
Evolving Space-Time Neural Architectures for Videos

AJ Piergiovanni, Anelia Angelova, Alexander Toshev, Michael S. Ryoo
Google Brain

{ajpiergi,anelia,toshev,mryoo}@google.com

Abstract

We present a new method for finding video CNN ar-
chitectures that capture rich spatio-temporal information
in videos. Previous work, taking advantage of 3D convo-
lutions, obtained promising results by manually designing
video CNN architectures. We here develop a novel evolu-
tionary search algorithm that automatically explores mod-
els with different types and combinations of layers to jointly
learn interactions between spatial and temporal aspects of
video representations. We demonstrate the generality of this
algorithm by applying it to two meta-architectures, obtain-
ing new architectures superior to manually designed archi-
tectures: EvaNet. Further, we propose a new component,
the iTGM layer, which more efficiently utilizes its parame-
ters to allow learning of space-time interactions over longer
time horizons. The iTGM layer is often preferred by the evo-
lutionary algorithm and allows building cost-efficient net-
works. The proposed approach discovers new and diverse
video architectures that were previously unknown. More im-
portantly they are both more accurate and faster than prior
models, and outperform the state-of-the-art results on mul-
tiple datasets we test, including HMDB, Kinetics, and Mo-
ments in Time. We will open source the code and models, to
encourage future model development 1.

1. Introduction
Video understanding tasks, such as video object detec-

tion and activity recognition, are important for many so-
cietal applications of computer vision including robot per-
ception, smart cities, medical analysis, and more. Convolu-
tional neural networks (CNNs) have been popular for video
understanding, with many successful prior approaches, in-
cluding C3D [30], I3D [1], R(2+1)D [33], S3D [38], and
others [3, 9]. These approaches focus on manually de-
signing CNN architectures specialized for videos, for ex-
ample by extending known 2D architectures such as Incep-
tion [28] and ResNet [5] to 3D [1, 33]. However, designing
new, larger or more advanced architectures is a challenging

1Code and models: https://sites.google.com/corp/view/evanet-video

problem, especially as the complexity of video tasks neces-
sitates deeper and wider architectures and more complex
sub-modules. Furthermore, the existing networks, which
are mostly inspired by single-image based tasks, might not
sufficiently capture the rich spatio-temporal interactions in
video data.

In this work, we present a video architecture evolution
approach to harness the rich spatio-temporal information
present in videos. Neural architecture search and evolution
have been previously applied for text and image classifica-
tion [29, 41]. A naive extension of the above approaches to
video is infeasible due to the large search space of possible
architectures operating on 3D inputs.

To address these challenges we propose a novel evo-
lution algorithm for video architecture search. We intro-
duce a hybrid meta-architecture (‘fill-in-the-blanks’) model
for which the high level connectivity between modules is
fixed, but the individual modules can evolve. We apply
this successfully to both Inception and ResNet based meta-
architectures. We design the search space specifically for
video CNN architectures that jointly capture various spatial
and temporal interactions in videos. We encourage explo-
ration of more diverse architectures by applying multiple
nontrivial mutations at the earlier stages of evolution while
constraining the mutations at the later stages. This enables
discovering multiple, very different but similarly good ar-
chitectures, allowing us to form a better ensemble by com-
bining them.

Furthermore, to enrich the search space for video in-
puts, we propose a new key element which is specifically
designed to capture space-time features’ interactions. We
introduce an Inflated Temporal Gaussian Mixture (iTGM)
layer as part of the evolution search space. The iTGM is
motivated by the original 1D TGM [21]. For our iTGM,
we learn 2D spatial filters in addition to the temporal Gaus-
sian mixture values, and inflate the 2D filter temporally to
allow learning of joint features in 3D. The 2D filter is in-
flated non-uniformly, by following the weights according to
the learned 1-D temporal Gaussian mixture pattern. This
allows to explore space-time interactions more effectively
and with much fewer parameters, while at the same time
capture longer temporal information in videos.

https://sites.google.com/corp/view/evanet-video


11 5 1 5 3

1

1 9

1 3

11 1

C
o
n

c
a
t

1

19

19

15

111

31

31

C
o
n

c
a
t

3

1

13

15

15

71

111

31

C
o
n

c
a
t

1

15

13

71

C
o
n

c
a
t

1

111

19

51

C
o
n

c
a
t

1

15

15

17

19

91

31

C
o
n

c
a
t

1

1 9

1 3

1 3

1 9

9 1

C
o
n

c
a
t

9

1

1 5

1 5

1 3

5 1

C
o
n

c
a
t

1

1 5

1 7

1 5

7 1

C
o
n

c
a
t

2 1

iTGM

1x1x1

Max-
Pool

Concat

(2+1)D

3D 
Conv

Avg Pool

Figure 1. Example of a video architecture obtained with evolution. Inception-like architecture. The color encodes the type of the layer, as
indicated on the right. The numbers indicate the temporal size of the filters in each module. See text for discussion.

3 1 1 3

11 1 C
o
n

c
a
t

R = 2

3
1
1
1 3 7
1 3 1
1 1 1

C
o
n

c
a
t

R = 3

3 1 7 3

C
o
n

c
a
t

R = 5

3
1
1
1
111
1115
1 9 1

C
o
n

c
a
t

R = 5

1

3 1
1
1 1 9
1 1
3 1
1 1

C
o
n

c
a
t

R = 2

3
1
1 5 1
1 111
1111
1 1
7 1

C
o
n

c
a
t

R = 3

3
1

5 1

9 1 C
o
n

c
a
t

R = 5

3 1 1

5 1 C
o
n

c
a
t

R = 4

1

3 1 1

1 9 C
o
n

c
a
t

R = 3

1
1 11

1 7

1 7 C
o
n

c
a
t

R = 4

1
1
111
1 3 7
1 3 1
3 1

C
o
n

c
a
t

R = 6

1
1
1
1 1 3
1 9 11

C
o
n

c
a
t

R = 3

1

Figure 2. Three different ResNet-like architectures obtained for the Kinetics dataset. Modules are repeated R times.

The proposed algorithm results in novel architectures
which comprise interesting sub-modules (see Fig. 1 and 2).
It discovers complex substructures, including modules with
multiple parallel space-time conv/pooling layers focusing
on different temporal resolutions of video representations.
Other findings include: multiple different types of layers
combined in the same module e.g., an iTGM layer jointly
with (2+1)D convolutions and pooling layers; heteroge-
neous modules at different levels of the architecture, which
is in contrast to previous handcrafted models. Furthermore,
the evolution itself generates a diverse set of accurate mod-
els. By ensembling them, recognition accuracy increases
beyond other homogeneous-architecture ensembles.

Our approach discovers models which outperform the
state-of-the-art on all four public datasets we tested (i.e.,
HMDB, Charades, Moments in time and Kinetics). This is
done with a generic evolutionary algorithm and no per-data
hyperparamter tuning. Furthermore, the best found models
are very fast, running at about 100 ms for a single model,
and 250ms for an ensemble, both being considerably faster
than prior models.

The main technical contributions of this paper are: 1)
We propose a novel evolutionary approach for develop-
ing space-time CNN architectures, specifically designed for
videos. We design the search space to specifically explore
different space-time convolutional layers and their combi-
nations and encourage diversity. 2) We introduce a new

space-time convolutional layer, the Inflated TGM layer, de-
signed to capture longer-term temporal information. 3) The
discovered models achieve state-of-the-art performance on
several video datasets and are among the fastest models for
videos. We provide new diverse architectures, ensembles
and components which can be reused for future work. To
our knowledge this is the first automated neural architecture
search algorithm for video understanding.

2. Related work

CNNs for video understanding. Approaches consider-
ing a video as a space-time volume have been particularly
successful [1, 4, 30, 31], with a direct application of 3D
CNNs to videos. C3D [30] learned 3x3x3 XYT filters,
which was not only applied to action recognition but also
to video object recognition. I3D [1] extended the Inception
architecture to 3D, obtaining successful results on multiple
activity recognition video datasets including Kinetics. S3D
[38] investigated the usage of 1D and 2D convolutional lay-
ers in addition to the 3D layers. R(2+1)D [33] used the
2D conv. layers followed by 1D conv. layers while follow-
ing the ResNet structure. Two-stream CNN design is also
widely adopted in action recognition, which takes optical
flow inputs in addition to raw RGBs [3, 27]. There are also
works focusing on capturing longer temporal information
in continuous videos using pooling [19], attention [20], and
convolution [9]. Recurrent neural networks (e.g., LSTMs)



are also used to sequentially represent videos [19, 39].

Neural architecture search. Neural network architec-
tures have advanced significantly since the early convo-
lutional neural network concepts of LeCun et al. [13]
and Krizhevsky et al. [11]: from developing wider mod-
ules, e.g., Inception [28], or introducing duplicated mod-
ules [14], residual connections [5, 37], densely connected
networks [6, 7], or multi-task architectures: e.g., Faster-
RCNN and RetinaNet for detection, and many others [15,
16, 24]. Recently several ground-breaking approaches have
been proposed for automated learning/searching of neu-
ral network architectures, rather than manually designing
them [23, 29, 41, 42]. Successful architecture search has
been demonstrated for images and text [41, 42], including
object classification. Tran et al. [32] analyze action recog-
nition experiments with different settings, e.g., input res-
olution, frame rate, number of frames, network depth, all
within the 3D ResNet architecture.

3. Convolutional layers for action recognition
We first review standard convolutional layers for videos

and then introduce the new iTGM layer to learn longer tem-
poral structures with fewer parameters and lower computa-
tional cost. Video CNNs are analogous to standard CNNs,
with the difference of an additional temporal dimension in
the input and all intermediate feature maps. In more de-
tail, both input and feature maps are represented as 4D ten-
sors XYTC with two spatial dimensions, one temporal and
one for the pixel values or features (i.e., channels). Several
forms of convolution on such tensors have been explored.
3D convolutional layer learns a standard 3D convolutional
kernel over space and time [8]. It applies Cout kernels of
dimension L×H ×W ×Cin on a tensor of size T × Y ×
X × Cin to produce a tensor of size T × Y × X × Cout.
This layer has LHWCinCout parameters, which is an order
of magnitude larger than CNNs and becomes prohibitive in
many cases. Further, expanding 2D kernels to 3D has been
explored [17]. I3D expanded kernels by stacking the 2D
kernels L times, results in state-of-the-art performance [1].
(2+1)D convolutional layer decomposes a 3D kernel into a
composition of a 2D spatial kernel followed by a 1D tem-
poral kernel [33, 38]. It has HWCinCout + LCoutCout

parameters, and as such is more efficient than 3D convo-
lution. However, it still depends on the time dimension L
which limits the temporal size of the filter.

3.1. 3D Inflated TGM layer

The recently introduced Temporal Gaussian Mixture
layer (TGM) [21] is a specialized 1D convolutional layer
designed to overcome the limitations of standard 1D convo-
lutional layers. In contrast to the standard 1D temporal con-
volutional layer, which was often used in video CNNs such
as R(2+1)D, a TGM layer represents its filter as a mixture

2D
 Kernel

Inflated
TGM

Time

*

*

*

*

=

=

=

=

TGMs

Figure 3. The iTGM layer. Example of inflated TGM kernels.

of 1D Gaussians. This makes the number of its learnable
parameters independent of the temporal filter size; with a
TGM layer, one does not have to handle all kernel weights
but only the Gaussian mixture parameters.

In this work, we employ the above idea to define a 3D
space-time kernel directly, named Inflated Temporal Gaus-
sian Mixture layer (iTGM). We ‘inflate’ the 2D spatial ker-
nels to 3D by representing 3D kernel as a product of two
kernels:

S ? K

where S is the ‘inflated’ 2D convolution and K is a temporal
1D kernel defined using a mixture of Gaussians (see Fig. 3).

The Gaussian mixture kernel K is defined as follows.
Denote by µm and width σm the center and width of M
Gaussians, m ∈ {0, . . . ,M}. Further, denote by aim, i ∈
{0, . . . , Cout} soft-attention mixing-weights. The temporal
Gaussian kernels read:

K̂ml =
1

Z
exp

(
− (l − µm)2

2σ2
m

)
(1)

where Z is a normalization:
∑L

l=0 K̂ml = 1. Then, the a
mixture of the above Gaussian kernels is:

Kil =
exp (aim)∑
j exp (aij)

K̂ml. (2)

This results inK being aCout×L kernel; i. e., a temporal
kernel with Cout output channels. We apply this kernel on
the output of the spatial kernel. Thus, we obtain a L×H ×
W ×Cin ×Cout kernel, using only HWCinCout +2M +
MCout parameters.

In practice, µ is constrained to be in [0, L), µ =
(1/2)(L−1) tanh (µ̂)+1. and σ is positive, σ2 = exp (σ̂).
Further, M is a hyperparameter, typically smaller than L.

The parameters of the iTGM layer – spatial kernel pa-
rameters, µm, σm, and aim – are all differentiable, and are
learned from data for the specified task. The above layer be-
haves exactly like the standard 3D XYT convolution. Note
that this layer learns fewer parameters than both 3D and
(2+1)D convolution, and can learn temporally longer ker-
nels as the number of parameters is independent of the
length, L. Examples of inflated TGMs are shown in Fig. 3.



Video
BxTxHxWxC

Stem

Lx7x7
Stride 2

Lx3x3
Max-Pool

Stride 
1,2,2

Residual
Inception 
Module 1

Lx3x3
Max-Pool

Stride 
2,2,2

Residual
Inception 
Module 2

Lx2x2
Max-Pool

Stride 
2,2,2

Residual
Inception 
Module 3

Residual
Inception 
Module 4

2x7x7
Avg-Pool 1x1x1

Lx2x2
Max-Pool

Stride 
2,2,2

Figure 4. Our ResNet-like ‘fill-in-the-blanks’ meta-architecture: each heterogeneous module is repeated R times, based on the evolution.

4. Neural architecture evolution for videos
We design our neural architecture search specifically for

videos, and propose the following:
• Use of ‘fill-in-the-blanks’ meta-architectures to limit

the search space and generate both trainable and high-
performing architectures.

• Search among combinations of six different types
of space-time convolution/pooling layer concatenations
where their temporal duration can vary in large ranges.

• We specially design mutation operations to more effec-
tively explore the large space of possible architectures.

• We propose an evolutionary sampling strategy which en-
courages more diverse architectures early in the search.
Neural architecture evolution finds better-performing ar-

chitectures by iteratively modifying a pool of architectures.
Starting from a set of random architectures, it mutates them
over multiple rounds, while only retaining the better per-
forming ones. Recent studies [22] show that evolutionary
algorithms can find good image architectures from a smaller
number of samples, as opposed to model search algorithms
using reinforcement learning [41]. This makes evolution
more suitable for video architecture search, as video CNNs
are expensive to train. Further, it allows for mutating archi-
tectures by selecting and combining various space-time lay-
ers which more effectively process inputs with much larger
dimensionality. The evolution also enables obtaining mul-
tiple different architectures instead of a single architecture
which we use to build a powerful ensemble.

4.1. Search space and base architecture

We evolve our architectures to have heterogeneous
modules, motivated by the recent observations that video
CNN architectures may need differently sized temporal fil-
ters at different layers, e.g., bottom-heavy vs. top-heavy
[38]. In order to keep the entire search space manage-
able while evolving modules heterogeneously, we use a
meta-architecture where internal sub-modules are allowed
to evolve without constraints but the high level architec-
ture has a fixed number of total modules. We used both an
Inception-like and ResNet-like meta-architecture. The In-
ception meta-architecture follows the popular Inception ar-
chitecture, with five layers forming the ‘stem’ followed by
Inception modules whose structure is evolved. The ResNet-
like meta-architecture is illustrated in Figure 4. This meta-
architecture is composed of two fixed convolutional layers
(i.e., the ‘stem’) followed by four residual Inception mod-

ules interspersed with max-pooling layers. Each residual
Inception module can be repeated R times and has a resid-
ual connection. Figure 5 shows an example module.

Each module can have multiple parallel convolutional or
pooling layers and its specific form is chosen through evo-
lution. We constrain the complexity of the connections be-
tween the layers within a module while making the evolu-
tion explore temporal aspects of the modules. More specif-
ically, we make each module have 1-6 parallel ‘streams’
with four different stream types: (i) one 1x1x1 conv., (ii)
one space-time conv. layer after one 1x1x1 layer, (iii) two
space-time conv. layers after one 1x1x1, and (iv) a space-
time pooling followed by one 1x1x1. Figure 5 shows the
four types. The architecture evolution focuses on modify-
ing each module: selecting layer types and its parameters,
selecting the number of parallel layers, and for the residual
ones, how many times should each module be repeated.

The convolutional layers have {1, 3, 5, 7, 9, 11} as the set
of possible temporal kernel sizes. As a result, the architec-
ture search space size isO((3×6+1)5+B×N+(6+1)D×N )
where B and D are the maximum of number of space-
time conv and pooling layers we allow in each module, and
N = 4 or 9 is the number modules in the meta-architecture.
There are 2 or 5 individual layers (often also called a ‘stem’)
before the modules. Each space-time conv. layer has 3 × 6
possible options and each space-time pooling has 6 options.
Also, there is the option to add/omit the layer, making the
total number of choices 3×6+1 and 6+1. For the ResNet-
like models, we allow modules to be repeated up to 6 times.
We fix the spatial size of the kernels to be 3 × 3. Although
the search space is very big, the idea is that an exhaustive
search is not necessary and it is possible to find good local
optima by evolving from various initial samples (i.e., archi-
tectures).

4.2. Evolutionary algorithm
Algorithm 1 summarizes the architecture search. In a

standard genetic algorithm setting, we maintain a popula-
tion of size P , where each individual in the population is a
particular architecture. Initial architectures are obtained by
randomly sampling from our large search space, encourag-
ing diversity and exploration. At each round of the evolu-
tion, the algorithm randomly selects S number of samples
from the entire population and compares their recognition
performance. The architecture with the highest fitness (i.e.,
validation accuracy) becomes the ‘parent’, and mutation op-
erators are applied to the selected parent to generate a new



Lx3x3

1x1x1

1x1x1 1x1x1 Lx3x3
Max-Pool

1x1x1

Lx3x3

Concatenation

Input

+

Output

Lx3x3

Figure 5. A example structure of the a residual Inception module
with 4 layer streams. There could be 1-6 parallel streams (with 4
types) and a residual connection from input to output.

‘child’ architecture to be added to the population. Whenever
a new architecture is added, it is trained with the training set
for a number of iterations, and is evaluated with a separate
validation set (different from the actual test and validation
sets) to measure the recognition accuracy. This performance
becomes the ‘fitness’ of the architecture. Having S where
1 < S ≤ P controls the randomness in of the parent selec-
tion. It avoids the algorithm repeatedly selecting the same
parent, which might already be at a local maximum.

Algorithm 1 Evolutionary search algorithm
function SEARCH

Randomly initialize the population, P
Evaluate each individual in P
for i < number of evolutionary rounds do

S = random sample of 25 individuals
parent = the most fit individual in S
child = parent
for max(dd− i

r e, 1) do
child = mutate(child)

end for
evaluate child and add to population
remove least fit individual from population

end for
end function

Mutations. The mutation operators modify the parent ar-
chitecture to generate a new child architecture. In order to
explore the architecture search space we describe in Section
4.1 efficiently, we consider the following 4 mutation oper-
ators: (i) Select a space-time conv. layer within the parent
architecture, and change its ‘type’. (ii) Select a space-time
conv. layer or a pooling layer, and change its temporal size
(i.e., L) . (iii) Select a module from the parent architecture,
and add/remove a parallel layer stream. We constrain the
number of parallel layer streams to be 1-6. We additionally
constrain each module to have a fixed number of output fil-
ters which are evenly divided between the parallel layers.
(iv) Select a module and change the number of times it is

3DConv
3x3x3

1x1x1

1x1x1 1x1x1 3x3x3
Max-Pool

1x1x1TGM
7x3x3

Concatenation

Input

Output

(2+1)D
3x3x3

1x1x1

1x1x1 1x1x1 3x3x3
Max-Pool

1x1x1TGM
7x3x3

Concatenation

Input

Output

3DConv
3x3x3

1x1x1

1x1x1 1x1x1 3x3x3
Max-Pool

1x1x1TGM
7x3x3

Concatenation

Input

Output

3DConv
3x3x3

1x1x1

1x1x1 1x1x1 3x3x3
Max-Pool

1x1x1TGM
9x3x3

Concatenation

Input

Output

Change Layer 
Type

Mutation

Change 
Temporal Size 

Mutation

3DConv
3x3x3

1x1x1

1x1x1 1x1x1 3x3x3
Max-Pool

1x1x1TGM
7x3x3

Concatenation

Input

Output

3DConv
3x3x3

1x1x1

1x1x1 1x1x1 3x3x3
Max-Pool

1x1x1TGM
7x3x3

Concatenation

Input

Output

Add Layer
Mutation

1x1x1

(2+1)D
5x3x3

(a)

(b)

(c)

Figure 6. Example mutations applied to a module, including (a)
layer type change, (b) filter length change, and (c) layer addition.

repeated. Figure 6 illustrates examples of our mutation op-
erators applied to layers of a module.

Diversity. Importantly, we design the mutation in our al-
gorithm to happen by applying multiple randomly chosen
mutation operators. In order to encourage more diverse ar-
chitectures, we develop the strategy of applying many mu-
tation operators in the early stage of the evolution while re-
ducing the amount of mutations in the later stages, which
is analogous to controlling the learning rate in a CNN
model learning. As described in Algorithm 1, we apply
max(d − i

r , 1) number of mutation operators where d is
the maximum number of operators we want to apply in the
beginning, and r controls how quickly we want to decrease
their numbers linearly. Once a child architecture is added to
the population, in order to maintain the size of the popula-
tion to P , the evolutionary algorithm selects an individual
to discard from the pool. We tried different removal criteria
including the lowest fitness and the oldest (i.e., [22]), which
did not make much difference in our case.

Ensemble. We obtain a number of top performing archi-
tectures after the evolutionary search is completed, thanks
to our evolutionary algorithm promoting populations with
diverse individual architectures. Thus, we are able to con-
struct a strong ensemble from the diverse models by averag-
ing the outputs of their softmax layers: F ∗(x) =

∑
i Fi(x)

where x is the input video and Fi are the top models. In the
experiments, we found our approach obtains very diverse,
top performing architectures. Ensembling further improves
the overall recognition. We named our final ensemble net-
work as EvaNet (Evolved Video Architecture).



5. Experiments
Although our evolutionary architecture search is applica-

ble to various different video understanding tasks, here we
focus on human activity recognition. The video CNN ar-
chitectures are evolved using public datasets. Fitness of the
architectures during evolution is measured on a subset of the
training data. In all experiments, the evolutionary algorithm
has no access to the test set during training and evolution.
In more detail, we use following datasets:
HMDB [12] is a dataset of human motion videos collected
from a variety of sources. It is a common datasets for video
classification and has ∼7K videos of 51 action classes.
Kinetics [10] is a large challenging video dataset with
225,946 training and 18,584 validation videos. We use the
currently available version (Kinetics-400 dataset), which
has about 25k fewer training videos than original Kinetics
dataset (i.e., missing about 10% of train/val/test data). This
makes the dataset more difficult to train, and not compara-
ble to the previous version.
Charades [26] is an activity recognition dataset with∼10K
videos, whose durations are 30 seconds on average. We
chose Charades to particularly confirm whether our archi-
tecture evolution finds structures different from those found
with shorter videos like Kinetics. We use the standard clas-
sification evaluation protocol.
Moments in Time [18] is a large-scale dataset for un-
derstanding of actions and events in videos (339 classes,
802,264 training, 33,900 validation videos).

5.1. Experimental setup

Architecture evolution is done in parallel on smaller in-
put size and fewer number of iterations. Details can be
found in the appendix. We perform evolution for 2000
rounds: generating, mutating, training/evaluating, and dis-
carding 2000 CNN architectures. Note that ∼300 rounds
were often sufficient to find good architectures (Figure 7).
Once the architecture evolution is complete and the top per-
forming models are found, they are trained on full inputs.
Baselines. We compare our results to state-of-the-art activ-
ity recognition methods. We train (1) the original I3D [1]
with standard 3D conv. layers. We also train an Inception
model with: (2) 3D conv. layers with L = 3, (3) (2+1)D
conv. layers, and (4) the proposed iTGM layers. The dif-
ference between (1) and (2) is that (1) uses L = 7 in the
first 3D conv. layer and L = 3 in all the other 3D layers (a
handcrafted design), while (2) uses L = 3 in all its layers.

5.2. Results

Next, we report the results of the proposed method and
compare with baselines and prior work. This is not only
done in terms of recognition accuracy but also in terms of
computational efficiency. As shown in Table 7, our individ-
ual models are 4x faster and the ensemble (EvaNet) is 1.6x

Table 1. HMDB split 1 comparison to baselines, with and without
Kinetics pre-training. The models were all initialized with Ima-
geNet weights.

HMDB HMDB(pre-train)
RGB Flow RGB+F RGB Flow RGB+F

Baselines
I3D 49.5 61.9 66.4 74.8 77.1 80.1
3D Conv 47.4 60.5 65.9 74.3 76.8 79.9
(2+1)D Conv 27.8 56.4 51.8 74.4 76.5 79.9
iTGM Conv 56.5 62.5 68.2 74.6 76.7 79.9
3D-Ensemble 67.6 80.4
iTGM-Ensemble 69.5 80.6

Top individual models from evolution
Top 1 60.7 63.2 70.3 74.4 78.7 81.4
Top 2 63.4 62.5 71.2 75.8 78.4 80.6
Top 3 60.5 63.1 70.5 75.4 78.9 79.7

EvaNet 72.8 82.7

Table 2. HMDB performances averaged over the 3 splits.

Two-stream [27] 59.4
Two-stream+IDT [3] 69.2
R(2+1)D [33] 78.7
Two-stream I3D [1] 80.9
PoTion [2] 80.9
Dicrim. Pooling [35] 81.3
DSP [34] 81.5
Top model (Individual, ours) 81.3

3D-Ensemble 79.9
iTGM-Ensemble 80.1
EvaNet (Ensemble, ours) 82.3

faster than standard methods like ResNet-50. Both of our
meta-architectures perform similarly. Below, we report re-
sults of the ResNet-like architecture (see suppl. material for
further results).

HMDB: Table 1 shows the accuracy of the evolved
CNNs compared to the baseline architectures, where the
evaluation is done on ‘split 1’. We see improved accu-
racy of our individual models as well as ensembles. We
also confirm that the EvaNet ensemble is superior to the en-
sembles obtained by combining other architectures (e.g., 3D
ResNet). Table 2 compares our performance with the pre-
vious state-of-the-arts on all three splits following the stan-
dard protocols. As seen, our EvaNet models have strong
performances outperfoming the state-of-the-art.

Kinetics: Table 3 shows the classification accuracy of
our algorithm on Kinetics-400, and compares with base-
lines, other ensembles, and the state-of-the-art. The archi-
tecture evolution finds better performing models than any
prior model. Further the ensemble of 3 models (EvaNet) im-
proves the performance and outperforms other ensembles,
including and ensemble of diverse, standard architectures.



Table 3. Performances on Kinetics-400 Nov. 2018 version. Note
that this set is ∼10% smaller (in training/validation set size) than
the initial version of Kinetics-400. We report the numbers based
on models trained on this newest version. Baselines are shown on
top, followed by the state-of-the-arts, and then our methods.

Method Accuracy

3D Conv 72.6
(2+1)D Conv 74.3
iTGM Conv 74.4
ResNet-50 (2+1)D 72.1
ResNet-101 (2+1)D 72.8

3D-Ensemble 74.6
iTGM-Ensemble 74.7
Diverse Ensemble (3D, (2+1)D, iTGM) 75.3

Two-stream I3D [1] 72.6
Two-stream S3D-G [38] 76.2
ResNet-50 + Non-local[36] 73.5
Arch. Ensemble (I3D, ResNet-50, ResNet-101) 75.4

Top 1 (Individual, ours) 76.4
Top 2 (Individual, ours) 75.5
Top 3 (Individual, ours) 75.7

Random Ensemble 72.6

EvaNet (Ensemble, ours) 77.2

Table 4. Charades classification results against state-of-the-arts.

mAP

Two-Stream [25] 18.6
Two-Stream + LSTM [25] 17.8
Async-TF [25] 22.4
TRN [40] 25.2
Dicrim. Pooling [35] 26.7
Non-local NN [36] 37.5

3D-Ensemble (baseline) 35.2
iTGM-Ensemble (baseline) 35.7

Top 1 (Individual, ours) 37.3
Top 2 (Individual, ours) 36.8
Top 3 (Individual, ours) 36.6

EvaNet (Ensemble, ours) 38.1

Charades: We also test our approach on the popular
Charades dataset. Table 4 compares against the previously
reported results (we use Kinetics pre-training as in [36]).
As shown, we outperform the state-of-the-art and establish
a new one with our EvaNet. Our CNNs only use RGB input
(i.e., one-stream) in this experiment.

Transfer learned architectures - Moments in Time:
We evaluate the models evolved on Kinetics by training it
on another dataset: Moments in Time [18]. Table 5 shows
the results, where we see that the models outperform prior

Table 5. Moments in time. We show that models evolved on Ki-
netics transfer to similar datasets.
Method Accuracy

I3D [18] 29.5
ResNet-50 30.5
ResNet-50 + NL [36] 30.7
Arch. Ensemble (I3D, ResNet-50, ResNet-101) 30.9

Top 1 (Individual, ours) 30.5

EvaNet (Ensemble, ours) 31.8

Table 6. Test accuracy across datasets for a model evolved on a
single dataset.

Method Kinetics Charades HMDB MiT

Evolved on Kinetics 77.2 37.8 82.3 31.8
Evolved on Charades 76.5 38.1 81.8 31.1
Evolved on HMDB 77.0 37.5 82.3 31.6
Best without evolution 76.2 37.5 81.5 30.7

Table 7. Runtime measured on a V100 GPU. Accuracy numbers on
Kinetics-400 are added for context. These numbers are evaluation
time for 1 128 frame clip at 224x224.

Method Accuracy Runtime
I3D 72.6 337ms
S3D 75.2 439ms
ResNet-50 71.9 526ms
ResNet-50 + Non-local 73.5 572ms
I3D iTGM (ours) 74.4 274ms
Individual learned model (ours) 75.5 108ms
EvaNet (Ensemble, ours) 77.2 258ms

methods and baselines. This is particularly appealing as the
evolution is done on another dataset and successfully trans-
fers to a new dataset.

Ensembling and runtime. One key benefit of evolving
model architectures is that the resulting models are natu-
rally diverse, as they are evolved from very different initial
random models. As shown in Table 3, we compared with an
ensemble of three different baselines (3D Conv + (2+1)D +
iTGM) and with an ensemble of different architectures (e.g.,
I3D + ResNet-50 + ResNet-101). Both are outperformed by
EvaNet, although the base models are individually strong.

Furthermore, our evolved models are very efficient per-
forming inference on a video in ∼100 ms (Table 7). Note
that even an ensemble is faster, 258 ms, than previous in-
dividual models which makes the proposed approach very
suitable for practical use with higher accuracy and faster
runtimes. This gain in runtime is due to the use of parallel
shallower layers and the use of iTGM layers, which is by
itself faster than prior layers (274ms vs 337ms).
Architecture findings. Figures 1 and 2 show examples
of the architectures found. Interesting substructures dis-
covered include: (1) modules combining multiple space-
time pooling layers with different temporal intervals and (2)



Table 8. Comparison between models from different hybrid meta-
architectures. Kinetics dataset.

Method Accuracy

EvaNet Inception (Ensemble, ours) 76.8
EvaNet ResNet (Ensemble, ours) 77.2
EvaNet Combined (Ensemble, ours) 77.4

Table 9. Statistics of the top models. iTGM layers are most com-
mon and have longest temporal duration. Kinetics dataset.

Number of Layers Ave. Temporal Length
3D (2+1)D iTGM 3D (2+1)D iTGM Pool

Top 1 2 6 16 5 7.2 7.2 6.0
Top 2 6 7 12 7.8 8.1 8.6 5.7
Top 3 2 6 15 6 7.8 8.5 6.2

modules heavily relying on Inflated TGM or (2+1)D conv.
layers instead of standard 3D conv. layers. Such modules
were commonly observed at most of the locations in the ar-
chitectures, while being very diverse and heterogeneous.

Video CNN architectures may evolve differently depend-
ing on the datasets. This is as expected, and we were able to
explicitly confirm this. The architectures have many more
layers with longer space-time filters (e.g., 9 or 11) when
evolved for Charades, while they only had a small number
of them when evolved for HMDB or Kinetics. An average
activity duration in Charades videos are around 12 seconds,
while HMDB and Kinetics videos are on the average of 3
to 5 seconds. Different architectures are needed for differ-
ent datasets/tasks, and we are providing an evolutionary ap-
proach to automate the architecture design.

Table 8 further shows that both Inception-like and
ResNet-like meta-architectures are successful, and a com-
bination of them is even more successful.

5.3. Ablation Studies
Effectiveness of iTGM models. In Table 9, we show the
layer statistics for the best models. In the EvaNet archi-
tecture, iTGM layers have the longest average length (8.6).
Further, our models have quite large temporal resolution
of 368 frames on average (compared to I3D/S3D with 99
frames). To further confirm the usefulness of the iTGM
layer, we conduct several experiments. In Table 10, we
show the results using iTGM layers with various temporal
durations. Since we can increase the temporal length with-
out changing the number of parameters, we can improve
performance by simply taking longer temporal durations.
We also compare to replacing all iTGM layers with (2+1)D
layers and performing the architecture search without the
iTGM layer as an option. Both restrictions degrade perfor-
mance, confirming that iTGMs are needed. We also note
that iTGM layers are most common in the best models (Ta-
ble 9), further confirming their importance.
‘Stretching’ of iTGM layer Since the number of param-
eters of the iTGM layer is independent of length, we use

0 500 1000 1500 2000
0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55
Evolutionary Search

Random Search

Figure 7. Random search vs. evolutionary algorithm on HMDB.
X axis is number of rounds, Y axis is accuracy.

Table 10. Experiments evaluating effect of iTGM layer on Kinet-
ics.

Model Accuracy

iTGM (L = 3) 74.4
iTGM (L = 11) 74.9
EvaNet replacing iTGM with (2+1)D 76.6
Arch Search without iTGM in space 76.8
EvaNet 77.2

Table 11. Stretching iTGM kernels from Kinetics to Charades.

Model mAP

iTGM Baseline (L = 3) 33.8
iTGM Stretched (L = 11) 34.2
Kinetics EvaNet 37.7
Kinetics EvaNet Stretched (L = 11) 38.1
Charades EvaNet 38.1

a model from the Kinetics dataset and ‘stretch’ the iTGM
layers and apply it to Charades, which has activities with
much longer temporal duration. In Table 11, we show the
results using models with L = 3 on Kinetics and stretched
to L = 11 on Charades, which shows similar performance.
Evolution vs. random search. We compared our architec-
ture evolution with random architecture search (Figure 7).
We observe that both the evolution and the random search
accuracies improve as they explore more samples (benefit-
ing from the search space designed). However, the archi-
tecture evolution obtains much higher accuracy and much
more quickly with few initial rounds of evolution, suggest-
ing the mutations are being effective.

6. Conclusion
We present a novel evolutionary algorithm that automati-

cally constructs architectures of layers exploring space-time
interactions for videos. The discovered architectures are ac-
curate, diverse and very efficient. Ensembling such mod-
els leads to further accuracy gains and yields faster and
more accurate solutions than previous state-of-the-art mod-
els. Evolved models can be used across datasets and to build
more powerful models for video understanding.



References
[1] Joao Carreira and Andrew Zisserman. Quo vadis, action

recognition? a new model and the kinetics dataset. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2017. 1, 2, 3, 6, 7

[2] Vasileios Choutas, Philippe Weinzaepfel, Jérôme Revaud,
and Cordelia Schmid. Potion: Pose motion representation
for action recognition. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2018. 6

[3] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman.
Convolutional two-stream network fusion for video action
recognition. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 1933–
1941, 2016. 1, 2, 6

[4] Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Learn-
ing spatio-temporal features with 3d residual networks for
action recognition. In Proceedings of the ICCV Workshop
on Action, Gesture, and Emotion Recognition, volume 2,
page 4, 2017. 2

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016. 1, 3

[6] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kil-
ian Q. Weinberger. Densely connected convolutional net-
works. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017. 3

[7] Simon Jegou, Michal Drozdzal, David Vazquez, Adriana
Romero, and Yoshua Bengio. One hundred layers tiramisu:
Fully convolutional densenets for semantic segmentation.
2016. 3

[8] Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 3d convolu-
tional neural networks for human action recognition. In In-
ternational Conference on Machine Learning (ICML), pages
495–502, 2010. 3

[9] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas
Leung, Rahul Sukthankar, and Li Fei-Fei. Large-scale video
classification with convolutional neural networks. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 1725–1732, 2014. 1, 2

[10] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,
Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,
Tim Green, Trevor Back, Paul Natsev, et al. The kinetics hu-
man action video dataset. arXiv preprint arXiv:1705.06950,
2017. 6

[11] A Krizhevsky, I Sutskever, and GE Hinton. Imagenet classi-
fication with deep convolutional neural networks. 2012. 3

[12] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre.
HMDB: a large video database for human motion recogni-
tion. In Proceedings of the IEEE International Conference
on Computer Vision (ICCV), 2011. 6

[13] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. 1998. 3

[14] Min Lin, Qiang Chen, and Shuicheng Yan. Network in net-
work. 2013. 3

[15] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollar. Focal loss for dense object detection. 2017. 3

[16] Wenjie Luo, Bin Yang, and Raquel Urtasun. Fast and furi-
ous: Real time end-to-end 3d detection, tracking and motion
forecasting with a single convolutional net. 2018. 3

[17] Elman Mansimov, Nitish Srivastava, and Ruslan Salakhutdi-
nov. Initialization strategies of spatio-temporal convolutional
neural networks. arXiv preprint arXiv:1503.07274, 2015. 3

[18] Mathew Monfort, Alex Andonian, Bolei Zhou, Kandan Ra-
makrishnan, Sarah Adel Bargal, Tom Yan, Lisa Brown,
Quanfu Fan, Dan Gutfruend, Carl Vondrick, et al. Moments
in time dataset: one million videos for event understanding.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 2019. 6, 7

[19] Joe Yue-Hei Ng, Matthew Hausknecht, Sudheendra Vi-
jayanarasimhan, Oriol Vinyals, Rajat Monga, and George
Toderici. Beyond short snippets: Deep networks for video
classification. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages
4694–4702. IEEE, 2015. 2, 3

[20] AJ Piergiovanni, Chenyou Fan, and Michael S Ryoo. Learn-
ing latent sub-events in activity videos using temporal atten-
tion filters. In Proceedings of the American Association for
Artificial Intelligence (AAAI), 2017. 2

[21] AJ Piergiovanni and Michael S. Ryoo. Temporal gaussian
mixture layer for videos. In International Conference on Ma-
chine Learning (ICML), 2019. 1, 3

[22] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V
Le. Regularized evolution for image classifier architecture
search. arXiv preprint arXiv:1802.01548, 2018. 4, 5

[23] Esteban Real, Sherry Moore, Andrew Selle, Yutaka
Leon Suematsu Saurabh Saxena, Quoc Le, and Alex Ku-
rakin. Large-scale evolution of image classifiers. In Inter-
national Conference on Machine Learning (ICML), 2017. 3

[24] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. 2015. 3

[25] Gunnar A Sigurdsson, Santosh Divvala, Ali Farhadi, and Ab-
hinav Gupta. Asynchronous temporal fields for action recog-
nition. arXiv preprint arXiv:1612.06371, 2016. 7

[26] Gunnar A. Sigurdsson, Gül Varol, Xiaolong Wang, Ali
Farhadi, Ivan Laptev, and Abhinav Gupta. Hollywood in
homes: Crowdsourcing data collection for activity under-
standing. In Proceedings of European Conference on Com-
puter Vision (ECCV), 2016. 6

[27] Karen Simonyan and Andrew Zisserman. Two-stream con-
volutional networks for action recognition in videos. In Ad-
vances in Neural Information Processing Systems (NIPS),
pages 568–576, 2014. 2, 6

[28] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception ar-
chitecture for computer vision. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2818–2826, 2016. 1, 3

[29] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,
and Quoc V Le. Mnasnet: Platform-aware neural architec-
ture search for mobile. arXiv preprint arXiv:1807.11626,
2018. 1, 3



[30] Du Tran, Lubomir D Bourdev, Rob Fergus, Lorenzo Torre-
sani, and Manohar Paluri. C3d: generic features for video
analysis. CoRR, abs/1412.0767, 2(7):8, 2014. 1, 2

[31] Du Tran, Jamie Ray, Zheng Shou, Shih-Fu Chang, and
Manohar Paluri. Convnet architecture search for spatiotem-
poral feature learning. arXiv preprint arXiv:1708.05038,
2017. 2

[32] Du Tran, Jamie Ray, Zheng Shou, Shih-Fu Chang, and
Manohar Paluri. Convnet architecture search for spatiotem-
poral feature learning. arXiv preprint arXiv:1708.05038,
2017. 3

[33] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann
LeCun, and Manohar Paluri. A closer look at spatiotemporal
convolutions for action recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2018. 1, 2, 3, 6

[34] Jue Wang and Anoop Cherian. Learning discriminative video
representations using adversarial perturbations. In Proceed-
ings of European Conference on Computer Vision (ECCV),
2018. 6

[35] Jue Wang, Anoop Cherian, Fatih Porikli, and Stephen Gould.
Video representation learning using discriminative pooling.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 1149–1158, 2018.
6, 7

[36] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-
ing He. Non-local neural networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2018. 7

[37] Saining Xie, Ross Girshick, Piotr Dollar, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep
neural networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017. 3

[38] Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and
Kevin Murphy. Rethinking spatiotemporal feature learning
for video understanding, 2018. 1, 2, 3, 4, 7

[39] Serena Yeung, Olga Russakovsky, Ning Jin, Mykhaylo An-
driluka, Greg Mori, and Li Fei-Fei. Every moment counts:
Dense detailed labeling of actions in complex videos. In-
ternational Journal of Computer Vision (IJCV), pages 1–15,
2015. 3

[40] Bolei Zhou, Alex Andonian, and Antonio Torralba. Tem-
poral relational reasoning in videos. arXiv preprint
arXiv:1711.08496, 2017. 7

[41] Barret Zoph and Quoc Le. Neural architecture search with
reinforcement learning. In International Conference on
Learning Representations (ICLR), 2017. 1, 3, 4

[42] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V
Le. Learning transferable architectures for scalable image
recognition. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2018. 3


