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Activity: User is preparing food in a kitchen.
Environment: User is in a kitchen.
Hand: Holding a bowl
Volume: 65 dB 

 Vision / Eyes: Slightly Affected
 Hearing: Available
 Vocal System: Available
 Hands / Fingers: Affected

Activity: User is attending an outdoor concert.
Environment: User is at an outdoor concert.
Hand: Not detected
Volume: 112 dB 

 Vision / Eyes: Slightly Affected
 Hearing: Unavailable 
 Vocal System: Unavailable 
 Hands / Fingers: Available

Activity: User is taking notes on a tablet device.
Environment: User is in an office.
Hand: Taking notes
Volume: 42 dB

 Vision / Eyes: Affected
 Hearing: Available
 Vocal System: Available
 Hands / Fingers: Affected

Activity: User is showering a dog in a bathtub.
Environment: User is in a bathroom.
Hand: Showering a dog
Volume: 58 dB

 Vision / Eyes: Affected
 Hearing: Available
 Vocal System: Available
 Hands / Fingers: Unavailable 
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Figure 1: We introduce a new approach to detecting situational impairments based on the availability of human input/output
channels. We instantiate this idea as Human I/O, a system that (A) captures egocentric video and audio stream; (B) processes
input data and generates a description of the context; and (C) predicts the availability of vision, hearing, vocal, and hands
channels.

ABSTRACT
Situationally Induced Impairments and Disabilities (SIIDs) can sig-
ni�cantly hinder user experience in contexts such as poor lighting,
noise, and multi-tasking. While prior research has introduced algo-
rithms and systems to address these impairments, they predomi-
nantly cater to speci�c tasks or environments and fail to accommo-
date the diverse and dynamic nature of SIIDs. We introduce Human
I/O, a uni�ed approach to detecting a wide range of SIIDs by gaug-
ing the availability of human input/output channels. Leveraging
egocentric vision, multimodal sensing and reasoning with large
language models, Human I/O achieves a 0.22 mean absolute error
and a 82% accuracy in availability prediction across 60 in-the-wild
∗Project was conducted when the �rst author interned at Google Labs.
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egocentric video recordings in 32 di�erent scenarios. Furthermore,
while the core focus of our work is on the detection of SIIDs rather
than the creation of adaptive user interfaces, we showcase the e�-
cacy of our prototype via a user study with 10 participants. Findings
suggest that Human I/O signi�cantly reduces e�ort and improves
user experience in the presence of SIIDs, paving the way for more
adaptive and accessible interactive systems in the future.
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1 INTRODUCTION
Everyone experiences Situationally Induced Impairments and Dis-
abilities (SIIDs). These impairments can arise due to various situ-
ational factors, such as noise, lighting, temperature, stress, social
norms, etc. For example, one might miss an important phone call
in a noisy restaurant, or struggle to reply to a text message when
doing dishes. These varied situational contexts in daily lives can
cause temporary declines in our physical, cognitive, or emotional
capacities, leading to unsatisfactory experiences.

Recently, researchers have developed systems to address SIIDs by
enhancing situational awareness of mobile devices. Most systems
employ a “sense-model-adapt” design pattern [53], that is, to �rst
build a model to identify a particular situation that causes speci�c
SIIDs, and then curate adaptations tailored to that context. For
example, detecting when a person is driving [5], walking [11, 20],
inebriated [38], distracted [37], or has rainwater on their touch
screen [50].

However, SIIDs are often dynamic and pervasive, making it chal-
lenging to scale previous one-o� solutions to accommodate users’
changing impairments in real-time, across diverse scenarios. Con-
sider a typical morning routine: when a person is brushing teeth,
they may be constrained from engaging with voice assistants; when
washing face, they may struggle with reading urgent messages; and
when using a hairdryer, they may miss auditory noti�cations from
their phone. Although previous systems have developed models
tailored to speci�c situational impairments, manually designing
detection solutions for all possible scenarios and their combinations
is impractical and limited in scalability.

In this paper, we propose Human I/O, a new approach that con-
siders SIIDs not as context-speci�c impairments that require spe-
ci�c detection models, but rather through a uni�ed lens that fo-
cused on limited availability of human input/output channels. For
instance, rather than devising individual models for activities like
face-washing, tooth-brushing, or hair-drying, Human I/O univer-
sally assesses the availability of a user’s vision, hearing, and hand
interaction channels. With the recent development of Large Lan-
guage Models (LLMs), which exhibit open-vocabulary few-shot
learning and reasoning capabilities, we see an exciting opportu-
nity to leverage LLMs and introduce a single, uni�ed framework to
identify SIIDs. This abstraction broadens our thinking of SIIDs to a
comprehensive range of impairments, and allows for the develop-
ment of an extensible framework that empowers other researchers
and developers to continually expand. Our paper focuses on the
comprehensive technical framework to detecting SIIDs, deferring
the adaptation of SIID for future research.

We �rst conducted a formative study with 10 participants to
understand the scope of modeling SIIDs based on channel avail-
ability. These insights emphasize the need for systems to integrate
activity, environment, and direct sensing cues for channel availabil-
ity prediction, and recognize challenges in detecting attentional,
a�ective, and technological SIIDs. Our �ndings also suggest that
systems should provide varying levels of channel availability, rather
than a binary scale as previously assumed in most systems. This
will better align with users’ needs and allow developers to create
tailored strategies based on impairment severity. We iteratively

developed a four-level scale for measuring channel availability:
available, slightly a�ected, a�ected, and unavailable.

These insights informed Human I/O, a uni�ed system that can
automatically detect SIIDs in a wide range of daily activities. Hu-
man I/O leverages (1) an egocentric camera and microphone, (2)
computer vision and audio analysis models, and (3) the reasoning
capabilities of LLMs to detect SIIDs. In Human I/O’s computational
pipeline, the system �rst captures a user’s egocentric view with
audio and video streams, providing a �rst-person viewpoint of the
user’s state. The vision and audio models then process the input
data, converting it into textual representations. Finally, we leverage
LLMs with chain-of-thought reasoning [52] to analyze these textual
representations and predict the current availability of human input
and ouput channels.

We evaluated Human I/O on a dataset of 300 clips selected from
60 real-world egocentric video recordings covering 32 distinct sce-
narios. Human I/O reaches a 0.22 mean absolute error and 82%
average accuracy on channel availability predictions, with 96% of
predictions deviate by  1 from actuals. We also deployed our sys-
tem in the real world and evaluated it with 10 participants, where
they experienced four di�erent scenarios with and without Human
I/O. Participants found the detection and adaptation for SIIDs sig-
ni�cantly reduced their e�ort level, mental, physical and temporal
demands, and improved their user experience.

In summary, we contribute:
• A new approach to detecting SIIDs by modeling the avail-
ability of human input/output channels.

• Insights from a formative study that inform the design of
our system, highlighting the need for integrating contextual
cues, the scope of our proposed approach, and a four-level
scale for measuring channel availability.

• The design and implementation of Human I/O, which lever-
ages egocentric vision, multimodal sensing, and large lan-
guage models to predict channel availability across vari-
ous daily-life situations. Human I/O is deployed and open-
sourced at https://github.com/google/humanio.

• A technical evaluation of Human I/O’s performance on a
diverse set of 60 in-the-wild egocentric videos, and a user
study with 10 participants demonstrating its potential in
improving user experience in the presence of SIIDs.

2 RELATEDWORK
Our work builds upon previous research in situationally aware
computing, egocentric vision, reasoning by large language models,
activity and environmental sensing.

2.1 Situationally Aware Computing
Previous research in human-computer interaction and accessibility
have developed systems to model di�erent types of situational im-
pairments. A large body of work focused on making mobile devices
more situationally aware and capable of improving interaction for
users experiencing SIIDs. Kane et al. investigated walking user
interfaces (WUIs) [20] that adapt their layout based on user move-
ment, demonstrating comparable performance to static interfaces.
Goel et al. introduced WalkType [11], an adaptive text entry system
that leverages the mobile device’s accelerometer to compensate

https://github.com/google/humanio
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for movement while walking, improving typing performance. In
another study, they presented ContextType [12], a system that uses
hand posture information to enhance touch screen text entry. Mari-
akakis et al. developed SwitchBack [37], a system built upon Focus
and Saccade Tracking to help users resume tasks more e�ciently
in the presence of distractions. They also explored drunk user inter-
faces [38], estimating blood alcohol levels using machine learning
models trained on performance metrics and sensor data. Tung et al.
proposed RainCheck [50], a solution that �lters out water-caused
touch points on capacitive touchscreens, enhancing interaction
accuracy and target selection time.

Although prior art has advanced the �eld of mobile device usage
under various situational impairments, their limitations lie in their
narrow focus on speci�c situations. These e�orts, while signi�cant,
only address a fraction of all SIIDs. Therefore, there remains a
need for a more comprehensive approach to detect a broader range
of SIIDs. In this paper, we leverage egocentric vision and large
language models to address challenges of detecting SIIDs.

2.2 Egocentric Vision
The concept of using a wearable camera to gather �rst-person vi-
sual data dates back to the 1970s with Steve Mann’s “Digital Eye
Glass” invention [36]. Since then, wearable cameras have been em-
ployed in various health-related applications within the context
of Wearable AI. The Microsoft SenseCam uses a lifelogging cam-
era with �sheye lens and trigger sensors, such as accelerometers,
heat sensing, and audio devices, to aid those with poor memory
as a result of disease or brain trauma [17]. Kanade and Hebert
proposed a prototypical �rst-person vision system which consists
of localization, recognition, and activity recognition components,
to provide contextual awareness for caregiving applications [19].
Early computational techniques for egocentric analysis centered
on hand-related activity recognition and social interaction analysis,
as well as addressing challenges of temporal segmentation [16]
and summarization [43] due to the unconstrained nature of video
data. Over the past decade, the �eld has diversi�ed, with emerging
research topics including social saliency estimation [47], privacy-
preserving techniques, attention-based activity analysis, hand pose
analysis, understanding social dynamics and attention, and activity
forecasting [23].

In this work, we build upon previous egocentric vision research
to develop a more comprehensive approach to situational impair-
ment detection. We chose egocentric vision as a means for imple-
mentation since it provides the widest “bandwidth” of detecting a
broad ranges of SIIDs; but the key idea behind our system should
be independent of such implementation.

2.3 Reasoning Capabilities of Large Language
Models

Recent large language models have demonstrated reasoning capa-
bilities via di�erent approaches including zero-shot learning [24],
few-shot learning [2], chain-of-thoughts [52] or incorporating mul-
timodal information [54]. These reasoning abilities are particularly
useful for tasks such as mathematical problem-solving [9, 30, 52],
image-based question answering [31, 54], understanding human
intents [34, 48], etc. They have been applied to a broad range of

research in HCI community recently including interactive cod-
ing support [18, 51], social computing [41], and communication
augmentation [34]. For example, Social Simulacra uses LLMs to
simulate social interactions and behaviors as social computing pro-
totypes [41]. Visual Captions leverages a �ne-tuned large language
model to proactively suggest relevant visuals in open-vocabulary
conversations [34]. InstructPipe [56] employs a node selector, a
code writer, and a code interpreter to create AI pipelines from
human instructions.

Such reasoning capabilities of large language models make it pos-
sible for our system to, in an open-vocabulary manner, predict the
availability of human input/output channels based on the detected
activity, environment, and other contextual information.

2.4 Activity and Environmental Sensing
A wide variety of sensing technologies and strategies [4, 10, 26–
29, 49] have been investigated to achieve detection of human activ-
ity and measuring a physical environment. More relevant to our
work are sensing approaches that utilize camera-based [1, 21] and
audio-based [25, 44] systems. For example, Mo et al. [39] applied
deep learning to classify 5 di�erent locations and 12 distinct activi-
ties. BodyBeat [44] employs a piezoelectric microphone to detect
on-speech body sounds, such as eating noise, breathing, laughter,
and coughing. Other works [22, 45, 49] demonstrate promising
outcomes when using multiple modalities.

In our paper, we develop a novel framework that enables the
reasoning of human input/output channels through the use of com-
puter vision and audio analysis of video and audio streams. Lever-
aging large language models, our framework is highly adaptable,
allowing for easy integration with both existing and forthcoming
sensing technologies for activity and environmental monitoring.

2.5 SIIDs as the Availability of Human I/O
Channels

Our motivation for using the availability of human input/output
channels for detecting SIIDs lies on Dix et al.’s fundamental model
of human-computer interaction [6]: humans, similar to computer
I/O, receive and send information via di�erent channels. For ex-
ample, we use vision, hearing, tactile, etc. to receive information
coming from the world (input); and use vocal system, eye gaze, hand
gestures, etc. to convey information (output). He and Card [3] both
describe human as an “information processing system” with limited
capacity to process information through various channels. In addi-
tion, Microsoft’s Inclusive 101 Guidebook1 provides an overview
chart of four types of permanent, temporary, and situational impair-
ments: touch, see, hear, and speak, categorized by human sensory
channels. Similarly, CrossA11y [35] divides video accessibility is-
sues into lack of information in the visual and auditory channels.

Building upon these inspirations, we hypothesized that modeling
the availability of human input/output channels might provide a
more uni�ed approach to detecting SIIDs. We summarize a list
of human input/output channels from prior work (Figure 2). In
this paper, we focus on channels that are most commonly used in
human-computer interaction: vision, hearing, tactile (input), and
eyes/gaze, vocal system, hands/�ngers (output).
1Microsoft’s Inclusive 101 Guidebook: https://inclusive.microsoft.design

https://inclusive.microsoft.design
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Human Input

Human Output

Example use cases

Vision

Hearing

Tactile

Eyes / Gaze

Vocal System

Hands / Fingers

Read text message, watch video, etc.

Hear notification, phone call, etc.

Haptic feedback, feel temperature, etc.

Face ID, gaze-based interaction, etc.

Conversation, voice assistants, etc.

Touch screen, gesture control, etc.

Taste

Smell

Limbs / Movement

Head / Face

Drink, eat, etc.

Smell, etc.

Walk, reach, etc.

Nodding, facial expression, etc.

Figure 2: Human input/output channels with channels
most commonly used in human-computer interaction high-
lighted in black. We designed and implemented Human I/O
based on these channels.

3 FORMATIVE STUDY
To validate the feasibility and further explore the scope of mod-
eling SIIDs as the availability of human input/output channels,
we conducted a remote whiteboard session with 10 participants.
We report on our insights and how they informed our design and
implementation of the Human I/O system.

3.1 Procedure
We recruited 10 participants via group email invitations and inter-
nal communication channels in Google. Participants had various
technical and non-technical backgrounds, including software engi-
neers, researchers, UX designers, visual designers, students, etc. In a
90-minute online brainstorming session, we �rst introduced and ex-
plained what SIIDs are, showed videos of previous systems that can
detect and adapt to SIIDs, and presented our initial ideas on identi-
fying SIIDs by estimating the availability of human input/output
channels. Participants then brainstormed on a digital whiteboard
(Figure 3) based on three prompts: (1) For each input/output chan-
nel, what are some situations that make it unavailable? (2) For each
input/output channel, when it is unavailable, what are some im-
plicated consequences? (3) For each impairment, to what extent
would you like to have an adaptive system to intervene versus
overcoming it yourself? We went over each participant’s responses
and asked them to explain and elaborate on their examples after
brainstorming.

Figure 3: An example brainstorming whiteboard from a par-
ticipant.

3.2 Findings
Two researchers organized and analyzed participants’ responses
with the a�nity diagram approach. Informed by the set of themes
derived from the grouped notes, we present insights (I1 to I5)
around methods to predict channel availability, the scope of our
approach in detecting SIIDs, and di�erent levels of channel avail-
ability.

3.2.1 Methods to Predict Channel Availability. We �rst asked par-
ticipants to brainstorm for each channel, what were some situations
that would make it unavailable. Participants brainstormed 82 situa-
tions in total. We found that these situations can be broadly detected
via three ways (with overlaps) (I1):

Activity-based (46 mentions): Participants identi�ed that some-
times unavailability of a channel is due to the user’s engagement
in activities, such as driving, cooking, or attending a meeting.

Environment-based (26 mentions): Environmental factors were
recognized as another source of channel unavailability, such as
traveling on an airplane or studying in a library.

Channel-based (20 mentions): Participants also noted that some
situations could be directly sensed by detecting the state of sensory
channels, such as a userwearing headphones, in a loud environment,
or holding an object in their hand.

Participants’ identi�ed situations align with observations made
by Sears et al. [46], which emphasizes the contribution of both the
environment and activity on the existence of impairments and dis-
abilities. In addition, direct sensing of channels emerged as a third
theme. By measuring metrics such as the current environmental
volume level, or whether the hand is occupied, systems can leverage
more direct, lower-level information to predict channel availability.

Furthermore, participants mentioned that some situations can
impact more than one channel. For example, playing drums would
a�ect both the user’s ability to hear and their hands for interacting
with devices. Certain channels might also be correlated with each
other. In particular, the input channel of vision and the output
channel of eyes/gaze are almost always available or unavailable
together, similarly for tactile and hands/�ngers. In Human I/O, we
combine human input/output channels into four categories:

• Vision / Eye
• Hearing
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• Vocal System
• Hands / Fingers

3.2.2 Scope & Limitations. We conducted a comprehensive review
of the generated situations to understand the boundaries of our
approach. Speci�cally, we sought to identify what types of SIIDs
can be e�ectively modeled by evaluating the availability of human
input/output channels and the inherent limitations. We compared
participants’ generated situations to the Situational Factors tax-
onomy proposed by Wobbrock [53], and reviewed what types of
situations can be properly detected. Wobbrock analyzed a decade’s
work from 2008 to 2018 on situationally aware mobile devices and
categorized di�erent kinds of SIIDs into six categories: Behavioral,
Environmental, Attentional, A�ective, Social, and Technological.

Our �ndings suggest that our approach is capable of identifying
situational impairments centered around human sensory abilities,
including those induced by behavioral (e.g., walking, driving, oper-
ating machine), environmental (e.g., ambient noise, darkness), and
social (e.g., conversation, crowd) factors. These situations often have
a direct impact on the availability of human input/output channels.

However, the approach exhibits limitations in SIIDs that are (I2):
Intrinsic to Human: Our approach may not be as e�ective in

identifying impairments related to cognitive states, i.e., attentional
(divided attention, distraction), a�ective factors (stress, fear, fa-
tigue) factors, which may indirectly in�uence the availability of
input/output channels. There is often not a clear mapping between
one’s mental states and their ability to use input/output channels.

Technological: Impairments induced by technological constraints,
like power shortages, weak Wi-Fi connectivity, or hardware limita-
tions—are not directly discernible through the human input/output
channel metrics. Such SIIDs will need supplementary techniques
or synchronization with device-centric data.

3.2.3 Levels of Channel Availability. To understand participants’
preferences on how they would like to deal with SIIDs, we also
asked them to discuss the extent they would desire system in-
tervention versus overcoming the impairment themselves. This
provided insights into 106 impairments, along with their preferred
levels of system intervention. Some interesting examples include:
to delay noti�cations when people’s vision channel is currently
engaged in activities like driving or biking, generate automatic
replies when people’s hands are not available to text, and turn on
live captions [33] when the hearing channel is not available.

Participants highlighted that adaptations may not always be nec-
essary or preferred (I3), especially if the unavailability is temporary
or can be easily overcome. For instance, when holding a remote
controller that occupies the hand, instead of switching to voice
input to interact with the device, a user might prefer to put the
remote down temporarily and use the hands as the input method
again. When taking a sip of co�ee, users might not need adaptations
for the brief moment when their vocal channel is unavailable.

These observations led us to reconsider, that channel availabil-
ity (and SIIDs in general) is not binary (I4), as assumed in many
previous situationally aware systems. We should not simply model
a channel as “available” or “unavailable”, “impaired” or “not im-
paired”. There are many cases in which the channel has a gradient
of availability. This could depend on factors such as the di�culty

of the ongoing activity, the duration of unavailability, or the user’s
ability to overcome the situation.

Moreover, availability of a channel depends not only on the cur-
rent situation, but also on the incoming task (I5). For instance, one
participant mentioned, when a user’s hands are wet, they might still
be usable to perform simple actions such as tapping on the screen
to answer an incoming phone call. However, the same hands might
be deemed insu�cient for more intricate tasks, such as typing to
respond to a text message. This relates back to our previous point
that SIIDs are non-binary — e.g., the wet hand does not cause a
binary impairment, but rather exhibits a variable bandwidth in its
channel depending on the task at hand.

3.3 Design Implications
Based on the insights from our formative study, we outline design
implications for systems that models SIIDs based on the availability
of human input/output channels:
(1) Consider activity, environment, and direct sensing cues
for predicting channel availability (I1): Tomore accurately pre-
dict channel availability, systems should take into account a combi-
nation of activity-based, environment-based, and directly sensing
cues. Systems can provide a more comprehensive understanding of
the user’s situation.
(2) Acknowledge the limitations (I2): This approach may strug-
gle to identify SIIDs that are attentional, a�ective, or technological.
Designers should be aware of these limitations and consider addi-
tional methods for these types of SIIDs.
(3) Predict multiple levels of channel availability (I3, I4, I5):
Systems should provide di�erent levels of availability to align users’
needs. It is important to note that sometimes users may not want the
system to adapt to their situations. Hence, it’s essential to provide
users with the agency to decide how their SIIDs should be managed.
This will also allow developers to design di�erent strategies based
on the severity.

For Human I/O, we developed a four-level channel availability
based on insights from our formative study. We randomly selected
a total of 20 situations proposed by participants during the ses-
sion, 5 from each of the vision/eye, hearing, vocal system, and
hands/�ngers channels. Iteratively, two researchers �rst proposed
descriptions of di�erent levels, then coded the 20 situations with
the drafted levels, and revised the description of the levels based on
the disagreements or ambiguities. Researchers repeated this process
for three meetings until full agreement was reached. We identi�ed
four levels of channel availability:

• Available: The channel is currently not involved in any ac-
tivity, or constrained by any environmental factors. It takes
low to zero e�ort to use the channel to do a new task.
Example: A user is sitting at their desk with their hands free,
eyes not engaged in any task, and no background noise inter-
fering with their hearing or speech.

• Slightly A�ected: The channel is engaged in an activity or
constrained by an environmental factor. Given a new task
that requires the channel, users can multitask, easily pause
and resume to the current activity, or easily overcome the
situation.
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Example: A user is holding a remote control, which can be
quickly put down to free up their hand for another task.

• A�ected: The channel is involved in an activity or con-
strained by an environmental factor. Given a new task, the
user may experience inconvenience or require some e�ort
to use the channel.
Example: A user is carrying grocery bags in both hands, mak-
ing it challenging to use their hands for other tasks without
putting the bags down �rst.

• Unavailable: The channel is completely unavailable due to
an activity or environmental factor, and the user cannot use
it for a new task without substantial changes, signi�cant
adaptation or changing the environment.
Example: A user is attending a loud concert, making it im-
possible for them to hear incoming noti�cations or carry on a
conversation without stepping outside.

Weobserved that the distinction amongst these four levels hinges
on the amount of e�ort for a user to free up a channel for an
interactive task and re-occupy the channel later. To validate the
consistency and applicability of these levels, we continued to label
all remaining situations independently. We computed the inter-
rater reliability and the result shows a high level of agreement
between raters, with Cohen’s Kappa ^ = 0.847.

4 HUMAN I/O SYSTEM
Following our formative study insights, we developed Human I/O, a
system that detects situational impairments based on the availability
of human input/output channels.

4.1 Overview
The Human I/O computational pipeline, illustrated in Figure 4,
consists of three components: (1) An egocentric camera and mi-
crophone capturing video and audio streams of the user’s current
situation (Figure 4.1). (2) A processing module that processes the
video and audio data in one-second intervals using a combination
of computer vision, natural language processing, and audio anal-
ysis algorithms, and generates a rich set of data, including the
user’s activity, environment, and direct sensing of speci�c chan-
nels (Figure 4.2). (3) A reasoning module that leverages a large
language model to process the contextual information. It employs
chain-of-thought prompting to predict the availability of vision/eye,
hearing, vocal, and hands/�ngers channels. A smoothing algorithm
is incorporated at the end to enhance system reliability (Figure 4.3).

We implemented Human I/O as a web application to o�er a versa-
tile and accessible platform both for users to learn about their SIIDs
in daily lives, and developers to debug and evaluate detection meth-
ods (Figure 7). This approach enables connectivity with di�erent
cameras and microphones and allows for easy experimentation on
di�erent devices, such as mobile phones, tablets and AR glasses. Fur-
thermore, the web app supports testing on both live video streams
and pre-recorded videos, providing a �exible environment for eval-
uation and user studies. A live demo and open-sourced repository
of Human I/O can be found at https://github.com/google/humanio.

4.2 Data Capture
In our research setup, Human I/O uses a webcam (Logitech C930e)
and its integrated microphone to obtain real-time video and audio
streams for data capture. We envision that future implementations
of Human I/O would seamlessly integrate with lightweight, all-day
AR glasses [40] equipped with an array of sensors, such as cameras,
LiDARs, microphones, eye trackers, and inertial measurement units
(IMUs). These sensors will enable richer data capture and provide
more comprehensive input to enhance the system’s capability.

4.3 Processing Module
Human I/O recognizes the user’s context by analyzing video and
audio data in one-second intervals.

4.3.1 Activity Description. To detect the current activity in an ego-
centric video, we employ a two-step process. First, we generate an
image caption of the current video frame (compressed to 640×480)
using the state-of-the-art image captioning model in early 2023,
BLIP-2 [31]. Although BLIP-2 generates high-quality and objec-
tive descriptions, it occasionally falls short in providing an explicit
“activity” description, i.e., what the person wearing the camera is
doing. For instance, consider the examples shown in Figure 5.

The BLIP-2 output for a tennis court frame is “a tennis court with
lights on at night”, while for a frame capturing the inside of a bus,
it outputs “a view of the inside of a passenger bus”. These captions
describe the scenes but do not e�ectively convey the user’s actions.

To address this limitation, we integrate the BLIP-2 model with
GPT-3 text-curie-001, a faster version of the GPT-3 model capable
of simpler tasks. We use the following prompt structure to guide
the GPT-3 model to generate a more accurate activity description
(full version in Appendix C):

“An egocentric view of User is showing” +
<BLIP-2 output> +
“Describe what User is doing concisely. Answer in the
format of ‘User is ...’.”

By combining the two models, we obtain a re�ned activity de-
scription that better re�ects the user’s actions. Referring back to
the examples in Figure 5.1 and 5.2, the integrated output for the
tennis court frame becomes “User is playing tennis at night on a lit
court”, while for the bus frame, it produces “User is riding on a bus”.

4.3.2 Environment Description. To identify user’s current environ-
ment, we once again combine the outputs of the BLIP-2 and GPT-3
text-curie-001 model. We forward the image caption from BLIP-2
to GPT-3 using the following prompt structure:

“An egocentric view of User is showing” +
<BLIP-2 output> +
“What location or environment is User likely to be in?
Answer in the format of ‘User is in...’.”

This improves the quality of environment descriptions. For in-
stance, consider an egocentric video frame showing a person wash-
ing dishes (Figure 5.3). The original BLIP-2 caption states, “A person
washing dishes in a sink”. With the integration of the GPT-3 model,
the output is re�ned to, “User is in a kitchen”. For a video frame
displaying a person playing a computer game (Figure 5.4), the
initial BLIP-2 caption reads, “A person playing a video game on a

https://github.com/google/humanio
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Video & Audio Stream

1. Egocentric 
Device

1s interval

Direct Sensing

Hands: Holding a bowl

Brightness: 0.52

Volume: 65 dB

Audio Class: Sillence

Activity

Image Caption: “a person is preparing food in a kitchen”

Environment
User is preparing food in 
a kitchen

User is in a kitchen

LLM LLM

2. Processing
Module

Chain-of-thought 

Q: <Description of Context>
A: Reasoning
     <Availability Prediction>
Q: <Description of Context>
A: 

 Vision / Eye: Slightly Affected
 Hearing: Available
 Vocal System: Available
 Hands / Fingers: Affected

3. Reasoning
Module

Smoothing

Adapt

...

Figure 4: The Human I/O pipeline comprises three components: (1) an camera andmicrophone capturing the user’s egocentric
video and audio stream; (2) video and audio data processing using computer vision, NLP, and audio analysis to obtain contex-
tual information, including user’s activity, environment, and direct sensing ; and (3) sending contextual information to a large
languagemodel with chain-of-thought prompting techniques, predicting channel availability, and incorporating a smoothing
algorithm for enhanced system stability.

Activity

Environment

Raw BLIP-2 Output Refined

A tennis court with 
lights on at night.

User is playing tennis 
at night on a lit court.

A view of the inside of 
a passenger bus

User is riding on a bus.

A person washing 
dishes in a sink

User is in a kitchen

A person playing a video 
game on a computer

User is in a room, 
likely indoor 

(GPT-3 text-curie-001)

(1)

(2)

(3)

(4)

Figure 5: Examples of using GPT-3 (text-curie-001) to re�ne
raw image caption results from BLIP-2 to get more accurate
descriptions of the current activity and environment.

computer’’. Following the integration with GPT-3, the description
becomes: “User is in a room, likely indoors”.

4.3.3 Direct Sensing. Since activity and environment detection
may miss information that is not be adequately represented by
their high-level descriptions, we also implement direct sensing
techniques to gather a more comprehensive set of data. Speci�cally,

we consider hand detection, volume level, audio classi�cation, and
environmental brightness.

First, our hand detection algorithm consists of three stages. We
�rst use the MediaPipe Hands model [55] to obtain keypoint local-
izations of 21 3D hand-knuckle coordinates for both hands. If no
hand is detected at this stage, the process is halted, and outputs “No
hand is detected.”

If a hand is detected, we proceed by utilizing the MediaPipe
object detection model (e�cientdet_lite0) [14] to detect if either
hand is holding any object and what object is it holding (details
in Appendix B). If a hand is holding an object, the system outputs
“Hand is holding <Object>.”

Finally, if a hand is detected but not holding an object, we use
the BLIP-2 Visual Question Answering (VQA) model to ask, “What
are the hands doing?”. This unconstrained approach is particularly
useful when hand landmarks or objects are not accurately recog-
nized (e.g., object detection model cannot identify drumsticks), or
in complex scenarios such as typing, washing hands, etc. In this
case, we use the result of BLIP-2 VQA as output.

In addition, Human I/O directly senses the availability of the
hearing and vision channels through volume level, audio event
classi�cation, and brightness measurements. Volume level is deter-
mined using the Web Audio API, and measurements are smoothed
and converted to decibels. Audio event classi�cation leverages the
pre-trained YAMNet model [42], capable of detecting 521 distinct
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audio events. Brightness is assessed using relative luminance, fol-
lowing the WCAG accessibility guideline and Rec. 709 coe�cients2.
Temporal smoothing is applied to volume level and brightness mea-
surements. For further details on the implementations, please refer
to Appendix B.

4.4 Reasoning Module

Model Input (Chain-of-thought Prompting)

<Few-shot Examples with CoT>
Q: C is washing dishes in a kitchen sink. C is in a kitchen. 

Figure 6: An illustration of our prompt structure leveraging
chain-of-thought (CoT, highlighted) to enable LLMs to pre-
dict channel availability from the context.

We integrate all intermediate results and employs chain-of-thought
(CoT) prompting [52] with GPT-4 to predict the availability of hu-
man input/output channels. CoT involves providing the model with
a prompt composed of triples: <input, CoT, output>, where the
chain-of-thought contains a series of intermediate natural language
reasoning steps leading to the �nal output. This method allows
the model to accumulate and maintain context and consistency
throughout the prediction process.

While CoT is prevalent in LLM research, our method converts
multimodal data into structured text, merging audio-visual and
language models. Combining textual descriptions with quantitative
sensory data, our approach o�ers richer context, enhancing system
accuracy and nuance in predictions. For Human I/O, the prompt
consists of three components: Instruction, Few-shot Examples, and
Current Context. Please refer to Figure 6 for the prompt structure
and Appendix C for the complete prompt used in our system.

4.4.1 Instruction. A pre�x that clari�es the de�nitions of our four-
level scale availability, as outlined in subsection 3.3, and the task.
The task is described as follows:

“Given the current activity and environment as de-
scribed below, determine the availability of the user’s
vision/eye, hearing, vision, and hands/�ngers channels.”

2Relative luminance: https://www.w3.org/WAI/GL/wiki/Relative_luminance

4.4.2 Few-shot Examples. Three few-shot examples are provided,
each comprising input, chain-of-thought, and output. We selected
three examples representing di�erent availability in various chan-
nels, di�erent activities and environments: washing dishes in a
kitchen, playing an acoustic guitar in a room, and working on a
laptop in a library. For each few-shot example, the input contains
activity and environment descriptions, along with direct sensing
outputs for hands, volume level, audio classi�cation, and brightness.

We construct the chain-of-thought by de�ning the intermediate
reasoning steps that the model should follow to derive the availabil-
ity of a channel based on the context. For example, in the case of
the hearing channel, the chain of thought may involve considering
the volume level, the presence of noise or other sound events, and
the user’s current activity (e.g. playing guitar) and environment (e.g.
in a library). The model is guided through these reasoning steps
and prompted to provide a �nal output predicting the availability
of the hearing channel. A similar process is followed for the other
I/O channels.

The output is a four-level availability score, as described in sub-
section 3.3.

4.4.3 Current Context. We combine the formatted ouputs from the
processing module. For example, for the situation in Figure 4, the
combined context is:

Q: User is preparing food in a kitchen. User is in a
kitchen. User’s hand is holding a bowl. The environmen-
tal volume is around 65dB. No audio event is detected
in the environment. The luminance value of the current
environment is 0.52, in the range of 0 to 1.

Figure 7: The web-based visualization interface of our pro-
totype Human I/O system. The prediction results are dis-
played in the bottom-right. Intermediate auditory informa-
tion is shown on the top-left corner, and visual information
is shown on the bottom-left. The settings is shown as a drop-
downmenu on the top-right. Detected objects and hands are
also highlighted in the video in real-time.

4.4.4 Availability Prediciton. We combine instruction, few-shot
examples, and the current context as the �nal input to GPT-4. We

https://www.w3.org/WAI/GL/wiki/Relative_luminance
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also added a su�x “A: Let’s think step by step” [24]. The model
output contains the reasoning and availability prediction of each
channel.

4.4.5 Temporal Smoothing. To account for potential �uctuations in
the prediction output, we apply a smoothing window of size 5 to the
model’s availability predictions. Human I/O runs every second, and
with the smoothing window in place, it only outputs an availability
prediction if more than three of the past �ve predictions are the
same. This majority prediction is then output as the �nal availability
determination. If there is no majority prediction within the past �ve
predictions, the system outputs “Unsure”. This smoothing technique
reduces the potential impact of brief, sporadic changes in the user’s
context or sensing outputs.

4.4.6 Lite Version. Although chain-of-thought provides robust rea-
soning to ensure prediction accuracy, generating the reasoning
texts is the bottleneck of the system speed. To enable more real-
time prediction, we created a lite version by using GPT-3.5-turbo
and removing all intermediate reasoning steps in the few-shot ex-
amples in the prompt and “Let’s think step by step” (Appendix C).
This substantially decreases inference speed to under 1 second,
as the system only needs to generate availability predictions for
four channels (around 10 tokens), with a lighter model. However,
we observe a decrease in performance. We provide a quantitative
analysis comparing the two approaches in section 5.

4.5 Human I/O Visualization Interface
We developed a Human I/O Visualization Interface (Figure 7), pri-
marily as a tool for developers and researchers, to provide real-time
monitoring of the processing outputs (along with hand landmarks
and object detection) and predictions of availability for all four
communication channels. The visualization interface has been de-
signed with the �exibility to analyze both live and pre-recorded
video feeds. We can conveniently conduct technical evaluations by
loading pre-recorded videos and analyzing the data. In addition, the
interface o�ers a logging system that records all intermediate re-
sults throughout the processing pipeline. The interface is deployed
live at https://github.com/google/humanio.

5 TECHNICAL EVALUATIONWITH
IN-THE-WILD VIDEOS

We evaluated Human I/O on 300 clips from a set of 60 in-the-wild
egocentric video recordings under 32 di�erent scenarios. We report
the accuracy (mean absolute error and classi�cation accuracy) and
the consistency (intra-video variance) of our system on channel
availability predictions.

5.1 Materials
Our sample was sourced from Ego4D v1 [15], an extensive ego-
centric dataset with over 3,670 hours of daily-life activity videos,
recorded in-the-wild. We applied a �lter to select videos shorter
than two minutes with audio, and then randomly selected 60 videos,
ensuring a diverse range of scenarios. Each video features a single,
coherent activity. For each video, we randomly selected 5 non-
overlapping clips aligned with the main activity, totaling 300 tested
clips. Our �nal sample comprises 32 distinct scenarios (Figure 8),

Figure 8: Distribution of the top 10 most common scenarios
in our evaluation dataset. Full distribution of the scenarios
is shown in Appendix subsection D.1.

such as cooking, practicing a musical instrument, working, playing
with pets, cleaning, doing laundry, walking, sitting on a sofa etc.

We executed Human I/O on each video, logging various data
points, including image caption, activity description, environment
description, direct sensing results (hand presence, audio volume,
audio class, and brightness), LLM reasoning output, and channel
availability predictions. We recorded the smoothed outputs over
the video windows. To compare performance, we also ran the lite
version of Human I/O.

5.2 Data Annotation
Two researchers �rst independently watched the videos, and anno-
tated the level of availability for vision/eyes, hearing, vocal system
and hands/�ngers channels based on the four-level scale we devel-
oped (subsection 3.3) on a spreadsheet. Similar to our formative
study results, we reached a high level of inter-rater agreement (Co-
hen’s Kappa ^ = 0.862). We then discussed the mismatches and
resolved all disagreements. In the �nal sample, 10.0% of the chan-
nels are labeled as “Unavailable”, 18.33% “A�ected”, 30.42% “Slightly
A�ected”, and 41.25% “Available”.

5.3 Metrics
We assess Human I/O using three quantitative metrics: (1) Mean
Absolute Error (MAE): This metric captures the average discrepancy
between predicted availability levels and the actual ground truth for
each of the four channels within every video clip. Given the nature
of our data, MAE o�ers a precise error depiction. This is because
misclassifying a level as “Slightly A�ected” instead of “A�ected”
is less erroneous than confusing “Unavailable” with “Available”.
Availability levels are numerically translated to values ranging
from 1 to 4. (2) Averaged Classi�cation Accuracy (ACC): In addition
to MAE, we provide an accuracy measurement for a more intuitive
understanding of classi�cation performance. (3) Intra-video Variance
(VAR): Assessing the model’s consistency throughout a continuous
audio-visual stream is crucial to prevent �ickering predictions. The
variance score is determined by �rst calculating it based on video
ID and channel then averaging the results.

https://github.com/google/humanio
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Human I/O Human I/O Lite

Channels MAE ACC VAR MAE ACC VAR

Vision/Eyes 0.25 76.0% 0.17 0.45 62.0% 0.16
Hearing 0.23 86.7% 0.05 0.37 63.3% 0.11
Vocal System 0.08 92.0% 0.01 0.23 87.3% 0.20
Hands/Fingers 0.33 72.7% 0.18 0.70 46.7% 0.30

Total 0.22 81.8% 0.10 0.44 64.8% 0.19

Table 1: Technical evaluation of Human I/O and Human I/O
Lite. We report the mean absolute error (MAE), average clas-
si�cation accuracy (ACC), and average intra-video variance
(VAR) for four channels and the overall results. Our system
estimates availability levels with small margins of error and
variance. InHuman I/O, 96.0% of predictions arewithin a dis-
crepancy of 1 from the actual value.

5.4 Results
We analyzed the performance of Human I/O in predicting the avail-
ability of each input/output channel. Table 1 summarizes our results.
The system achieves an mean absolute error (MAE) of 0.22, and
an average accuracy of 81.8% across all channels. All MAEs of
the four channels are under 0.33. These low MAE values indicate
that the system’s predictions closely align with the actual availabil-
ity, with deviations being less than a third of the actual level on
average. Breaking down the performance by individual channels,
we observed accuracies of 76.0% for eyes, 86.7% for hearing, 92.0%
for vocal, and 72.7% for hands, with corresponding MAEs of 0.25,
0.23, 0.08, and 0.33. Notably, 96% of the system’s predictions dif-
fered from the actual values by 1 or less, and no predictions had
a di�erence greater than 2, demonstrating a reliable performance
across di�erent channels. Additionally, the overall low variance in
predictions (0.1), with channel-speci�c variances of 0.17 (eyes), 0.05
(hearing), 0.01 (vocal), and 0.18 (hands), re�ects the system’s con-
sistency. This consistency is important for practical applications, as
it ensures that the system reliably predict the level of impairments
across di�erent instances in the recording.

For Human I/O Lite, we observe overall slightly inferior perfor-
mance compared to the full model. However, the MAE for Human
I/O Lite is still at a very low level around 0.44, showing promising
ability to predict SIIDs even with reduced computational resources.

5.5 Latency
We evaluated our computation pipeline’s latency: Human I/O with
a full chain-of-thought prompt had an average latency of 19.95
seconds with GPT-4, and 7.33 seconds with GPT-3.5-turbo. The
Human I/O Lite (without chain-of-thought reasoning) exhibited a
signi�cant improvement, with an average latency of 2.07 seconds.

From our observations in the dataset, user’s channel availability
typically spans more than one minute. This suggests that even a
delayed prediction could still be accurate when using it in real-time.
In addition, while latency might matter more for shorter activities
that last only a few seconds, our formative study suggests that those

short activities likely do not necessitate adaptations. However, we
acknowledge that certain scenarios may still demand low latency.
For instance, when users require rapid adaptations in response to
changing situations (e.g., entering a noisy subway while still on an
important phone call).

Future system can incorporate temporal segmentation tech-
niques to detect changes in scenes or activities, thus eliminating the
need for the system to run continuously at one-second intervals.
Alternatively, as the current system’s main bottleneck is the infer-
ence speed of LLMs, the use of lighter weight models, potentially
�ne-tuned on an extensive dataset, could be employed to enable
faster computation and improve system performance. Such models
may also provide a more concise representation of SIIDs predictions.
In addition, future work could explore identifying pre-impairment
scenarios. That is, to anticipate situational impairments before they
occur, thereby preparing the system for a timely response. For in-
stance, the systemmight start making inferences as soon as a faucet
is opened, predicting the imminent unavailability of hands due to
washing. While acknowledging the potential for false positives, this
method may enhance responsiveness of the system particularly in
dynamic environments.

5.6 Failure Cases Analysis
Our results indicate that the system have similarly e�ective perfor-
mance at predicting the availability of the vision, hearing and vocal
channels, while the performance in predicting hand availability is
less satisfactory. After reviewing the failure cases, we speculate that
this lower performance for the hands channel may be attributed to
several factors: (1) The complexity of hand-related tasks and the
wide range of possible hand impairments make it challenging to
accurately capture all nuances of hand-related SIIDs. (2) Occlusion
that might a�ect the quality of the data captured by the egocentric
vision system. (3) The few-shot examples may not be su�ciently
diverse to represent hand-related SIIDs, thus a�ecting the model’s
performance in this speci�c channel.

In addition, we observed that many incorrect predictions are
related to inaccurate activity recognition. The system tends to fail
in situations with unclear activities, such as walking around in the
bathroom. However, it performs well when the activities are more
explicit, such as washing hands, cooking food, or playing drums.
Future versions of the system can explore balancing the weights
for the more con�dent direct sensing results, and reduce the over-
reliance on high-level descriptions of the activity and environment.

The system also struggles to discern subtle di�erences between
similar activities. For instance, consider two kitchen-related videos
where one person is washing their hands and another is stirring
food in a pan. The system detects both activities as “preparing food
in the kitchen”, and classi�es hand availability as “unavailable” in
both cases. However, hands can be brie�y used for other tasks while
stirring food, so they should be considered as “a�ected” rather than
“unavailable”.

Anecdotally, even when the system misrecognizes the activ-
ity completely (e.g., scrubbing wood with sandpaper as climbing
a wooden ladder), it sometimes still provides relatively accurate
channel predictions due to similarities in hand occupancy, environ-
mental volume level, and other factors.
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6 EXPERIENCING HUMAN I/O IN REAL-TIME
While our focus remains on the detection of SIIDs, we conducted an
additional study to understand users’ integrated experiences when
Human I/O is employed to enable common interface adaptation
strategies.

6.1 Procedure
We conducted a user study with Human I/O Lite to understand its
potential and challenges for real users in assisting them in man-
aging incoming tasks during various SIIDs, when combined with
common adaptation strategies. The study setup involved an egocen-
tric camera (Logitech C930e), AR glasses (Nreal Light) for adaptive
displays, and a custom website displayed on a touch screen tablet to
simulate incoming tasks. The website was connected to the Human
I/O system via a web socket.

We recruited 10 participants from Google (age range: 22–36,
avg=28.0, std=3.95) with diverse backgrounds, including students,
software engineers, research scientists, designers, product man-
agers, and marketing analysts. Half of the participants reported
familiarity with AR wearables (rating > 3 on a scale of 1 to 5).

Participants �rst familiarized themselves with Human I/O. They
then simulated four scenarios in a lab space: working, washing
hands, hair drying, and eating. Scenarios were selected to repre-
sent impairments in each of the vision, hands, hearing, and vocal
channels. During each scenario, participants received a noti�cation
or a task on the tablet, including phone calls, text messages, and
video watching. We designed corresponding adaptations strategies
on Human I/O to provide adaptations when impairments were de-
tected. For example, if the hands channel is detected to be a�ected,
Human I/O will automatically display a phone call on AR glasses
and prompt users to answer/reject the call by saying “yes” or “no”;
if the hearing channel is a�ected, it will automatically turn on cap-
tions for a video. Details of all user study scenarios are shown in
Table 2. Each scenario was conducted with and without Human
I/O assistance in a within-subject design with counter-balanced
order. All participants experienced four scenarios with and without
Human I/O. Participants followed the adaptation strategies to over-
come the situational impairments when Human I/O is activated.
When Human I/O is not active, they were asked to address the
incoming task and resume back to their previous task (e.g., pause
hand washing and answer the phone call).

After each scenario, participants completed the NASA Task Load
Index (TLX) questionnaire, assessing mental demand, physical de-
mand, temporal demand, overall performance, e�ort, and frustra-
tion level on a 7-point scale (from 1–Lowest to 7–Highest). We
also conducted a semi-structured interview to gather qualitative
feedback on the participants’ experiences.

6.2 Findings
Human I/OEnhancesUser Experience. Participants unanimously
preferred the Human I/O experience. They found the system to be
robust (P8, P9), accurate (P1, P2, P3, P6, P10), and and helpful (P7,
P8, P9) in various aspects. Participants reported that Human I/O sig-
ni�cantly reduced their mental, physical, and temporal demand, as
well as their e�ort and frustration level, and signi�cantly improved
their performance to manage incoming tasks during SIIDs (Figure 9,

Figure 9: Participants’ ratings to Task Load Index questions
(on a scale of 1-low to 7-high) for their experiencewith SIIDs
with and without Human I/O in user study. All rating di�er-
ences are statistically signi�cantwith ? < 0.001 viaWilcoxon
signed-rank tests.

all ? < 0.001 via Wilcoxon signed-rank tests). Participants men-
tioned that when not using the system, they often had to “delay my
physical activities or my intent to interact”. Participants highlighted
the system’s capability to support their work�ow without interrup-
tion, as it allowed them to continue their current activities without
delays. P4 noted that Human I/O enabled them to “maintain [their]
existing work�ow and focus on the task at hand.” This sentiment
was echoed by P6, who appreciated the “time-saving” aspect of the
system. P7 also emphasized the convenience and e�ciency that
Human I/O provided:

“It was much more convenient. Especially when my
hand is captured by something else, then I’m still able to
respond promptly to the request. It’s essentially allowing
me to do the thing that I want to do but easier and way
faster.” — P7

Need for Personalization. Interestingly, we observed that for
some tasks the perceived usefulness of Human I/O varied among
participants. In particular, while some users found Human I/O
less helpful for tasks that involved quickly interacting with phone
noti�cations and then returning to work, others reported that the
noti�cations severely interrupted their focus and thought processes
(P2). The impairments in these cases are not severe enough to
warrant the adaptations.

As another example, 6 participants mentioned that the hand-
washing scenario was the most helpful because “my hands are all
wet and there’s practically no way to touch the screen.” (P4). However,
P5 did not share this sentiment, stating that they were comfortable
interacting with their device: “If my I just wash my hands with water
I think it’s acceptable for me to click the screen”.

In light of these varied responses, we see a need for a more
personalized availability scale into Human I/O to better address
individual preferences. Researchers and developers should note
that it might be wrong to assume that users always want the UI
to adapt based on their situations. Recognizing this di�erence in
user preference underscores the importance of integrating di�erent
levels and options within Human I/O.
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# Scenario Incoming Task Impaired Channel Adaptation

1 Working (Typing) Receive a text message Vision/Eyes Display message on glasses
2 Hand Washing Receive a phone call Hands/Fingers Switch to voice commands
3 Hair Drying Watch a video Hearing Turn on captions
4 Eating Chips Receive a phone call Vocal Suggest auto-reply

Table 2: Scenarios, incoming tasks, and corresponding adaptions participants experimented with in our simulation user study.

Participants also expressed desire in customizing the adaptation
procedures, emphasizing that familiarity with these adaptations
would make the system much more comfortable and e�ective to
use. As one participant noted:

“When one input method is unavailable, I might have
multiple alternatives, such as nodding or using voice
commands. It would be even better if it could be cus-
tomized to match my preferences.” — P10

Raising Awareness of SIIDs. One interesting �nding from our
study is that before experimenting Human I/O, many participants
had not recognized the extent of the situational impairments af-
fecting their daily lives. As a result, they would often deem many
tasks unfeasible, give up on them, or seek alternative methods. P4’s
comment illustrates this realization:

“Before it’s more like, there’s no way. I have to �nish
my hand washing and drying it out before I’m able to
respond. It’s kinda impossible without the system. And
the system gives me some new capabilities.” — P4

For the participants, Human I/O not only facilitated interaction
with their devices but also served as an awareness tool, spotlight-
ing the situational impairments they routinely encountered. This
newfound awareness allowed users to extend their capabilities be-
yond their initial expectations, opening up new possibilities for
interactions that they had not previously considered.

The insights from our user study involving 10 participants demon-
strated the practical application and potential of Human I/O in
enhancing user experience in the presence of SIIDs. Future research
should explore an extensive deployment study that will involve a
larger and more diverse group of participants, which can provide a
more comprehensive understanding of the system’s utility across
di�erent user demographics and contexts in the long-term.

7 DISCUSSION AND FUTUREWORK
Privacy and Ethics. Maintaining privacy and upholding ethical
standards are crucial in the design and deployment of SIIDs systems
with active cameras and microphones.

We identify three main concerns: (1) Invasion of Privacy: Ego-
centric devices can unintentionally infringe on personal privacy by
capturing and recording visuals and sounds without explicit con-
sent. (2) Data Security and Storage: Using cloud servers for real-time
machine learning model inferences requires rigorous measures like
data anonymization, encryption, or on-device federated learning
to forestall potential data breaches. (3) Inclusion, Bias, and Discrim-
ination: The deployment of cameras, microphones, and LLMs may
unintentionally exclude certain demographics or make inferences

based on race, gender, or other protected attributes, risking bias
and discrimination.

Acknowledging these issues, we conducted user studies of Hu-
man I/O exclusively in controlled lab settings. It is imperative for
subsequent researchers to prioritize privacy, ethical considerations,
and the judicious use of technology.

While our system is exploratory, advancements in the �eld hint
at promising solutions in future. The recent compact LLMs, such as
LLAMA 7B and ALPACA, and �ne-tuned models could facilitate on-
device computations, ensuring data security. Recent developments
by technology companies, exempli�ed by Apple’s Vision Pro, indi-
cate a trend towards encryption and data anonymization protocols
in everyday wearable devices. Furthermore, as HMD/AR devices
gain prevalence, incorporating learnings from existing egocentric
vision research is important. Such studies have already pioneered a
variety of privacy-preserving techniques that we could incorporate.
Dimensions of availability. Our study introduces a four-level
classi�cation of channel availability, which has shown high accu-
racy in diverse scenarios. However, this classi�cation could bene�t
from expansion beyond a single dimension. Future research should
aim to develop a more nuanced understanding of channel availabil-
ity, considering multiple dimensions such as the duration of the
task, type of impairment, e�ort required in freeing up the channel,
e�ort required in resuming the task, and the ability to multitask,
etc.

For example, the dimension of duration highlights the variabil-
ity in the length of time a channel is unavailable. Short-term un-
availability, like a quick glance at a noti�cation, may only need
temporary adaptations. In contrast, longer durations of unavail-
ability, such as during meetings, might require more substantial
changes in user interface design. Another example is the ability to
multitask. This dimension helps recognize situations where mul-
titasking is feasible versus those where it may be disruptive. This
understanding can inform the design of systems that better align
with users’ capabilities and preferences, reducing the cognitive load
and enhancing user experience.

Incorporating these multiple dimensions into the measurement
of channel availability can provide users with �ner controls over
how their devices adapt to their changing needs and situations, and
also o�er developers with a more comprehensive range of options
to consider and design for.
Incorporating More Sensing Techniques. The current imple-
mentation of Human I/O primarily relies on an egocentric view
camera and microphone sensors, which may limit the system’s
ability to accurately detect certain aspects of user interactions. For
instance, it may not be able to determine if a user is brushing their
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teeth, wearing headphones, or if their �ngertips are wet. To en-
hance the capability and detection accuracy of Human I/O, future
systems should incorporate additional sensing techniques.

One promising approach involves utilizing gaze tracking, avail-
able in many contemporary XR devices, to measure users’ attention
and gather more contextual information. Moreover, pupil diameter
changes can be measured to estimate cognitive load [32]. While
AR glasses or egocentric cameras provide a rich data source, their
continuous usage throughout the day may not be desirable or fea-
sible for users. Developing alternative, lower-resolution sensing
methods that leverage mobile devices could be a more practical
solution. For example, an approach similar to Google’s Activity
Recognition API [13] could be adapted to infer user availability
based on patterns of device usage and motion data.
Dataset. Our prototype has demonstrated the potential for pre-
dicting channel availability using a few-shot chain-of-thought rea-
soning prompt. However, to develop a more robust, faster, and
accurate model, and to establish a formal benchmark for evaluating
situationally-aware systems, we recognize the need for a large-scale,
extensive dataset. This dataset should encompass comprehensive
features, similar to those found in the Ego4D dataset [15], while
also incorporating lower-resolution features that can be obtained
from everyday devices (e.g. smartphone IMU).
Toolkit. In our Human I/O prototype, we have implemented an
extensible reasoning framework to infer SIIDs from multimodal
sensors. As a proof-of-concept, we used egocentric cameras and
microphones as input sources. By open-sourcing Human I/O, we
hope to provide a toolkit that empowers XR and sensing researchers
and developers to create more accessible systems. For example, by
incorporating input from thermal cameras, eye-tracking cameras,
depth sensing [8], Inertial Measurement Unit (IMU) signals, Ultra
Wide Band (UWB) signals, street views for remote tourism [7],
and the state-of-the-art sensing algorithms, Human I/O can be
further expanded to create a holistic SIID detection framework for
developing wearable applications.
Adaptation Strategies. While our paper primarily focuses on the
detection of SIIDs, a complete self-adaptive system addressing SI-
IDs would also require the “adaptation policies”, or ways to adjust
the system’s behavior given the detected impairments. However,
adaptation strategies would require the e�orts of a separate, com-
prehensive research project, which goes beyond the scope of this
work.

An important question to investigate is whether a universal
design can be achieved, and if we can develop algorithms to suggest
appropriate adjustments based on user needs and contextual factors.
Establishing robust evaluation frameworks, such as new metrics
and user studies, will enable researchers and practitioners to assess
the e�ectiveness of di�erent adaptation approaches and develop
systems that better accommodate user needs in various contexts.

We hope that the detection results from our system might serve
as a starting point for app developers, aiding them in considering
adaptation policies suited to their speci�c contexts.
A Situationally Aware Network. Another interesting direction
for future research is to investigate the development of a situation-
ally aware network that connects multiple devices. For example, a
person is on a phone call while their spouse tries to dry their hair,

and a message appears on the spouse’s device. The network, rec-
ognizing the ongoing phone call, could send reminders to prevent
noise interference. This illustrates the potential of a collaborative
system across multiple devices and multiple people that responds
intelligently to a network of context.

8 CONCLUSION
In this paper, we presented a uni�ed approach to detecting SI-
IDs based on the availability of human input/output channels. We
shared insights from a formative study that guided the design of our
system, emphasizing the importance of integrating contextual cues
and proposing a four-level scale for measuring channel availability.
Furthermore, we introduced Human I/O, a system that combines
egocentric device, multimodal sensing, and large language models
to predict channel availability. Our technical evaluation and user
study demonstrated the e�ectiveness of Human I/O, and its po-
tential in reducing user e�ort and improving performance in the
presence of SIIDs. By abstracting SIIDs into channel availability, our
work o�ers a step towards comprehensive detection of situational
impairments; and based on this �rst step, we see an exciting future
to build a general-purpose toolkit for SIIDs detection and enable
developers to address a range of situational impairments in our
daily lives.
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A A DECISION TREE FOR DETERMINING
THE LEVEL OF CHANNEL AVAILABILITY

Available

Slightly
Affected

Is it involved in an activity or 
constrained by environment?

Can you use it to multitask, easily
pause and resume to the activity,
or overcome the situation easily?

Would it be highly inconvinience or 
impossible to use it without finishing the 
current task  or changing environment?

Affected

Unavailable

No

Yes

Yes

No

No

Yes

Figure 10: A decision tree based on our proposed four-level
scale of channel availability.

We sketched a decision tree for determining the level of channel
availability based on our proposed scale (Figure 10). We envision
our approach may inspire future research to create more holistic
and interactive labelling systems for SIIDs.

B HUMAN I/O IMPLEMENTATION DETAILS
We present implementation details of sensing volume, sound event,
and brightness in the Human I/O system.

B.1 Direct Sensing: Object Detection
To determine if a hand � is holding an object $ , we apply a rule-
based method that considers the following criteria:

(1) The con�dence score of $ is greater than 0.70.

(2) The nearest distance between landmarks of� and the bound-
ing box of $ is less than 20 pixels.

(3) The average distance between the thumb and the index,
middle, ring, and pinky �ngers is less than 0.25.

(4) $ ’s predicted label is not “person”.
These thresholds were determined empirically during system de-
velopment and have demonstrated e�ectiveness on various objects.
Our method prioritizes the minimization of false positives, resulting
in a low recall but higher precision.

B.2 Direct Sensing: Volume Level
To sense the direct impact on the availability of the hearing channel,
Human I/O measures the volume level of the environment. Speci�-
cally, we use the Web Audio API to access the user’s microphone
and the incoming audio stream. We maintain a bu�er of the 20 most
recent volume measurements to provide a continuous and smooth
volume estimate. The computed volume levels are then converted
to decibels:

dB = 20 · ;>610 (volume) + 100 (1)

This allows for a more intuitive representation of the acoustic envi-
ronment. We format the output as: “The environmental volume level
is around <value> decibels.”

B.3 Direct Sensing: Audio Classi�cation
To provide a more comprehensive understanding of the audio en-
vironment, our system not only measures volume levels but also
identi�es speci�c audio events. We leverage YAMNet[42], a pre-
trained deep neural network designed for audio event classi�cation.
YAMNet is capable of detecting 521 distinct audio event classes,
including barking, laughter, siren, and silence, etc. During audio
processing, we extracted the input bu�er’s channel data and fed it
to the audio classi�er. We stored the top three category names in
an array, and output the top-1 audio class if the con�dence score
is greater than 0.70. We format the output as: “The environmental
sound may contain <audio class>.”

B.4 Direct Sensing: Brightness
To sense the direct impact on the availability of the vision/eye chan-
nel, Human I/O measures the brightness of the environment. We
utilize relative luminance, a metric accounting for human percep-
tion of brightness. We follow the WCAG3 accessibility guideline
to calculate luminance. Speci�cally, we �rst convert each frame to
sRGB color space and calculate luminance using Rec. 709 coe�-
cients:

. =
1
255

(0.2126 ⇤ ' + 0.7152 ⇤⌧ + 0.0722 ⇤ ⌫) (2)

We obtain a luminance value (. ) for each pixel, and compute the
average luminance across all pixels, resulting in a single value
representing perceived brightness in the range of 0 to 1. A value
close to 0 indicates a very dark environment, while a value close to
1 indicates a very bright environment. A value around 0.5 suggests
a medium brightness level. Similar to volume level, we applied
temporal smoothing by averaging 20 luminance values in the past

3WCAG: https://www.w3.org/WAI/GL/wiki/Relative_luminance
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second. We format the output as: “The luminance value of the current
environment is <value>, in the range of 0 to 1.”

C PROMPTS FOR LARGE LANGUAGE
MODELS

We elaborate on the detailed prompts for reasoning on user activity,
their environment, and predicting human input/output channel
availabilities.

C.1 Activity
“An egocentric view of User is showing” +
<BLIP-2 output> +
“Describe what User is doing brie�y and objectively, as concisely as
possible, without guesses or assumptions. Answer in the format of
’User is...’. If it seems that User is not doing anything, answer ‘User
is not doing anything’. If it cannot be inferred, answer ‘Unsure’.”

C.2 Environment
“An egocentric view of User is showing” +
<BLIP-2 output> +
“What location or environment is User likely to be in? Answer in
the format of ’User is in...’If it cannot be inferred, answer ‘Unsure’.”

C.3 Channel Availability Prediction
C.3.1 Full Version.
[Instruction]

Available: The channel is currently not involved in any activity,
or constrained by any environmental factors. It takes low to zero
e�ort to use the channel to do a new task. Example: A user is sitting
at their desk with their hands free, eyes not engaged in any task,
and no background noise interfering with their hearing or speech.

Slightly A�ected: The channel is engaged in an activity or con-
strained by an environmental factor. Given a new task that requires
the channel, users can multitask, easily pause and resume to the
current activity, or easily overcome the situation. Example: A user
is holding a remote control, which can be quickly put down to free
up their hand for another task.

A�ected: The channel is involved in an activity or constrained by
an environmental factor. Given a new task, the user may experience
inconvenience or require e�ort to use the channel. Example: A user
is carrying grocery bags in both hands, making it challenging to
use their hands for other tasks without putting the bags down �rst.

Unavailable: The channel is completely unavailable due to an ac-
tivity or environmental factor, and the user cannot use it for a new
task without substantial adaptation or changing the environment.
Example: A user is attending a loud concert, making it impossible
for them to hear incoming noti�cations or carry on a conversation
without stepping outside.

Given the current activity and environment as described below,
what are the availability of C’s vision/eye, hearing, vision, and
hands/�ngers channels? For each channel provide reasons �rst
and then answer using the scale de�ned above: available, slightly
a�ected, a�ected or unavailable.

Separate each channel prediction with a semicolon (;).

<Few-shot Example 1>
Q: C is washing dishes in a kitchen sink. C is in a kitchen. C’s

hand is washing dishes. The environmental volume is around 40
dB.

A: Let’s think step by step.
Eye Reasoning:While C is washing dishes, their eyes are partially

occupied with the task at hand, which involves looking at the dishes
to ensure they are clean. However, they can still glance away or
multitask to some extent, so their vision is slightly a�ected but
severely impacted.

Eye: Slightly A�ected;
Hearing Reasoning: Washing dishes in the kitchen sink does

not a�ect C’s hearing. They can still hear other things happening
around them.

Hearing: Available;
Vocal Reasoning: C’s speech and voice are not impaired by wash-

ing dishes. They can still talk or communicate with others while
performing the task.

Vocal: Available;
Hand Reasoning: As C’s hand is currently engaged in washing

dishes, it is not available for other tasks. If C needs to use their
hand for something else, they would need to stop washing dishes
and wipe their hands. Hand: Not Available;

[ANSWER COMPLETED]

<Few-shot Example 2>
Q: C is playing an acoustic guitar in a room. C is in a small, cozy

room with minimal furniture and decorations. C’s hand is playing
an acoustic guitar. The environmental volume is around 58 dB.

A: Let’s think step by step.
Eye Reasoning: C is playing an acoustic guitar, which requires

some attention to the placement of �ngers on the frets and possibly
looking at the sheet music or chords. However, their eyes are not
entirely preoccupied with the task and can still be used for other
tasks with some level of e�ciency, by pausing playing guitar and
potential put it away.

Eye: A�ected;
Hearing Reasoning: As C is playing an acoustic guitar in a small

room, the sound from the guitar is likely to be more noticeable.
However, the environmental volume is low, which means that al-
though their hearing may be somewhat a�ected by the sound of
the guitar, they should still be able to hear other things, especially
if they are loud or distinct.

Hearing: A�ected;
Vocal Reasoning: Playing the guitar does not directly involve

using one’s voice or speech, so C should be able to use their voice
for other tasks while playing the guitar. However, their focus may
be divided between playing the guitar and speaking, which could
a�ect their ability to fully concentrate on either task.

Vocal: Available;
Hand Reasoning: C’s hand is actively engaged in playing the

acoustic guitar. Using their hand for other tasks while playing the
guitar would require some e�ort, as it would require them to stop
playing the guitar.

Hand: A�ected;
[ANSWER COMPLETED]
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<Few-shot Example 3>
Q: C is working at a desk with a laptop. C is in a library. C’s

hand is typing on a computer. The environmental volume level is
around 42 dB.

A: Let’s think step by step.
Eye Reasoning:
C is currently using their eyes to focus on the laptop screen in

front of them. While their attention is primarily on the laptop, they
still have the ability to momentarily glance at other visual stimuli
in their environment. However, their ability to focus on other tasks
requiring visual attention may be somewhat a�ected.

Eye: A�ected;
Hearing Reasoning:
The environmental volume level is low, which means that C is

not experiencing any signi�cant auditory impairment. They should
be able to hear other things happening around them without much
di�culty.

Hearing: Available;
Vocal Reasoning:
C is in a library, which typically has rules about maintaining a

quiet environment. While their voice is physically available, using
it for other tasks may be considered inappropriate or disruptive in
this setting. Therefore, their ability to use their speech or voice for
other tasks is situationally a�ected.

Vocal: A�ected;
Hand Reasoning:
C is currently using their hands to interact with the laptop, such

as typing or using the touchpad. They may be able to brie�y use
their hands for other tasks, but their ability to focus on other hand-
related tasks might be a�ected while they are engaged with the
laptop.

Hand: A�ected;
[ANSWER COMPLETED]

[Current Context (example)]
Q: C is working on a piece of wood. C is in a workshop or a

carpentry studio. C’s hand is cutting a piece of wood. The environ-
mental volume level is loud.

A: Let’s think step by step.

C.3.2 Lite Version. In the lite version, we remove all reasoning
steps in the few shot examples, as well as “let’s think step by step.”:

[Few-shot Example 1]
Q: C is washing dishes in a kitchen sink. C is in a kitchen. C

hand is washing dishes. The environmental volume is around 40
dB.

A:
Eye: Slightly A�ected;
Hearing: Available;
Vocal: Available;
Hand: Not Available;
[ANSWER COMPLETED]

[Few-shot Example 2]
Q: C is playing an acoustic guitar in a room. C is in a small, cozy

room with minimal furniture and decorations. C’s hand is playing
an acoustic guitar. The environmental volume is around 58 dB.

A: Eye: A�ected;
Hearing: A�ected;
Vocal: Available;
Hand: A�ected;
[ANSWER COMPLETED]

[Few-shot Example 3]
Q: C is working at a desk with a laptop. C is in a workspace or

o�ce environment. C’s hand is typing on a keyboard. The environ-
mental volume level is around 42 dB.

A: Eye: A�ected;
Hearing: Available;
Vocal: Available;
Hand: A�ected;
[ANSWER COMPLETED]

Figure 11: Distribution of the scenarios in our evaluation
dataset that contains 60 egocentric video recordings from
Ego4D dataset [15].

D EVALUATIONS
D.1 Technical Evaluation
D.1.1 Distribution of Scenarios. Figure 11 the full distribution of
the scenarios of the video recordings used in our technical evalua-
tion.
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D.2 User Study
D.2.1 Task Load Index�estions. We list the set of task load index
questions used in Section 6. After each task, we ask (from 1-very
low, to 7-very high):

(1) Mental Demand: How much mental and perceptual activity
was required? Was the task easy or demanding, simple or
complex?

(2) Physical Demand: Howmuch physical activity was required?
Was the task easy or demanding, slack or strenuous?

(3) Temporal Demand: How much time pressure did you feel
due to the pace at which the tasks or task elements occurred?
Was the pace slow or rapid?

(4) E�ort: How hard did you have to work (mentally and physi-
cally) to accomplish your level of performance?

(5) Frustration Level: How irritated, stressed, and annoyed ver-
sus content, relaxed, and complacent did you feel during the
task?

(6) Overall Performance: How successful were you in perform-
ing the task? How satis�edwere youwith your performance?
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