
Firestore: The NoSQL Serverless Database for the
Application Developer

Ram Kesavan, David Gay, Daniel Thevessen, Jimit Shah
Google

ram.kesavan@gmail.com {dgay, danthev, jimit}@google.com

C. Mohan*

Tsinghua University

seemohan@gmail.com

Abstract—The recent years have seen an explosive growth
in web and mobile application development. Such applications
typically have rapid development cycles, and their developers ex-
pect mobile-friendly features and serverless characteristics such
as rapid deployment capabilities (with minimal initialization),
scalability to handle workload spikes, and flexible pay-as-you-go
billing. Google’s Firestore is a NoSQL serverless database with
real-time notification capability, and together with the Firebase
ecosystem greatly simplifies common app development challenges
by letting application developers focus primarily on their business
logic and user experience. This paper presents the Firestore
architecture, how it satisfies the aforementioned requirements,
and how its real-time notification system works in tandem with
Firebase client libraries to allow mobile applications to provide
a smooth user experience even in the presence of network
connectivity issues.

Index Terms—cloud, database, mobile and web applications,
continuous queries

I. INTRODUCTION

A large amount of modern computing happens at the edge,

in web browsers or on mobile devices. Deploying applications

to such devices is generally easy, either via static hosting or

via Google and Apple’s application stores. However, many

applications need some remote computing and storage, be it

just for reliability or state sharing across multiple devices, for

sharing information between users, or for querying datasets

that are being updated by other processes. Implementing,

deploying, scaling and managing this remote infrastructure

remains a significant challenge, even in today’s world of

ubiquitous cloud services.
Firestore is a schemaless serverless database with real-time

notification capabilities that greatly simplifies the development

of web and mobile applications. It scales to millions of queries

per second and petabytes of stored data; notable current and

past users include the New York Times and BeReal, as well

as a prominent social media app and a mobile game each with

over a hundred million users. Importantly, at low scale QPS

(queries per second) and storage consumption, Firestore costs

close to nothing.
In this paper, we describe four key aspects to Firestore’s

success and describe how Firestore achieves them.
Ease of Use: Modern application development benefits

from rapid iteration and deployment to production. Firestore’s

*The author was a Visiting Researcher at Google, and is partially supported
by Project 62021002 of NSFC.

schemaless data model, ACID transactions, strong consistency,

and index-everything default means that developers can focus

more on the data they wish to store and present to the

end user without worrying about the details of the database

configuration.

Fully Serverless Operation and Rapid Scaling: Some ap-

plications go viral, and that translates to difficult problems

around scaling of the infrastructure with increasing QPS load,

storage, and therefore costs. Firestore is truly serverless–the

application developer needs to only create a (static) web

page or an application, and initialize a Firestore database to

enable end users to store and share data. End-user database

requests are routed directly to Firestore, without the need for

a dedicated server to perform access control thanks to security

rules set by the developer. Firestore’s API encourages usage

that scales independently of the database size and traffic, and

Firestore’s implementation leverages Google’s infrastructure

(in particular, Spanner) to provide a highly available and

strongly consistent database whose scale is limited only by the

physical constraints of a cloud region’s datacenters. Firestore’s

serverless pay-as-you-go pricing together with a daily free

quota ensures that billing increases reflect application success;

a standalone emulator allows developers to safely experiment.

Flexible, Efficient Real-time Queries: An application often

needs to send fast notifications to potentially large subsets of

web or mobile devices for many reasons, such as communi-

cation between users. In a Firestore-based application, these

are typically coded as real-time (also known as streaming or

continuous) queries [1] to the backend database. The results

of a real-time query are updated by the application and

presented to the end-user to reflect any pertinent change in

the database. Firestore supports queries that can be efficiently

executed using secondary indexes and updated in real-time

from the database’s write log (this a key element of Firestore’s

scalability). These queries fall short of full SQL support, but

are generally sufficient for the querying needs of interactive

applications.

Disconnected Operation: Mobile devices can lose network

connectivity for arbitrary lengths of time. The behavior of an

application while the device is disconnected can often be key

to its success. The Firestore database service together with

Firebase client-side SDK libraries support fully disconnected

operation, with automatic reconciliation on reconnection. This

greatly simplifies development of mobile applications.

3367

2023 IEEE 39th International Conference on Data Engineering (ICDE)

2375-026X/23/$31.00 ©2023 IEEE
DOI 10.1109/ICDE55515.2023.00259

This combination has led to a large, thriving community

of more than a quarter million monthly-active application

developers using Firestore, and to Firestore-based applications

directly serving requests to more than one billion end-users on

a monthly basis.

This paper makes the following contributions:

• It describes the Firestore data model and simple query

language that are key to enabling rapid application de-

velopment.

• It shows an effective approach for building a multi-

tenant database service over a single underlying (scalable)

relational database (Spanner). This multi-tenant approach

is critical for lowering per-database cost, and thus sup-

porting a generous free tier for millions of databases.

• It outlines how the multi-tenant architecture supports

rapid scaling, high availability, data integrity, and iso-

lation.

• It describes how client-side SDK libraries enable dis-

connected operation, how Firestore computes and fans

out notification updates for real-time queries to clients,

and how these updates get presented to the end-user in a

consistent fashion.

The rest of the paper is organized as follows: Section II

provides some history. Section III describes how Firestore

gets used—its data model, SDKs, and APIs. Section IV

explains how the internal architecture achieves Firestore’s

various requirements. Section V presents some production data

and experimental results (including YCSB benchmarks). Sec-

tion VI describes some lessons learned in practice, Section VII

elaborates on related work, Section VIII discusses future plans

and Section IX concludes the paper.

II. HISTORY

Firestore grew out of App Engine’s [2] Datastore database,

launched in 2008. Datastore was accessible only from App

Engine and provided a schemaless data model, restricted

transactions and flexible queries. It was built on top of Mega-

store [3], which in turn was built over Bigtable [4], and this

architecture forced most queries to be eventually consistent,

complicating application development.

Datastore provided a Paxos-replicated option for increased

reliability in 2011, and migrated existing users to the new sys-

tem in 2012. The server-side of a well-known social media app

that quickly scaled to many millions of users was an important

early customer of the combined App Engine/Datastore system.

The Cloud Datastore API was launched in 2013, allowing

access to Datastore from outside the App Engine environment.

A popular billion-dollar mobile game was launched in 2016

using Cloud Datastore, with traffic rapidly scaling to 10 times

the initial “worst case” estimate without significant database

scaling challenges.

In 2014, Google acquired Firebase. Firebase’s serverless and

ease-of-use emphasis matched Datastore’s, and that kicked off

a project to mesh the best features of Firebase’s Realtime

Database (RTDB) with those of Datastore. There was also a

desire to build this on Spanner [5] to benefit from Spanner’s

unrestricted transaction capabilities and strong consistency

guarantees. This resulted in a new product that launched in

2019 called Firestore: an API that supports real-time queries,

fully serverless operation, and disconnected client operation.

This is the first paper on Firestore.

The non-disruptive migration of all Datastore databases

(on Megastore) over to Firestore’s Spanner-backed layout

was started in 2021; all applications retain access to their

databases via the Datastore API, and with no down time. This

migration is expected to complete in 2023. The design and

details of that migration are outside the scope of this paper.

Both Firestore and Datastore have a common data model, and

provide similar access to the underlying data—Firestore calls

them documents and Datastore calls them entities—except for

the APIs necessary for real-time queries that are exclusive

to the Firestore API. Additionally, both APIs can be used to

read from and write to the same database. Although all new

feature work (that is not related to real-time queries) is added

to both APIs, this paper focuses only on the Firestore API

to keep the terminology consistent when discussing real-time

queries; the term “entity” is used occasionally for historical

reasons, and the reader can safely replace each occurrence

with “document”.

III. USING FIRESTORE

Firestore is a schemaless, serverless, document database

offering on Google Cloud that can be initialized as a regional

or multi-regional service, where the latter provides higher

availability. Section V-D discusses how easy it is for the

customer1 to set up and use the service. This section describes

how the application developer interacts with the service.

Throughout this paper we will use examples derived from

the Firestore Web Codelab [6]—a functional serverless restau-

rant recommendation web application, which lets users see a

list of restaurants with filtering and sorting, and view and add

reviews.

A. Data Model

Firestore supports a rich set of primitive and complex data

types, such as maps and arrays. Each document is identified by

a string, and is essentially a set of key-value pairs that add up

to at most 1MiB. Documents can be arranged in hierarchically-

nested collections. The combination of the collection name

and the identifying string forms the document’s unique name
(key). For instance, /restaurants/one is the name of a

document in collection /restaurants with the identifying

string one. A document can also have a sub-collection, so

/restaurants/one/ratings/2 is a document in collection

/restaurants/one/ratings with identifying string 2. Fig-

ure 1 shows an example of a restaurant document and Figure 2

a rating document in the sub-collection. Each key-value pair

in a document is called a field.

1In this paper, the term customer can mean one developer deploying their
app or a larger enterprise hiring teams of developers that build, deploy, and
sustain multiple apps.

3368

/restaurants/one
address: "415 Main Street",
type = "BBQ",
avgRating: 3.5,
numRatings: 10,

Fig. 1: Document example for a restaurant.

/restaurants/one/ratings/2
rating: 3,
userId: "UUU",
details: {
text: "Food was tasty but cold",
price: "good"

}
time: 2022/09/01 13:23:22 GMT

Fig. 2: Document example for a restaurant rating.

B. Indexes

To scale with increase in database size, Firestore executes all

queries using secondary indexes. To reduce the burden of index

management, Firestore automatically defines an ascending and

a descending index on each field across all documents on

a per-collection basis. The automatically defined indexes for

the document in Figure 2 are on rating, userId, details,

details.text, details.price, and time.

Automatically defining indexes simplifies development but

introduces some risks. First, a write operation becomes more

expensive because it needs to update more indexes, which in

turn increases latency and storage cost. Second, fields with

sequentially increasing values, such as time in Figure 2,

introduce hotspots that limit maximum write throughput. To

address these issues, Firestore allows the customer to specify

fields to exclude from automatic indexing (queries that would

need the excluded index then fail).

Finally, the customer can define indexes across multiple

fields, e.g., rating asc and time desc to support queries like

s e l e c t * from / r e s t a u r a n t s / one / r a t i n g s

where r a t i n g = 3 order by time desc .

C. Querying

Firestore supports point-in-time queries that are either

strongly-consistent or from a recent timestamp, and strongly-

consistent real-time queries. Both modes support the same

query features: projections, predicate comparisons with a

constant, conjunctions, orders, limits, offsets. A query can have

at most one inequality predicate, which must match the first

sort order. These restrictions allow Firestore’s queries to be

directly satisfied from its secondary indexes.

A real-time query reports a series of timestamped snap-

shots, where each snapshot is the strongly-consistent result

of the query at that specific time. Snapshots are reported as

deltas (documents added, removed, and modified) from the

previous snapshot. Firestore does not guarantee reporting every

snapshot of a query’s result, e.g., if the query’s results went

through the following sequence (@ indicates the document’s

timestamp):

t=10:{/restaurants/one,avgRating:3,...}@1,

{/restaurants/two,avgRating:4,...}@3
t=13:{/restaurants/one,avgRating:3,...}@1,
{/restaurants/two,avgRating:3.5,...}@13

t=19:delete /restaurants/one@19,
{/restaurants/two,avgRating: 3.5,...}@13

Firestore might report only snapshots time=10 and time=19,

but skip reporting time=13. This flexibility in what snapshots

to report gives Firestore more options on how to execute real-

time queries but does not impact the typical application which

aims to display the latest accurate snapshot of a query’s results.

D. Server SDKs

As Figure 4 shows, Firestore has two categories of SDK

libraries, each with support for multiple programming lan-

guages: “Server” used by applications that run in privileged

environments, such as GCE, GKE, Cloud Run, App Engine,

and “Mobile and Web” used by applications that run on end-

user devices such as mobile phones and browsers. The former

category includes older Datastore-API-based Server SDKs.

The Server SDKs map Firestore’s data model to the target

language, and provide convenient transaction abstractions,

such as automatic retry with backoff.

E. Mobile and Web SDKs

One of Firestore’s differentiating features is that it allows

direct third-party (end-user) access, including support for dis-

connected operation. This feature is made possible by a com-

bination of: abstractions within the SDKs (in particular, real-

time queries), Firebase Authentication [7] which supports end-

user authentication from a wide variety of identity providers

(Google, Apple, Facebook, phone numbers, anonymous, etc),

Firebase Security Rules [8] which is a security language for

expressing fine-grained access controls, and the Firestore API.

A developer can structure their application to authenticate

users with their choice of identity provider(s), and then pro-

gram their application using the abstractions provided by the

Mobile and Web SDKs. In a typical application, the main

abstractions are real-time queries to fetch the state to display

and various database updates to reflect the end-user’s actions.

The direct update of displayed state based on the results of

real-time queries greatly simplifies application development:

it displays the initial state when the application is opened,

it automatically updates the display when some other user

changes the state, it also automatically updates the display

when this end-user updates the state (avoiding the need for

any update-specific display logic), it behaves reasonably when

the end-user is disconnected (local updates are seen), and

it automatically reflects the results of reconciliation after

reconnection.

The SDKs support transactional writes based on optimistic

concurrency control while connected, and blind writes at all

times. With transactions, all data read by the transaction

is revalidated for freshness at the time of the commit; the

transaction is retried if the data fails the freshness check. We

do not support third-party, lock-based pessimistic concurrency

control, because it would allow a third-party to easily conduct

3369

match /restaurants/{r}/ratings/{s} {
allow read: if request.auth != null;
allow create: if request.auth != null &&
request.auth.uid ==
request.resource.data.userId;

}

Fig. 3: Rating security rules.

a denial-of-service attack on writes to a Firestore database,

e.g., by holding read-locks on important documents for a long-

time. A blind write’s “last update wins” model works well with

potentially-disconnected operation, but still requires significant

SDK support which is discussed in Section IV-E.

In a system that allows direct third-party access, data needs

to be secured at a finer granularity than the whole database to

prevent accidental or malicious updates/views. These restric-

tions are expressed by the customer using Firestore security

rules. The example in Figure 3 allows any authenticated end-

user to read a restaurant rating, and any authenticated end-user

to add a restaurant rating as long as they attach their own user

ID to the rating. Updates and deletes of ratings are not allowed.

The grammar allows nesting of match statements and wild-

cards to simplify writing of rules for sub-collections. The if
condition can not only check the fields of accessed documents,

but also fetch and inspect fields of other database documents

(e.g., check an access control list). These additional document

lookups are executed in a transactionally-consistent fashion

with the operation being authorized.

F. Write Triggers

Firestore allows the definition of triggers on database

changes that call specific handlers in Google Cloud Func-

tions [9]. The application developer can define follow-up

actions in those handlers based on the changes to the database;

the delta from that change is conveniently available in the

handler. This supports processing that would otherwise be

insecure or too expensive to perform on the end-user device.

IV. ARCHITECTURE AND IMPLEMENTATION

The customer application in Figure 4 may be running on a

mobile device, a web client, a VM, or a container [10]. The

Firestore service is available in several geographical regions

of the world; a customer picks the location of a database at

creation time. Each of the four rectangles—Frontend, Back-

end, Metadata Cache, and Real-time Cache—comprises up to

thousands of tasks that get created in each region served by

Firestore. Firestore RPCs from the application get routed and

distributed across the Frontend tasks in the region where the

database is located, and subsequently to the Backend tasks

that translate them into requests to the underlying, per-region

Spanner databases.

In this section, we focus on seven distinctive aspects of

the architecture that are critical to the serverless nature of

Firestore and its ease-of-use: global routing, billing and the

free quota, multi-tenancy, writes, queries, real-time queries,

and disconnected operation. We skip other aspects, such as

Fig. 4: Simplified architecture diagram of the Firestore stack.

load-balancing and monitoring, that are not as unique to

Firestore compared to other cloud services.

A. Global Routing

Global routing is more important for Firestore than a typical

cloud database, as many Firestore requests originate from end

users who are potentially spread around the world. These

requests will arrive at the closest-to-the-user Google point

of presence, where Google Cloud’s networking infrastructure

looks up the database’s location from Firestore’s metadata and

routes requests to a Firestore Frontend task in the database’s

region. Outages in this location lookup will affect requests

originating locally but destined to databases in any region.

This makes it critical for us to target 99.9999% of availability

globally for the location lookup service in order to support

Firestore availabilities of 99.99% in regional deployment

and 99.999% in multi-regional deployment, respectively. This

availability is achieved by storing each database’s location

in a global Spanner database with multiple asynchronously-

replicated read replicas. Location lookup uses these replicas,

thereby trading off slightly reduced availability of database

creation/deletion events with much greater availability of

mostly-static location metadata.

B. Billing and Free Quota

A key attraction for developers is Firestore’s daily free

quota comprising 1 GiB of storage, 50k document reads,

and 20k document writes. This lets developers experiment

with Firestore and run low-usage services at little or no

cost. The free quota is enforced by integration with Google’s

quota system, operation-based billing is done by logging the

count of documents accessed by each RPC and integration

with Google’s billing system that reads the logs, and storage

usage is measured and billed daily; Figure 4 does not show

these integrations. The next section discusses Firestore’s multi-

tenancy, which makes the free quota affordable.

3370

C. Multi-tenancy and Isolation

Firestore’s multi-tenant architecture is key to its serverless

scalability. All its components (see Figure 4) and the under-

lying Spanner database components are shared across large

numbers of Firestore databases. As a foundation, all compo-

nents build on Google’s auto-scaling infrastructure [11], so the

number of tasks in a given component adjusts in response to

load. Thus, idle and mostly-idle databases use extremely few

resources, which makes Firestore’s free quota and operation-

based billing practical. Multi-tenancy however brings isolation

challenges: traffic to a single Firestore database can potentially

affect the performance and availability of other databases

by consuming all or most of the resources in one or more

components, or even worse, crashing tasks.

Solving isolation presents several challenges. First, an indi-

vidual RPC is not a uniform work unit, as its cost can vary

significantly—one RPC can cost a million times another—and

in ways that are not predictable from RPC inspection, e.g.,

queries with unknown result-set size. Second, isolation needs

to happen on several dimensions: most importantly Firestore

Backend CPU and RAM, and Spanner CPU. Finally, database

traffic can be very spiky: Firestore requires conforming traffic

to grow progressively—increase at most 50% every 5 minutes,

starting from a 500 QPS base [12]. Firestore is designed to

handle spiky traffic and will still accept traffic that violates

this rule as long as it can maintain isolation.

Each component is designed for isolation. For example, we

use a fair-CPU-share [13] scheduler in our Backend tasks,

keyed by database ID. We also pass the database ID as a key

to Spanner’s similar fair-CPU-share scheduler. Additionally,

certain batch and internal workloads set custom tags on their

RPCs, which allow schedulers to prioritize latency-sensitive

workloads over such RPCs. We limit the result-set size and

the amount of work done for a single RPC, which protects the

system against problematic workloads. Firestore APIs support

returning partial results for a query as well as resuming a

partially-executed query. Most parts of Firestore can split out

traffic even on a document granularity to redistribute load.

Finally, some components do targeted load-shedding to drop

excess work before auto-scaling can take effect; auto-scaling

incorporates delays because short-lived traffic spikes do not

merit auto-scaling. As discussed in Section VI, it is important

to also have manual tools to intervene in emergencies.

D. Writes, Queries and Real-time Queries

A write to the database updates each matching secondary

index used by query executions, keeping them strongly con-

sistent with the data, and notifies the Real-time Cache to send

notifications to clients with active real-time queries.

1) Spanner Representation: To keep per-database cost low,

Firestore maps each database in a region to a specific di-
rectory2 within a small number of pre-initialized Spanner

2A Spanner concept that guides sharding and placement [5].

databases in that region3. Each directory has two tables,

Entities and IndexEntries, which contain the actual

Firestore database data.
Each Firestore document is stored as a single row in the

(fixed-schema) Spanner Entities table. The key-value pairs

that constitute a schemaless Firestore document contents are

encoded in a protocol buffer [14] stored in a single column,

and the Firestore document name (unique key) encoded as

a byte-string serves as the key for that row. Spanner pro-

vides row-granular atomicity guarantees, which means that the

schemaless collection hierarchy in Firestore’s data model does

not impose any additional locking constraints; two or more

Firestore documents can be accessed concurrently independent

of their position in the hierarchy.
Each Firestore index entry is stored in an inverted index:

a single row in the (fixed-schema) Spanner IndexEntries

table. The key of this table is an (index-id, values, name)

tuple where the index-id identifies a particular index for the

Firestore database, values is the byte-string encoding of the

index entry’s values, and name is the byte-string encoded name

of the indexed Firestore document. The encoding of the n-tuple

of values in values preserves the index’s desired sort order.

As Spanner tables, like Bigtable [4], support efficient, in-order

linear scans by key, a linear scan of a range of IndexEntries

rows corresponds to a linear scan of a range of the logical

Firestore index.
Firestore manages its own indexes and implements its own

query engine rather than relying on Spanner’s native function-

ality for two main reasons. First, it is not possible to define

a Spanner index that matches Firestore’s automatic indexing

rules, nor is it possible for such a Spanner index (which has

to apply to data from all Firestore databases) to accommodate

the per-Firestore-database user-defined indexes and automatic

index exclusions. Second, Firestore’s query semantics diverge

significantly from Spanner’s, in particular by allowing sorting

on any value including arrays and maps and sorting across

fields with inconsistent types, such that a mapping to a Spanner

query on the underlying Spanner database is impractical.
Building directly on top of Spanner, with a one-to-one

mapping of documents and index entries to Spanner rows,

yields significant benefits to Firestore: high availability, data

integrity, transactional guarantees, and infinite scaling. In par-

ticular, Spanner’s automatic load-based splitting and merging

of rows into tablets [5] (similar to other system’s shards

or partitions) that hold data for a consecutive key-range

allows Firestore to scale to arbitrary read and write loads.

Firestore’s definition of conforming traffic [12] is designed to

conservatively match Spanner’s splitting behavior. Firestore’s

transactions map directly to Spanner transactions, which are

lock-based and use two-phase-commits across tablets. Because

Spanner uses multi-version concurrency control and assigns

TrueTime [5] timestamps to transactions, the serializability

guarantee on timestamps allows Firestore to perform lock-free

3Storing each Firestore database in its own Spanner database would
require pre-allocating resources for millions of Spanner databases, which is
prohibitively expensive with today’s state of the art.

3371

consistent (timestamp-based) reads across a database without

blocking writes. The lack of consistency in many queries was

a drawback for Datastore’s Megastore-based implementation;

an important customer mentioned consistency as a reason for

migrating from Datastore to Spanner [15].

Adding or removing a Firestore secondary index requires

a backfill or backremoval in the Spanner IndexEntries

table. This is managed by a background service that receives

index change requests, scans the Entities table for all

affected documents, makes the required IndexEntries row

additions or removals in Spanner, and finally marks the index

change as complete. It should be noted that a query that

mutates the database also makes all necessary updates to the

”IndexEntries” table so that it conforms to an on-going backfill

or backremoval.
2) Writes: We describe writes using an example update

to the Restaurant application. Say an end-user adds a new

rating, which also involves updating the average rating on the

restaurant’s document. This requires a Firestore transaction

that inserts the rating document from Figure 2 and updates the

numRatings and avgRatings fields of the parent restaurant

document from Figure 1. The commit of the Firestore trans-

action is processed by the Backend as follows:

1) Create a Spanner read-write transaction T .

2) In transaction T , read documents /restaurants/one

and /restaurants/one/ratings/2 from the Span-

ner Entities table with an exclusive lock4. Ver-

ify that /restaurants/one does exist and that

/restaurants/one/ratings/2 does not exist.

3) Because the request is from a third party,

execute the database’s write security rules

(Figure 3) for /restaurants/one and

/restaurants/one/ratings/2. Add the update

of row /restaurants/one and the insert of row

/restaurants/one/ratings/2 in Entities to

transaction T .

4) Use the (cached) index definitions to compute the index

entry changes for the two documents. The result is

the removal of the old index entries for numRatings

and avgRatings for /restaurants/one and ad-

ditions of new ones for their new value, and ad-

dition of new index entries for all the fields of

/restaurants/one/ratings/2. Add the correspond-

ing row insertions and deletions in IndexEntries to

transaction T , thereby ensuring Firestore indexes stay

strongly consistent with the documents.

5) Pick a reasonable max commit timestamp M and start a

two-phase-commit with the Real-time Cache by sending

one or more Prepare RPCs with max commit times-

tamp M . The results of each RPC contain a minimum

allowed commit timestamp mi; Section IV-D4 describes

which tasks in the Real-time Cache the Backend com-

municates with.

4Sub-document granular locking is not supported because a well-designed
data model has many small documents, and sub-document concurrency is
unnecessary.

6) Commit Spanner transaction T with minimum allowed

timestamp max(mi) and maximum allowed timestamp

M : Spanner acquires additional exclusive locks on the

specific IndexEntries rows, and then atomically com-

mits the changes to Entities and IndexEntries.

This may involve updates across multiple Spanner

tablets and servers. The lock acquisitions at this stage

can conflict only with the read-locks from queries ex-

ecuting within a transaction5, as IndexEntries rows

include the unique document name and the document is

already under an exclusive lock.

7) Finish the two-phase-commit with the Real-time Cache

by sending corresponding Accept RPCs with the out-

come of the Spanner commit; at this point the Real-time

Cache should have the name of each deleted document,

a full copy of each inserted document, and a full copy

of each modified document together with the exact

changes. The Real-time Cache tracks these mutations

in memory sorted in timestamp-order.

There are multiple points where this process can fail, with

varying consequences:

• /restaurants/one does not exist,

/restaurants/one/ratings/2 already exists, or

the security rules deny the request: an error is returned

to the user.

• The Prepare RPC fails because the Real-time Cache is

unavailable (this should be rare): the write fails and an

error is returned to the user.

• The Spanner commit definitively fails, e.g., due to con-

tention or not being able to respect the maximum times-

tamp. The Accept RPC notifies the Real-time Cache, and

an error is returned to the user.

• The Spanner commit has an unknown outcome, e.g., it

times out. The Accept RPC notifies the Real-time Cache

that the write outcome is unknown, which in turn discards

the in-memory sequence of mutations.

• The Spanner commit is successful but the Accept RPC

is not received by the Real-time Cache. The in-memory

sequence of mutations is (eventually) discarded by the

Real-time Cache, but the write is acknowledged to the

end-user.

Insertion of documents with many fields results in a larger

number of index entries that need to be added, and that

translates to a Spanner transaction potentially across more

tablets, which can impact commit latency. Indexing a field that

increases sequentially, e.g., a document creation timestamp,

implies the insertion of consecutive rows in the ”IndexEntries”

table as documents get created. This workload is inherently

difficult to split.

Network latency between replicas is higher for a multi-

regional deployment, and Spanner needs a quorum of replicas

to agree before committing a write, leading to higher Firestore

5As discussed in subsubsection IV-D3, a timestamp-based query runs
without locks.

3372

write latency in multi-regional deployments than in regional

ones.

Spanner also has a transactional messaging system that

allows its user to persist information that can be used to

perform asynchronous work. This system is used by the Fire-

store Backend to implement write triggers (subsection III-F).

If an incoming request matches a trigger, the Backend persists

a message with the changes to document(s), which is then

asynchronously removed and delivered to the Cloud Functions

service to execute the specified handler.

3) Queries: Firestore’s query engine executes all queries

using either a linear scan over a range of a single secondary

index in the Spanner IndexEntries table, or a join of

several such secondary indexes, followed by lookup of the

corresponding documents in the Entities table, with no in-

memory sorting, filtering, etc. For instance,

s e l e c t * from / r e s t a u r a n t s

where c i t y =”SF” and t y p e =”BBQ”

order by a v g R a t i n g desc

is satisfied by the secondary index (city asc, type asc, av-

gRating desc). Firestore’s automatically defined single-field

indexes support simple queries, such as

s e l e c t * from / r e s t a u r a n t s

where c i t y =”SF” l i m i t 10

s e l e c t * from / r e s t a u r a n t s

where numRat ings > 2

s e l e c t * from / r e s t a u r a n t s

order by a v g R a t i n g desc

To reduce the need for user-defined indexes, Firestore joins

existing indexes. Thus, a query like

s e l e c t * from / r e s t a u r a n t s

where c i t y = ”SF” and t y p e = ”BBQ”

is executed by joining automatic single-field index (city asc)

with (type asc), and a query like

s e l e c t * from / r e s t a u r a n t s

where c i t y =”New York ” and t y p e =”BBQ”

order by a v g R a t i n g desc

by joining user-defined indexes on (city asc, avgRating desc)

and (type asc, avgRating desc). Selecting the ideal set of

indexes to join for a query is intractable, so Firestore’s

query engine uses a greedy index-set selection algorithm that

optimizes for the number of selected indexes. If no such set

exists, Firestore returns an error message that includes a link

for adding the required index via the Google Cloud Console. In

practice, these error messages let developers add the required

indexes during testing. We do occasionally receive support

cases for query performance caused by slow index joins that

are remediated by defining additional indexes.

The execution of a non-real-time query starts by verifying

the security rules for the collection specified in the query.

Fig. 5: A more detailed diagram of the Real-time Cache.

The query planner then uses the (cached) index definitions

to pick the best index(es) for the query. The Backend reads,

and, if necessary “zig-zag joins” [16], the row ranges from

IndexEntries, then fetches the corresponding rows from

Entities, and returns the documents.

Queries can be executed within a Firestore transaction (the

Spanner-level reads of IndexEntries and Entities acquire

read locks, guaranteeing consistency with other transactions)

or outside a transaction using Spanner’s lock-free consistent,

timestamp-based reads. In the former mode, long-lived or

large transactions may lead to lock contention and deadlocks

that are resolved by failing and retrying such transactions. A

timestamp-based query suffers no such problem.

4) Real-time Queries: A client registers one or more real-

time queries via a long-lived connection with a Frontend task.

The Frontend task uses this connection to deliver updates to

the result sets of those queries. The updates are delivered to ap-

plications as incremental, timestamped snapshots, comprised

of a delta of documents added, deleted, and modified from

the prior snapshot. This section provides only a high-level

overview of this system. A more detailed description of this

infrastructure is outside the scope of this paper.

As Figure 5 shows, the Real-time Cache comprises

2 components—the In-memory Changelog and the Query

Matcher. A separate mechanism establishes and shares con-

sistent ownership of document-name ranges to specific

Changelog and Query Matcher tasks.

The request/response flow for a real-time query is as fol-

lows:

1) A client creates or reuses a long-lived connection to a

Frontend task and registers a new real-time query.

2) The Frontend task creates state for this real-time query

and then obtains the query’s initial snapshot by for-

warding the query to a Backend (which runs it like any

other query) to retrieve all the documents matching the

query; the response includes the corresponding Spanner

timestamp of that data, which we will call max-commit-

version.

3) The Frontend task sends the client an initial snapshot

3373

based on the Backend’s response and records max-

commit-version with the query state. All subsequent

updates to this result set will be delivered to the client

as incremental snapshots.

4) The Frontend task then sends one or more Subscribe

RPCs to Query Matcher tasks that own the specific

document-name ranges that cover the query’s result set.

The Subscribe RPC includes the query and the max-

commit-version. This informs the Query Matcher task

to register the query for matching, and to subsequently

send only the document updates that match the query

and that have a Spanner commit timestamp later than

the max-commit-version.

5) A Changelog task forwards document updates (received

via Accept RPCs from the Backend) to the Query

Matcher task owning the corresponding document-name

range. On receiving the document, the Query Matcher

matches it with all the queries registered for that key

range and sends the matched documents to the Frontend

task.

6) Because updates for a single query come from the

multiple Query Matcher tasks to which the query was

subscribed, the Frontend task is responsible for tracking

when it has received all the updates necessary to reach

a consistent timestamp. Only then does it send the

accumulated delta of those updates to the client as a new

incremental snapshot for that query’s result set; it also

then updates the query’s max-commit-version to that

latest timestamp. Changelog tasks generate a heartbeat

every few milliseconds for every idle key range; this

heartbeat is crucial for the Frontend tasks to know that

they have received all updates when a document-name

range is otherwise idle.

A client can open many real-time queries to the same

database, multiplexed over the same long-lived connection

to the Frontend task. Updating these queries to inconsistent

timestamps would be confusing to the end-user where the

results from multiple queries may be presented together. To

avoid this, queries on the same connection are only updated

to a timestamp t once all queries’ max-commit-version has

reached at least t.
When a Changelog task receives a Prepare with max

timestamp M , it responds with a minimum timestamp m.

The maximum timestamp (plus a small margin) sets how

long the Changelog will wait for the corresponding Accept.

The Changelog knows it has a complete sequence of updates

until time t once it has received Accept responses for all

Prepare RPCs that it sent out with a minimum timestamp

less than t. This machinery, and the timestamp processing

in the Frontends, relies crucially on the globally-consistent,

causally-ordered timestamps provided by Spanner [5].
The Accept indicates whether the write was success-

ful, failed or had an unknown outcome. If successful, the

Changelog tasks forwards the associated document updates to

the Query Matcher task (that owns the name range) with the

commit timestamp; a failed write is dropped. There are several

error scenarios that may occur, but we discuss only one given

the lack of space: if the Changelog times out while waiting

for an Accept or the Accept indicates an unknown outcome,

the system cannot guarantee ordering of the updates for that

name range. Then, the Changelog task marks that name range

as out-of-sync and signals that all the way up to all Frontend

tasks with a real-time query that matches the name range. The

Frontend task then aborts all accumulated state for that query

and redoes the steps starting with the initial query request to

the Backend. This reset is fast, and is mostly transparent to the

end-user of the application. In general, this recovery method

is a fail-safe mechanism to handle difficult error conditions,

such as the crash/restart of a particular task. Load-balancing is

achieved by dynamically changing the document-name range

ownership across Changelog and Query Matcher tasks by

leveraging the Slicer [17] auto-sharding framework.

E. Disconnected Operation

The Client (Mobile and Web) SDKs build a local cache

of the documents accessed by the client together with the

necessary local indexes. It uses the local cache to provide

low latency responses to client queries without the network

penalty. Mutations to documents by the client are acknowl-

edged immediately after updating the local cache; the updates

are also flushed to the Firestore API asynchronously.

The local cache is updated whenever it receives notifications

over the long-lived connection it maintains with a Frontend

task. A disconnected client can therefore continue to serve

queries and updates using its local cache, and reconcile its

local cache when it eventually reconnects with Firestore. The

Client SDK is also responsible for guaranteeing consistency

across the multiple real-time queries a client may have active.

Based on their privacy preferences, an end user can choose

to persist their local cache. This choice affects the behavior

after a device is restarted; persistence provides a warm cache

as a starting point for requests to the Client SDK.

It should be noted that the customer is not billed for

any work that can be satisfied by the local cache; only the

traffic to/from the Firestore service is billed as described in

subsection IV-B.

V. EVALUATION

We share some production data, show latency variance

with change in important parameters, evaluate one isolation

mechanism, and analyze factors that make Firestore easy to

use. All data in this section is presented as relative to a median

or as comparisons across the changing x-axis parameter.

A. Production Statistics

The four million Firestore production databases accessed by

over a billion end-users each month are evidence of Firestore’s

wide adoption, ease of use and scalability. The scalability

of Firestore is also demonstrated by the variability in usage

patterns seen across customers, all of whom interact with the

same multi-tenant Firestore tasks and Spanner databases. We

present this variance as boxplots [18] in Figure 6 using values

3374

Fig. 6: Various database properties normalized by median.

normalized to their respective median. This data is taken across

all Firestore databases that have seen activity in the last 28

days; it does not include the small number of databases on

Megastore that remain to be migrated.

The first boxplot shows that some Firestore databases differ

from the median storage size by more than nine orders of

magnitude, and that is several orders of magnitude larger than

the amount of storage that a single machine can provide.

As described earlier, Spanner splits and merges data stored

in its tablets across thousands of servers [5], and therefore

seamlessly handles all sizes of Firestore databases. Thus, even

a petabyte-scale Firestore database can expect no negative

impact on availability or performance.

The variance in throughput (QPS) across databases likewise

demonstrates how Firestore handles scaling by 9 orders of

magnitude from the median. Automatic scaling, Spanner load

splitting, and fair scheduling in the multi-tenant Firestore

architecture are critical to ensuring that the latency and avail-

ability of our databases are independent of the load.

The number of active real-time queries is also highly

variable, with some databases seeing several hundred thousand

times the number of active queries as the median. We also find

many instances daily where the active query count for a given

database grows twenty-fold within minutes. As described

earlier, our architecture allows Firestore to independently scale

the Real-time Cache components, allowing even a single

change to update millions of end-user devices.

B. Latency

We evaluate Firestore’s scalability using synthetic bench-

marks run against a production Firestore database in the nam5

multi-region [19] located in the central US. All benchmarks

use strongly consistent reads; that choice together with the

multi-regional deployment ensures the experiment tests worst-

case performance. The y-axis of all graphs in this subsection

start from zero and use linear scales. However, the reader

should assume that the y-axis of separate figures are to

different linear scales unless stated otherwise.

1) Scalability: We ran the YCSB [20] benchmark: work-

load A with 50% reads and 50% updates and workload B

with 95% reads and 5% updates. We used a uniform key

distribution with 900-byte sized documents, each composed

of a single field of that size. Tests were run for 10 minutes

for each target QPS throughput; the data shown is based on

measuring the last 5 minutes to allow the system to stabilize.

Fig. 7: Read latency for both YCSB workloads.

Fig. 8: Update latency for both YCSB workloads.

Figure 7 and Figure 8 show read and update latencies from

both workloads, respectively. The y-axes in all four graphs

use the same linear scale and are therefore comparable. As

we know, writes are more demanding to process than reads,

so workload B generally sees lower latencies than workload

A as A has a larger proportion of writes. The p50 read and

update latencies remain roughly constant across throughput

levels for both workloads. There is an increase in p99 latency

at higher QPS, mainly on the write-heavy workload A. This is

partly because YCSB workloads ramp up very rapidly. Given

Firestore’s serverless nature, capacity is not pre-allocated for

individual databases, and scale-up instead relies on auto-

scaling of Google infrastructure to create more Backend tasks

to share the load and dynamic load splitting in Spanner, and

this particularly affects writes. We observed a decrease in

p99 latency during the 10 minute period of both workloads,

especially in the higher QPS tests, down to match latency of

the lower QPS tests. Firestore best practices recommend steady

exponential ramp-up [12].

Another common scenario in Firestore is the broadcasting of

query updates by the Real-time Cache to multiple end-users;

one example is when end users running an application that

displays sporting-event scores receive a query update due to

a team scoring. To test this scenario, we set up a workload

that writes to a single document once every second, while

an increasing number of Firestore clients open a real-time

query that includes that document in its result set. Thus, each

write to the document triggers a small update that is sent

to each client. We report the notification latency, measured

as the delay from when the Firestore Backend receives an

acknowledgement from Spanner denoting a write is committed

until the corresponding notification is sent to all clients by

the Frontend. Figure 9 shows that notification latency remains

relatively stable even with an exponential increase in the

number of Listen connections. The increase in active real-time

queries increases the load on Frontend tasks, which leads auto-

scaling [11] to quickly scale up the number of Frontend tasks,

independently of the rest of the system. Although not shown

3375

Fig. 9: Notification latency on a linear y-axis with increase in

number of client connections.

(a) (b)

Fig. 10: Latency of document commits with increasing (a)

size, via field length (b) index count, via field count. The y

axes on both these graphs share the same linear scale, and are

therefore directly comparable.

in this graph, we also observe that the commit latency remains

constant throughout the experiment because of this separation.

2) Data Shape: Two obvious properties affecting latency

of Firestore writes are the size of documents being committed

as well as the number of indexes being updated. The latter is

particularly relevant because—unless specifically exempted—

Firestore automatically indexes all fields for easy querying.

To illustrate these relationships, we ran two experiments

with 10 QPS of Firestore commits, where each commit adds

a single document. In the first experiment, each document

comprises a single field with a varying length of single-

byte characters, from 10KB to almost 1MiB, which is the

maximum document size supported by Firestore. In the second

experiment, each document has a varying number of numeric-

value fields from 1 to 500, which results in a linear increase

in the number of index entries written per commit. From a

performance standpoint, for the same number of index entries,

there is no significant performance difference between one

large field and many small fields of the same total size, or

an array or map with many elements again of the same total

size: Firestore indexing flattens out fields such as arrays or

maps to index each element, and therefore the correspond-

ing performance is similar to that of a document with as

many fields. The experiment was preceded by initializing the

database with enough data to ensure that commits spanned

multiple tablets and thus adding a single document required a

distributed Spanner commit. Each data point shows latencies

from a 10 minute measurement interval.

Fig. 11: Query latency of “bystander” database with and

without fair CPU scheduling.

Figure 10a shows that the increase in latency has a base cost

plus a linear, size-dependent cost (note that the x-axis is not

linear). Figure 10b demonstrates that index entry count does

not significantly impact latency until beyond several hundred

fields. It shows that commit latency increases more slowly

with the increase in number of rows—each index entry is an

additional Spanner row written to the IndexEntries table.

In summary, commit latencies are dominated by document and

field sizes and not by field count.

C. Isolation

Subsection IV-C outlines several isolation mechanisms used

to make Firestore’s multi-tenancy feasible. One crucial isola-

tion feature is fair CPU scheduling in the Firestore Backend,

which prevents a single database’s requests from starving other

databases of CPU when requests rise quicker than automatic

scaling can react. We evaluate this isolation with a small scale,

fixed capacity (no automatic scaling) Firestore environment

with fair CPU scheduling enabled or disabled. We send two

workloads to this environment: a “culprit” database sends

CPU-intensive (due to an inefficient indexing setup) queries

that linearly ramp up to 500 QPS to hit scaling limits of the

test environment, and a “bystander” database sends 100QPS of

single-document fetches. As Figure 11 shows, when capacity

limits are reached halfway through the experiment, a lack

of CPU fairness leads to a significant degradation of the

bystander database’s latency. The fair scheduling keeps latency

impact to a minimum, leaving only a small increase in p99

latency (note the log scale). Firestore’s production environment

robustly handles all types of traffic spikes thanks to this

isolation feature and many others, such as automatic scaling.

D. Ease of Use

Outside of the quarter million developers actively build-

ing on Firestore, there is no convenient quantitative way to

showcase Firestore’s ease of use. Instead, we discuss some

aspects of the ease with which Firestore can be used to

build a sample application and the corresponding number

of lines of Javascript code. This example—illustrated as a

step-by-step guide by the Firestore Web Codelab [6]—is a

functional restaurant recommendation web application, which

lets viewers see a list of restaurants with filtering and sorting,

and view and add reviews.

The initialization steps—creating and enabling a database,

setting up rudimentary access control, and a web server—are

all accomplished by running a few commands. The onSnap-

shot() method is used to listen to the results of a query. The

3376

developer specifies a callback that receives the initial query

result snapshot. Subsequently, each time the result set changes,

another call updates the snapshot. The developer can also view

the changes to the result set, i.e., the documents added, deleted

or modified. The result set state is populated or updated from

the local cache and from updates sent by the Real-time Cache;

this is all handled seamlessly by the Client SDKs.

This application is 841 lines of Javascript code, of which 92

are to access Firestore. However, this Codelab includes cre-

ation of sample restaurant data and other hardwired constants,

without which the application shrinks to 572 lines, of which

66 are for reading from and writing to the Firestore database.

Custom security rules (25 lines) allow reads to authenticated

users and creation of new reviews as long as the review

contains the authenticated user’s unique identifier.

We also implemented a “Todo List” application that lets

users share a todo list, add new items, mark items as done,

and delete them. This requires 112 lines of Javascript code, of

which 37 are for Firestore database access. Security rules (8

lines) allow everyone to read and create todo items, but only

an item creator can mark an item as done or delete it.

BeReal is an example of a recently viral social application

that was written using Firestore and where its ease of use has

been highlighted as an advantage [21].

VI. LESSONS IN PRACTICE

We present a selection of the many practical lessons learnt

from running Datastore and Firestore over more than a decade.

Backwards compatibility is essential for a cloud service that

is constantly updated under live traffic. The default guarantee

for updating Firestore is bug-for-bug API compatibility. Very

occasional, small behavior changes are possible but only with

strong motivation. When necessary, such changes are preceded

by a comprehensive investigation—examples are analysis of

all RPCs seen during a sufficiently long period or a scan of

the entire corpus of customer data—to identify all customers

that may be impacted by the change, and working directly with

them to address potential risks. We twice rewrote the Firestore

query planner. These rewrites were extensively tested with

A/B comparison of query execution to confirm zero customer

impact before rollout. The migration of Datastore from the

Megastore-backed to a Spanner-backed system unavoidably

reduced maximum key size, affecting a tiny number of docu-

ments for very few customers. We contacted these customers

directly to ensure their data was handled correctly.

Relatedly, Firestore is not versioned, so rollouts directly and

immediately impact customer traffic. Avoiding problems from

these regular (weekly) rollouts requires detecting problems

early and rolling back the release, if necessary. To achieve

this, we rely on Google’s internal rollout principles—slow

code and configuration rollouts within a region and gradual

rollout across regions. We use automated A/B testing for some

number of minutes of the current against the new release

across many metrics before the rollout is allowed to proceed.

This is done at sub-region granularity because traffic patterns

can differ significantly across regions.

Data integrity is a core requirement of any database. We rely

both on Spanner’s data integrity guarantees for data at rest, and

periodic data validation jobs at both the Spanner and Firestore

layers to verify the correctness of data and consistency of

indexes. However, mass-produced machines themselves are

unreliable [22], [23] and may corrupt in-memory data. We

are actively addressing these issues through the addition of

end-to-end checksums to protect in-flight RPCs.

As discussed earlier, isolation is hard, and our techniques

for maintaining isolation are not always guaranteed to work,

especially when confronted with sudden traffic spikes of

unusual workloads that, e.g., require much more RAM than

the typical RPC. We use two tools to quickly mitigate such

challenges. One is a low-tech manual tool that limits the

number of per-task in-flight RPCs for a given database, which

has been one of our more effective mechanisms for preventing

isolation failure while waiting for fixes (capacity changes or

code updates) to rollout. This tool may not suffice in some

cases, such as traffic triggering a bug that leads to task crashes

or when limiting a customer’s workload is highly undesirable.

In such cases, all traffic for that database can be routed to a

separate pool (of tasks) for the impacted component, thereby

isolating it completely. This pool can also be configured to

auto-scale to the database’s traffic.

Finally, the design of the Firestore API was informed

by many lessons learned from Datastore; we present one

significant lesson. Our customers found the Megastore-based

implementation restrictive for organizing their data, which

had to be carefully organized into entity groups to support

transactional updates and strongly-consistent queries. Further-

more, the write throughput to each entity group was limited.

This forced most customers into using eventually-consistent

queries [15]. Firestore leverages Spanner to remove all of these

limitations, allowing unrestricted transactions and strongly-

consistent queries, with no transaction-rate limits.

VII. RELATED WORK

Lotus Notes was the first document-oriented system, and

was emulated later by what came to be known as NoSQL

document stores. When it launched in 1989, Notes had many

advanced features that did not then exist in RDBMSs—e.g.,

disconnected operation with replicated documents in a client-

server environment, field-level authorization and encryption, n-

gram indexing of strings enabling fuzzy searching, form-based

workflows, triggers, and tree of trees indexes to support nested

views with sophisticated collation options. Because Notes was

aimed at small workgroup environments, it hit scaling and

transactional problems when used in large enterprises as a

mail system and a document store. More than a decade later,

these issues were addressed with the introduction of log-based

recovery and by allowing a single database to span more

than one file [24]. Notes preceded the cloud and the big data

revolution, so was designed for on-premise database sizes.

Microsoft’s Azure Cosmos DB (originally named Azure

DocumentDB [25]) is a modern day cloud-scale document

store, which is similar to Firestore. While Cosmos DB uses

3377

the file system directly to persist its documents, Firestore

relies on the scaling and decade-long production quality of

Spanner [5]. We have discussed earlier how Firestore uses

Spanner’s data modeling constructs in a stylized way to store

document collections and their associated indexes. It should

be noted that this results in what could be characterized as

unnormalized tables due to the redundant storage of collection

name in every Spanner row representing a document, and index
ID in every Spanner row representing an index entry; this

is necessitated by our multi-tenant layout in Spanner. Cos-

mos DB supports a SQL dialect and JavaScript to query, using

relational or hierarchical constructs, JSON documents with

tunable transaction consistency levels. It also supports stored

procedures and triggers, while Firestore supports triggers by

integrating with Google Cloud Functions. One of Firestore’s

main goals is ease of mobile-friendly application development

with an easy-to-understand billing model and disconnected

operation for mobile clients with automatic reconciliation of

parallel updates.

Amazon DynamoDB [26], [27] has its own storage engine

that scales, whereas Firestore leverages Spanner. The evo-

lution of DynamoDB from SimpleDB also differs from the

evolution of Firestore from Datastore. One unique feature of

DynamoDB is that the system continuously and proactively

monitors availability both on the server side and on the client

side. In addition to data replicas, it also supports log replicas

to improve availability. It supports strongly and eventually

consistent reads. For efficient metadata management, it relies

on an in-memory distributed datastore called MemDS.

The original version of MongoDB did not have transactional

guarantees. Now, it stores all data in BSON format (binary

form of JSON), using the WiredTiger storage engine which

supports transactions and tunable levels of consistency by

exposing what are called writeConcern and readConcern levels

that are usable with each database operation [28]. This aspect

of MongoDB has necessitated the invention of a speculative

execution model and data rollback algorithms. MongoDB does

support secondary indexes, an ad hoc query language, complex

aggregations, sharding, etc. The adaptation of the TPC-C

benchmark to the document database model of MongoDB is

presented in [29]. MongoDB includes Change Streams [30],

which allows interested parties to subscribe to changes in one

or all collections in a database. This differs from Firestore’s

real-time query feature, which supports listening on complex

queries such that only relevant changes are streamed to the

listener, and scaling to arbitrary numbers of listeners.

Couchbase [31] is a document database system that sup-

ports JSON as its data model. Based on a shared-nothing archi-

tecture, Couchbase supports indexes and declarative querying

using SQL-like queries, including joins, aggregations, and

nested objects. As an alternative to the original Couchstore

storage engine, a new storage engine called Magma has been

developed recently [32] to support write-intensive workloads.

Its goal is to improve on write and space amplification.

There is a large body of work on standing or continuous

queries for relational database systems, but we are unaware

of work that is comparable to Firestore’s real-time queries in

other document database systems.

VIII. FUTURE WORK

The Firestore query API was designed to be simple for

application developers, but it may become limiting as an appli-

cation matures. We are working on adding query functionality

while conforming to the design parameters of predictable

query scaling and efficient real-time updates. These changes

will require extending our billing model that is currently

based on only the number of documents in the result set; a

COUNT query returns a single value but may count millions

of documents, in-memory filtering may require examining

and discarding many documents. However, such extensions

cannot break the pay-as-you-go billing that is essential to the

serverless experience.
It would be beneficial to push down more of Firestore query

evaluation into Spanner for increased efficiency and reduced

latency. However, translation of a Firestore query into one

on the underlying Spanner schema (that represents Firestore’s

data) may produce a sufficiently complex query that Spanner’s

query planner cannot execute it efficiently. Unlocking this

problem is an active area of investigation.
Some customers wish to add light schema restrictions on

their previously schemaless data in some mature applications.

Providing opt-in schema functionality will allow mapping

those fields directly into our underlying Spanner schema,

unlocking the aforementioned push-down efficiency and po-

tentially more query functionality.
We are exploring improved isolation by selective slow-

down or rejection of traffic of a given database when under

memory pressure, based on the memory consumed by in-

flight queries to that database. So far, we have focused on

isolation mostly between databases, but Firestore customers

need isolation also within their database: for example, a bug

in their daily batch job should not lead to rejection of user-

facing traffic. Adding support for intra-database isolation will

require API-level changes, e.g., in the form of QoS indications.

IX. CONCLUSION

In this paper, we presented and analyzed the building blocks

of Firestore that are key to its popularity with the applica-

tion developer community. We showed how its schemaless

data model, serverless operations, and simple billing model

combined with the Firebase SDKs, provides a convenient

ecosystem with a low barrier of entry to developers to rapidly

prototype, deploy, iterate, and sustain applications. We showed

how Spanner and Google infrastructure were leveraged to

allow QPS and storage scaling, and presented an overview of

how the Real-time Cache and client SDKs provide a seamless

experience of real-time notifications to clients even in the

presence of network connectivity issues.
We thank the many Googlers and ex-Googlers who have

worked to make Datastore and Firestore a success. In par-

ticular, Datastore development was successively led by Ryan

Barrett, Max Ross and Alfred Fuller. The Firestore API

development was led by Alfred Fuller and Andrew Lee.

3378

REFERENCES

[1] A. Arasu, S. Babu, and J. Widom, “CQL: A language for continuous
queries over streams and relations,” in Database Programming
Languages, 9th International Workshop, DBPL 2003, Potsdam,
Germany, September 6-8, 2003, Revised Papers, ser. Lecture Notes
in Computer Science, G. Lausen and D. Suciu, Eds., vol. 2921.
Springer, 2003, pp. 1–19. [Online]. Available: https://doi.org/10.1007/
978-3-540-24607-7 1

[2] C. R. Severance, Using Google App Engine - start building and
running web apps on Google’s infrastructure. O’Reilly, 2009. [Online].
Available: http://www.oreilly.de/catalog/9780596800697/index.html

[3] J. Baker, C. Bond, J. C. Corbett, J. J. Furman, A. Khorlin,
J. Larson, J. Leon, Y. Li, A. Lloyd, and V. Yushprakh, “Megastore:
Providing scalable, highly available storage for interactive services,”
in Fifth Biennial Conference on Innovative Data Systems Research,
CIDR 2011, Asilomar, CA, USA, January 9-12, 2011, Online
Proceedings. www.cidrdb.org, 2011, pp. 223–234. [Online]. Available:
http://cidrdb.org/cidr2011/Papers/CIDR11 Paper32.pdf

[4] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A
distributed storage system for structured data,” ACM Trans. Comput.
Syst., vol. 26, no. 2, pp. 4:1–4:26, 2008. [Online]. Available:
https://doi.org/10.1145/1365815.1365816

[5] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild et al., “Spanner:
Google’s globally distributed database,” ACM Transactions on Computer
Systems (TOCS), vol. 31, no. 3, pp. 1–22, 2013.

[6] “Cloud Firestore Web Codelab,” https://firebase.google.com/codelabs/
firestore-web#0, accessed 2022-10-18.

[7] “Firebase Authentication,” https://firebase.google.com/docs/auth, ac-
cessed 2022-10-18.

[8] “Firebase Security Rules,” https://firebase.google.com/docs/rules, ac-
cessed 2022-10-18.

[9] “Google Cloud Functions,” https://cloud.google.com/functions, accessed
2022-10-18.

[10] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg,
omega, and kubernetes,” Communications of the ACM, vol. 59, no. 5,
pp. 50–57, 2016.

[11] K. Rzadca, P. Findeisen, J. Swiderski, P. Zych, P. Broniek, J. Kusmierek,
P. Nowak, B. Strack, P. Witusowski, S. Hand et al., “Autopilot: work-
load autoscaling at google,” in Proceedings of the Fifteenth European
Conference on Computer Systems, 2020, pp. 1–16.

[12] “Firestore: Ramping up traffic,” https://firebase.google.com/docs/
firestore/best-practices#ramping up traffic, accessed 2022-10-18.

[13] C. A. Waldspurger and W. E. Weihl, Stride scheduling: Deterministic
proportional share resource management. Massachusetts Institute of
Technology. Laboratory for Computer Science, 1995.

[14] “Protocol buffers,” https://developers.google.com/protocol-buffers, ac-
cessed 2022-10-18.

[15] “How Pokémon GO scales to millions of requests?”
https://cloud.google.com/blog/topics/developers-practitioners/
how-pok%C3%A9mon-go-scales-millions-requests, accessed 2022-10-
18.

[16] L. D. Shapiro, “Join processing in database systems with large main
memories,” ACM Transactions on Database Systems (TODS), vol. 11,
no. 3, pp. 239–264, 1986.

[17] A. Adya, D. Myers, J. Howell, J. Elson, C. Meek, V. Khemani, S. Fulger,
P. Gu, L. Bhuvanagiri, J. Hunter, R. Peon, A. Shraer, A. Merchant,
and K. Lev-Ari, “Slicer: Auto-sharding for datacenter applications,” in
OSDI’16: Proceedings of the 12th USENIX conference on Operating
Systems Design and Implementation, 2016, pp. 739–753.

[18] “Box plot,” https://en.wikipedia.org/wiki/Box plot, accessed 2022-10-
18.

[19] “Cloud Firestore locations,” https://firebase.google.com/docs/firestore/
locations#location-mr, accessed 2022-10-18.

[20] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proceedings of the
1st ACM symposium on Cloud computing, 2010, pp. 143–154.

[21] “BeReal builds a real and authentic social media platform
on Google Cloud,” https://cloud.google.com/blog/topics/startups/
bereal-creates-reality-based-social-media-using-google-cloud, accessed
2022-10-18.

[22] P. H. Hochschild, P. Turner, J. C. Mogul, R. Govindaraju, P. Ran-
ganathan, D. E. Culler, and A. Vahdat, “Cores that don’t count,” in
Proceedings of the Workshop on Hot Topics in Operating Systems, 2021,
pp. 9–16.

[23] “Silent Data Corruption at Scale,” https://www.sigarch.org/
silent-data-corruption-at-scale/, accessed 2022-10-18.

[24] C. Mohan, R. Barber, S. Watts, A. Somani, and M. Zaharioudakis,
“Evolution of groupware for business applications: A database
perspective on lotus domino/notes,” in VLDB 2000, Proceedings
of 26th International Conference on Very Large Data Bases,
September 10-14, 2000, Cairo, Egypt, A. E. Abbadi, M. L. Brodie,
S. Chakravarthy, U. Dayal, N. Kamel, G. Schlageter, and K. Whang,
Eds. Morgan Kaufmann, 2000, pp. 684–687. [Online]. Available:
http://www.vldb.org/conf/2000/P684.pdf

[25] D. Shukla, S. Thota, K. Raman, M. Gajendran, A. Shah, S. Ziuzin,
K. Sundaram, M. G. Guajardo, A. Wawrzyniak, S. Boshra et al.,
“Schema-agnostic indexing with azure documentdb,” Proceedings of the
VLDB Endowment, vol. 8, no. 12, pp. 1668–1679, 2015.

[26] S. Sivasubramanian, “Amazon dynamodb: a seamlessly scalable non-
relational database service,” in Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data, 2012, pp. 729–730.

[27] S. Perianayagam, A. Vig, D. Terry, S. Sivasubramanian, J. C. Soren-
son III, A. Mritunjai, J. Idziorek, N. Gallagher, M. Elhemali, N. Gordon
et al., “Amazon dynamodb: A scalable, predictably performant, and fully
managed nosql database service,” in 2022 USENIX Annual Technical
Conference (USENIX ATC 22), 2022, pp. 1037–1048.

[28] W. Schultz, T. Avitabile, and A. Cabral, “Tunable consistency in
mongodb,” Proc. VLDB Endow., vol. 12, no. 12, pp. 2071–2081, 2019.
[Online]. Available: http://www.vldb.org/pvldb/vol12/p2071-schultz.pdf

[29] A. Kamsky, “Adapting TPC-C benchmark to measure performance
of multi-document transactions in mongodb,” Proc. VLDB Endow.,
vol. 12, no. 12, pp. 2254–2262, 2019. [Online]. Available: http:
//www.vldb.org/pvldb/vol12/p2254-kamsky.pdf

[30] “How Do Change Streams Work in MongoDB?” https://www.mongodb.
com/basics/change-streams, accessed 2022-10-18.

[31] M. A. Hubail, A. Alsuliman, M. Blow, M. J. Carey, D. Lychagin,
I. Maxon, and T. Westmann, “Couchbase analytics: Noetl for
scalable nosql data analysis,” Proc. VLDB Endow., vol. 12, no. 12,
pp. 2275–2286, 2019. [Online]. Available: http://www.vldb.org/pvldb/
vol12/p2275-hubail.pdf

[32] S. Lakshman, A. Gupta, R. Suri, S. D. Lashley, J. Liang, S. Duvuru,
and R. Mayuram, “Magma: A high data density storage engine used in
couchbase,” Proc. VLDB Endow., vol. 15, no. 12, pp. 3496–3508, 2022.
[Online]. Available: https://www.vldb.org/pvldb/vol15/p3496-lakshman.
pdf

3379

