondrion, (Z) altered texture inside the neurite, (V) similar number and position of vesicles. 
(b) Cross-section (​x-z​) view. Alignment of the SECGAN-processed data is unchanged. SECGAN 
reproduced section-to-section intensity differences present in the target (SNEMI3d) image, 
visible here as horizontal stripes. Scale bar 0.5 ​μ ​m. 
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Online methods: 
 
SECGAN training  
The SECGAN system is built using three neural network architectures: the generator (G), the 
discriminator (D) and the segmenter (S), as outlined in Fig. 1b. In addition to the D(​X​) and D(​Y​) 
discriminators which use image data as input similarly to the CycleGAN, we introduce the 
segmentation discriminator D(S), which processes single-object segmentation data only. We 
also experimented with combining the D(​X​) and D(S) into a single discriminator with a 
two-channel (raw image, single-object segmentation) input, and removing D(​X​), both of which 
resulted in worse segmentation quality. 
 
G and D consume and produce images rescaled to [-1, 1] as (original / 127.5 - 1.0), where we 
assume 8-bit unsigned image intensities in the original images. The input to S is rescaled as 
(original - 128) / 33, in accordance with ​6​. The output of S has the form of a probability map and 
is scaled as (probability - 0.5) when it becomes the input of D(S). 
 
The SECGAN training procedure has 4 steps, in which G​X→Y​, D(​S​)+D(​X​), G​Y→X​, and D(​Y​) are 
sequentially optimized. The generator weights are optimized by minimizing the following loss: 

2.5 |G​Y→X​(G​X→Y​(​Y​)) - ​Y​| + (D​X​(G​Y→X​(​Y​)) - 1)​2​ + D​S​(FFN​X​(G​Y→X​(​Y​)) - 1)​2 

where mean absolute difference is used for the cycle-consistency loss (first term), and mean 
squared difference is used for the discriminator losses, and where the loss values are averaged 
over the examples in the batch and over voxels within every example. The discriminator weights 
are optimized by minimizing the following loss: 

(D​X​(G​Y→X​(​Y​)) - 0)​2​ + (D​X​(​X​) - 1)​2​ + D​S​(FFN​X​(G​Y→X​(​Y​)) - 0)​2  ​+ D​S​(FFN​X​(​X​) - 1)​2 

The segmenter weights are held fixed during training of the SECGAN. 
 
We implemented the SECGAN system in TensorFlow and trained it with asynchronous 
stochastic gradient descent on 8 NVIDIA V100 GPUs, with a batch size of 8 and learning rate of 
0.0001. Training examples for the unsupervised training of the SECGAN were sampled randomly 
from SNEMI3d testing and training volumes (both 512 x 512 x 100 voxels), and from SegEM 
cortex testing (401 x 401 x 351 voxels) and training (740 x 868 x 251 voxels) volumes.  
 
Neural network architectures 
We used a 3d generalization of ResNet-18 ​24​ as the architecture for all three discriminator 
networks, and a stack of 8 residual convolutional modules as the architecture of the generator 
networks. We also tested a U-net-style generator, as well as a simple convolution-pooling 
network as the discriminator, and found these alternatives resulted in worse segmentation 
quality. 
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In the generator, each residual module consists of two 3d convolutions with (3, 3, 3) kernels, 32 
feature maps, operating in VALID mode, with the ReLU activation function used for first 
convolution and linear activation used for the second convolution. The residual skip 
connections used center-cropping of the source to match the target volume size. The output of 
the last residual module was passed through a pointwise convolution layer with a single feature 
map and ​tanh​ activation function to form the generated image. 
 
The architecture of the discriminator followed that of ResNet-18, but we eliminated the final 
classification layer and the global average pooling preceding it, and used the output of the last 
residual module directly, which we found necessary for the network to train stably.  
 
For segmentation, we used a flood-filling network with the architecture and training parameters 
as reported in ​6​ but trained on 2x in-plane downsampled SNEMI3d challenge data (512 x 512 x 
100 labeled voxels; voxel size: 12x12x29 nm; see Supplementary for a discussion of the impact 
of voxel size discrepancies on the transfer process). 
 
Intensity inversion 
We observed that the CycleGAN and SECGAN models sometimes settle into a regime where a 
call to each generator network inverts the intensity of the input image (bright regions become 
dark, and vice versa). The generator loss consists of two terms -- the cycle-consistency loss, 
and the discriminator loss. An intensity-inverting pair of generators can have a low value of the 
first term, but not of the second one if the discriminator is trained enough to distinguish whether 
an image is real or generated.  
 
Empirically, the intensity inversion depends on the random initial state of the network, becomes 
apparent after a few hundred training iterations, and the network does not recover from it during 
training, even as the discriminator performance improves in time. This may be related to the 
higher weight (2.5) used for the ​cycle-consistency loss, which we however found necessary for 
the network to reach a state where it produces useful results.  
 
To work around the intensity inversion problem, at training steps 300 to 2000, for every training 
example we identified the lowest (​y​l​) and highest (​y​h​) intensity voxel in the ​X->Y​ generated 
image, and checked whether in the full-cycle image (​X->Y->X​) the intensities of these two voxels 
were reversed G​Y→X​(​y​l​) > G​Y→X​(​y​h​). If so, we restarted the training of the network by choosing a 
new set of random values for all its internal parameters. 
 
SegEM segmentation evaluation 
To quantitatively test our segmentation accuracy, we used the "cortex training" subvolume 
released as part of the SegEM challenge together with manually traced skeletons 
(https://segem.rzg.mpg.de/webdav/SegEM_challenge/skeletonData/). A 640 x 768 x 201-voxel 
fragment of the subvolume (corresponding to 7.2 x 8.5 x 5.6 ​μ ​m of tissue) was exhaustively 
traced so that each neurite visible in the volume has an associated skeleton. 
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A manual review of the skeletons revealed several topological inconsistencies (see 
supplementary for details), which we corrected. We then used the modified skeletons as ground 
truth for evaluation of our segmentation results with skeleton metrics​6​. To compensate for 
inaccurate placement of skeleton nodes and minor variations in the spatial extent of the 
segments, a merge error was counted only when a segment overlapped more than 2 nodes from 
each of two or more skeletons. 
 
The 95% confidence intervals shown in Fig. 3 were computed with the bootstrap method, with 
10,000 resamples from the set of ground truth skeletons. 
 
SECGAN checkpoint selection 
We observed significant segmentation quality differences when the same FFN was used to 
segment images obtained with generators initialized with different snapshots of the SECGAN 
network weights ("checkpoints"). A typical distribution of edge accuracies is shown in Fig. 3a. 
After an initial training period lasting ​~15k ​steps of the SECGAN network training procedure 
where the accuracy clearly increased over time, we did not find any patterns in the time series of 
the evaluation results. We speculate that the varying performance is caused by the generator 
network oscillating between reproducing different features of the target image. For instance, we 
observed that the checkpoints for which the segmentation has the worst edge accuracy 
correspond to generated images without altered space between membranes of adjacent 
neurites (see Fig. 4a), which causes the FFN to incorrectly merge them together. Fig. 2c and Fig. 
3b-d show data for the best segmentation result.  
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Supplementary:  
 
SegEM "cortex training" skeleton modifications 
We manually reviewed the released skeleton tracings of the SegEM "cortex_training" subvolume, 
and decided to ignore the following skeleton merges from evaluation: 

● 705,1: two parts of the same axon 
● 8,402: dendritic spine and shaft 
● 708,709,308: fragments of the same axon 
● 661,597: dendritic spine and shaft, connected outside of the skeletonized subvolume 
● 458,406: dendritic spine and shaft 
● 475,580: skeletons trace the same neurite 
● 510,692: two glial fragments, connected at 234, 682, 41 
● 656,710: spine head and rest of the dendrite 
● 397,214: connected around 336, 219, 29 
● 680,109: 680 is an organelle (?) 
● 398,707: dendrite and spine 
● 604,704: dendrite and spine 
● 16,399,669: dendrite and spine 

 
Resolution mismatch 
In the experiments reported in the main text, the source and target datasets have different voxel 
sizes (6x6x29 nm for SNEMI3d, and 11x11x29 nm for SegEM) and therefore we used a 2x 
in-plane downsampled version of SNEMI3d (i.e., 12x12x29nm voxel size) in all experiments. We 
have also applied the SECGAN system to other VEM dataset pairs with larger voxel size 
differences, and from different species. Qualitatively, we observed that the quality of the 
segmentation of the target dataset degrades with larger physical discrepancies between the 
source and the target, particularly where the source has a lower voxel resolution than the target. 
In all cases, we found the results to be useful at least for the purpose of targeted ground truth 
generation through object-based proofreading for training of a dedicated FFN model, the details 
of which will be reported elsewhere. 
 
SNEMI→SegEM translation 
To check the effectiveness of the translation procedure in the opposite direction, we trained a 
second SECGAN network using the SegEM-trained FFN used for the "dedicated" results in 
Fig. 3. We used this SECGAN to segment the SNEMI3d training volume, applying mirror 
padding in all directions in order to minimize edge effects and let the FFN create segments 
extending all the way to the border of the volume. We also skeletonized the SNEMI3d training 
volume with TEASAR and used the skeletons as ground truth to compute segmentation metrics. 
We postprocessed the skeletons to erode tips up to 200 nm and to reduce inter-node distance 
to an average of 300 nm in order to make them more similar to ones generated manually by 
human tracers.  
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The best segmentation obtained with the SECGAN reached 83.6% edge accuracy at 0.6% 
merge, 7.2% split, and 8.6% omitted edge rates. The segmentation looked qualitatively good, 
but the split and omitted edge rates were significantly higher than those obtained in the transfer 
process in the opposite direction (Fig. 3b-d). These errors appeared to be caused primarily by 
the smallest caliber processes, particularly when they were oriented parallel to the imaging 
plane.  
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