
Monarch: Google’s Planet-Scale In-Memory
Time Series Database

Colin Adams, Luis Alonso, Benjamin Atkin, John Banning,
Sumeer Bhola, Rick Buskens, Ming Chen, Xi Chen, Yoo Chung,
Qin Jia, Nick Sakharov, George Talbot, Adam Tart, Nick Taylor

Google LLC
monarch-paper@google.com

ABSTRACT
Monarch is a globally-distributed in-memory time series data-
base system in Google. Monarch runs as a multi-tenant ser-
vice and is used mostly to monitor the availability, correct-
ness, performance, load, and other aspects of billion-user-
scale applications and systems at Google. Every second, the
system ingests terabytes of time series data into memory and
serves millions of queries. Monarch has a regionalized archi-
tecture for reliability and scalability, and global query and
configuration planes that integrate the regions into a unified
system. On top of its distributed architecture, Monarch has
flexible configuration, an expressive relational data model,
and powerful queries. This paper describes the structure of
the system and the novel mechanisms that achieve a reliable
and flexible unified system on a regionalized distributed ar-
chitecture. We also share important lessons learned from a
decade’s experience of developing and running Monarch as
a service in Google.

PVLDB Reference Format:
Colin Adams, Luis Alonso, Benjamin Atkin, John Banning, Sumeer
Bhola, Rick Buskens, Ming Chen, Xi Chen, Yoo Chung, Qin
Jia, Nick Sakharov, George Talbot, Adam Tart, Nick Taylor.
Monarch: Google’s Planet-Scale In-Memory Time Series Data-
base. PVLDB, 13(12): 3181-3194, 2020.
DOI: https://doi.org/10.14778/3181-3194

1. INTRODUCTION
Google has massive computer system monitoring require-

ments. Thousands of teams are running global user facing
services (e.g., YouTube, GMail, and Google Maps) or pro-
viding hardware and software infrastructure for such services
(e.g., Spanner [13], Borg [46], and F1 [40]). These teams
need to monitor a continually growing and changing collec-
tion of heterogeneous entities (e.g. devices, virtual machines
and containers) numbering in the billions and distributed
around the globe. Metrics must be collected from each of

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3181-3194

these entities, stored in time series, and queried to support
use cases such as: (1) Detecting and alerting when moni-
tored services are not performing correctly; (2) Displaying
dashboards of graphs showing the state and health of the
services; and (3) Performing ad hoc queries for problem di-
agnosis and exploration of performance and resource usage.

Borgmon [47] was the initial system at Google responsi-
ble for monitoring the behavior of internal applications and
infrastructure. Borgmon revolutionized how people think
about monitoring and alerting by making collection of met-
ric time series a first-class feature and providing a rich query
language for users to customize analysis of monitoring data
tailored to their needs. Between 2004 and 2014, Borgmon
deployments scaled up significantly due to growth in moni-
toring traffic, which exposed the following limitations:

• Borgmon’s architecture encourages a decentralized op-
erational model where each team sets up and manages
their own Borgmon instances. However, this led to
non-trivial operational overhead for many teams who
do not have the necessary expertise or staffing to run
Borgmon reliably. Additionally, users frequently need
to examine and correlate monitoring data across appli-
cation and infrastructure boundaries to troubleshoot
issues; this is difficult or impossible to achieve in a
world of many isolated Borgmon instances;

• Borgmon’s lack of schematization for measurement di-
mensions and metric values has resulted in semantic
ambiguities of queries, limiting the expressiveness of
the query language during data analysis;

• Borgmon does not have good support for a distribution
(i.e., histogram) value type, which is a powerful data
structure that enables sophisticated statistical analysis
(e.g., computing the 99th percentile of request laten-
cies across many servers); and

• Borgmon requires users to manually shard the large
number of monitored entities of global services across
multiple Borgmon instances and set up a query evalu-
ation tree.

With these lessons in mind, Monarch was created as the
next-generation large-scale monitoring system at Google. It
is designed to scale with continued traffic growth as well as
supporting an ever-expanding set of use cases. It provides
multi-tenant monitoring as a single unified service for all

teams, minimizing their operational toil. It has a schema-
tized data model facilitating sophisticated queries and com-
prehensive support of distribution-typed time series. Mon-
arch has been in continuous operation since 2010, collecting,
organizing, storing, and querying massive amounts of time
series data with rapid growth on a global scale. It presently
stores close to a petabyte of compressed time series data in
memory, ingests terabytes of data per second, and serves
millions of queries per second.

This paper makes the following contributions:

• We present the architecture of Monarch, a multi-tenant,
planet-scale in-memory time series database. It is de-
ployed across many geographical regions and supports
the monitoring and alerting needs of Google’s applica-
tions and infrastructure. Monarch ingests and stores
monitoring time series data regionally for higher reli-
ability and scalability, is equipped with a global query
federation layer to present a global view of geographi-
cally distributed data, and provides a global configura-
tion plane for unified control. Monarch stores data in
memory to isolate itself from failures at the persistent
storage layer for improved availability (it is also backed
by log files, for durability, and a long-term repository).

• We describe the novel, type-rich relational data model
that underlies Monarch’s expressive query language for
time series analysis. This allows users to perform a
wide variety of operations for rich data analysis while
allowing static query analysis and optimizations. The
data model supports sophisticated metric value types
such as distribution for powerful statistical data analy-
sis. To our knowledge, Monarch is the first planet-scale
in-memory time series database to support a relational
time series data model for monitoring data at the very
large scale of petabyte in-memory data storage while
serving millions of queries per second.

• We outline Monarch’s (1) scalable collection pipeline
that provides robust, low-latency data ingestion, au-
tomatic load balancing, and collection aggregation for
significant efficiency gains; (2) powerful query subsys-
tem that uses an expressive query language, an effi-
cient distributed query execution engine, and a com-
pact indexing subsystem that substantially improves
performance and scalability; and (3) global configu-
ration plane that gives users fine-grained control over
many aspects of their time series data;

• We present the scale of Monarch and describe the im-
plications of key design decisions on Monarch’s scala-
bility. We also share the lessons learned while devel-
oping, operating, and evolving Monarch in the hope
that they are of interest to readers who are building
or operating large-scale monitoring systems.

The rest of the paper is organized as follows. In Section 2
we describe Monarch’s system architecture and key compo-
nents. In Section 3 we explain its data model. We describe
Monarch’s data collection in Section 4; its query subsystem,
including the query language, execution engine, and index
in Section 5; and its global configuration system in Sec-
tion 6. We evaluate Monarch experimentally in Section 7.
In Section 8 we compare Monarch to related work. We share
lessons learned from developing and operating Monarch in
Section 9, and conclude the paper in Section 10.

Logging & Recovery
Components

Root
Mixers

Root
Index Servers

Root
Evaluator

Zone
Mixers

Configuration
Mirror

Zone
Evaluator

Zone
Index Servers

Range
Assigner

GLOBAL

Zone-1

Configuration
Server

Other
Zones

WriteQuery Index Config File I/OAssign

LeavesLeaves

Leaf
Routers

Ingestion
Routers

Figure 1: System overview. Components on the left
(blue) persist state; those in the middle (green) execute
queries; components on the right (red) ingest data. For
clarity, some inter-component communications are omitted.

2. SYSTEM OVERVIEW
Monarch’s design is determined by its primary usage for

monitoring and alerting. First, Monarch readily trades con-
sistency for high availability and partition tolerance [21, 8,
9]. Writing to or reading from a strongly consistent data-
base like Spanner [13] may block for a long time; that is
unacceptable for Monarch because it would increase mean-
time-to-detection and mean-time-to-mitigation for potential
outages. To promptly deliver alerts, Monarch must serve
the most recent data in a timely fashion; for that, Monarch
drops delayed writes and returns partial data for queries if
necessary. In the face of network partitions, Monarch con-
tinues to support its users’ monitoring and alerting needs,
with mechanisms to indicate the underlying data may be in-
complete or inconsistent. Second, Monarch must be low de-
pendency on the alerting critical path. To minimize depen-
dencies, Monarch stores monitoring data in memory despite
the high cost. Most of Google’s storage systems, includ-
ing Bigtable [10], Colossus ([36], the successor to GFS [20]),
Spanner [13], Blobstore [18], and F1 [40], rely on Monarch
for reliable monitoring; thus, Monarch cannot use them on
the alerting path to avoid a potentially dangerous circular
dependency. As a result, non-monitoring applications (e.g.,
quota services) using Monarch as a global time series data-
base are forced to accept reduced consistency.

The primary organizing principle of Monarch, as shown
in Figure 1, is local monitoring in regional zones combined
with global management and querying. Local monitoring
allows Monarch to keep data near where it is collected, re-
ducing transmission costs, latency, and reliability issues, and
allowing monitoring within a zone independently of compo-
nents outside that zone. Global management and querying
supports the monitoring of global systems by presenting a
unified view of the whole system.

Each Monarch zone is autonomous, and consists of a col-
lection of clusters, i.e., independent failure domains, that
are in a strongly network-connected region. Components in
a zone are replicated across the clusters for reliability. Mon-
arch stores data in memory and avoids hard dependencies so
that each zone can work continuously during transient out-
ages of other zones, global components, and underlying stor-
age systems. Monarch’s global components are geographi-
cally replicated and interact with zonal components using
the closest replica to exploit locality.

“sql-dba”
“sql-dba”

… ...
“monarch”
“monarch”
“monarch”

“db.server”
“db.server”

… ...
“mixer.root”

“mixer.zone1”
“mixer.zone2”

time series key columns
value column

ComputeTask
user

(string)
job

(string)
cluster
(string)

task_num
(int)

“aa”
“aa”
...

“Ig”
“ob”
“nj”

123
123
...
0

183
23

“DatabaseService”
“DatabaseService”

… ...
“MonarchService”
“MonarchService”
“MonarchService”

“Insert”
“Query”

... ...
“Query”
“Query”
“Query”

/rpc/server/latency
service
(string)

command
(string)

(cumulative)
(distribution)

Target
Schema

Metric
Schema

10:40 10:41 10:42 ...
10:40 10:41 10:42 ...

… ...
10:40 10:41 10:42 ...
10:40 10:41 10:42 ...
10:40 10:41 10:42 ...

Figure 2: Monarch data model example. The top left is a target schema named ComputeTask with four key columns.
The top right is the schema for a metric named /rpc/server/latency with two key columns and one value column. Each
row of the bottom table is a time series; its key is the concatenation of all key columns; its value column is named after the
last part of its metric name (i.e., latency). Each value is an array of timestamped value points (i.e., distributions in this
particular example). We omit the start time timestamps associated with cumulative time series.

Monarch components can be divided by function into three
categories: those holding state, those involved in data inges-
tion, and those involved in query execution.

The components responsible for holding state are:

• Leaves store monitoring data in an in-memory time
series store.

• Recovery logs store the same monitoring data as the
leaves, but on disk. This data ultimately gets rewritten
into a long-term time series repository (not discussed
due to space constraints).

• A global configuration server and its zonal mirrors
hold configuration data in Spanner [13] databases.

The data ingestion components are:

• Ingestion routers that route data to leaf routers in
the appropriate Monarch zone, using information in
time series keys to determine the routing.

• Leaf routers that accept data to be stored in a zone
and route it to leaves for storage.

• Range assigners that manage the assignment of data
to leaves, to balance the load among leaves in a zone.

The components involved in query execution are:

• Mixers that partition queries into sub-queries that
get routed to and executed by leaves, and merge sub-
query results. Queries may be issued at the root level
(by root mixers) or at the zone level (by zone mixers).
Root-level queries involve both root and zone mixers.

• Index servers that index data for each zone and leaf,
and guide distributed query execution.

• Evaluators that periodically issue standing queries
(see Section 5.2) to mixers and write the results back
to leaves.

Note that leaves are unique in that they support all three
functions. Also, query execution operates at both the zonal
and global levels.

3. DATA MODEL
Conceptually, Monarch stores monitoring data as time se-

ries in schematized tables. Each table consists of multiple
key columns that form the time series key, and a value col-
umn for a history of points of the time series. See Figure 2
for an example. Key columns, also referred to as fields, have
two sources: targets and metrics, defined as follows.

3.1 Targets
Monarch uses targets to associate each time series with its

source entity (or monitored entity), which is, for example,
the process or the VM that generates the time series. Each
target represents a monitored entity, and conforms to a tar-
get schema that defines an ordered set of target field names
and associated field types. Figure 2 shows a popular target
schema named ComputeTask; each ComputeTask target iden-
tifies a running task in a Borg [46] cluster with four fields:
user, job, cluster, and task num.

For locality, Monarch stores data close to where the data
is generated. Each target schema has one field annotated
as location; the value of this location field determines the
specific Monarch zone to which a time series is routed and
stored. For example, the location field of ComputeTask is
cluster; each Borg cluster is mapped to one (usually the
closest) Monarch zone. As described in Section 5.3, location
fields are also used to optimize query execution.

Within each zone, Monarch stores time series of the same
target together in the same leaf because they originate from
the same entity and are more likely to be queried together
in a join. Monarch also groups targets into disjoint target
ranges in the form of [Sstart, Send) where Sstart and Send

are the start and end target strings. A target string repre-
sents a target by concatenating the target schema name and
field values in order1. For example, in Figure 2, the target
string ComputeTask::sql-dba::db.server::aa::0876 rep-
resents the Borg task of a database server. Target ranges are
used for lexicographic sharding and load balancing among
leaves (see Section 4.2); this allows more efficient aggrega-
tion across adjacent targets in queries (see Section 5.3).

1The encoding also preserves the lexicographic order of
the tuples of target field values, i.e., S(〈a1, a2, · · · , an〉) ≤
S(〈b1, b2, · · · , bn〉) ⇐⇒ 〈a1, a2, · · · , an〉 ≤ 〈b1, b2, · · · , bn〉,
where S() is the string encoding function, and ai and bi are
the i-th target-field values of targets a and b, respectively.

10 20 300

10

20

 0
10 20 300

10

20

 0
10 20 300

10

20

 0
RPC Latency
 (ms)

10 20 300

10

20

 0

Count

10:40 ↦ 10:41 10:40 ↦ 10:42 10:40 ↦ 10:43 10:43 ↦ 10:44

Figure 3: An example cumulative distribution time
series for metric /rpc/server/latency. There are four
points in this time series; each point value is a histogram,
whose bucket size is 10ms. Each point has a timestamp and
a start timestamp. For example, the 2nd point says that
between 10:40 and 10:42, a total of 30 RPCs were served,
among which 20 RPCs took 0–10ms and 10 RPCs took 10–
20ms. The 4th point has a new start timestamp; between
10:43 and 10:44, 10 RPCs were served and each took 0–10ms.

3.2 Metrics
A metric measures one aspect of a monitored target, such

as the number of RPCs a task has served, the memory uti-
lization of a VM, etc. Similar to a target, a metric conforms
to a metric schema, which defines the time series value type
and a set of metric fields. Metrics are named like files. Fig-
ure 2 shows an example metric called /rpc/server/latency

that measures the latency of RPCs to a server; it has two
metric fields that distinguish RPCs by service and command.

The value type can be boolean, int64, double, string,
distribution, or tuple of other types. All of them are
standard types except distribution, which is a compact
type that represents a large number of double values. A
distribution includes a histogram that partitions a set of
double values into subsets called buckets and summarizes
values in each bucket using overall statistics such as mean,
count, and standard deviation [28]. Bucket boundaries are
configurable for trade-off between data granularity (i.e., ac-
curacy) and storage costs: users may specify finer buckets
for more popular value ranges. Figure 3 shows an exam-
ple distribution-typed time series of /rpc/server/latency

which measures servers’ latency in handling RPCs; and it
has a fixed bucket size of 10ms. Distribution-typed points
of a time series can have different bucket boundaries; inter-
polation is used in queries that span points with different
bucket boundaries. Distributions are an effective feature for
summarizing a large number of samples. Mean latency is not
enough for system monitoring—we also need other statistics
such as 99th and 99.9th percentiles. To get these efficiently,
histogram support—aka distribution—is indispensable.

Exemplars. Each bucket in a distribution may contain
an exemplar of values in that bucket. An exemplar for RPC
metrics, such as /rpc/server/latency, may be a Dapper
RPC trace [41], which is very useful in debugging high RPC
latency. Additionally, an exemplar contains information of
its originating target and metric field values. The informa-
tion is kept during distribution aggregation, therefore a user
can easily identify problematic tasks via outlier exemplars.
Figure 4 shows a heat map of a distribution-typed time se-
ries including the exemplar of a slow RPC that may explain
the tail latency spike in the middle of the graph.

Metric types. A metric may be a gauge or a cumu-
lative. For each point of a gauge time series, its value is
an instantaneous measurement, e.g., queue length, at the
time indicated by the point timestamp. For each point of
a cumulative time series, its value is the accumulation of
the measured aspect from a start time to the time indicated

Bucket: [6.45M .. 7.74M)
Count: 1

Exemplar value: 6.92.M
@2019/8/16 10:53:27

RPC Trace

Exemplar Fields
 user: Monarch
 job: mixer.zone1
 cluster: aa
task_num: 0
 service: MonarchService
command: Query

Go to Task

Figure 4: A heat map of /rpc/server/latency. Click-
ing an exemplar shows the captured RPC trace.

by its timestamp. For example, /rpc/server/latency in
Figure 3 is a cumulative metric: each point is a latency dis-
tribution of all RPCs from its start time, i.e., the start time
of the RPC server. Cumulative metrics are robust in that
they still make sense if some points are missing, because
each point contains all changes of earlier points sharing the
same start time. Cumulative metrics are important to sup-
port distributed systems which consist of many servers that
may be regularly restarted due to job scheduling [46], where
points may go missing during restarts.

4. SCALABLE COLLECTION
To ingest a massive volume of time series data in real

time, Monarch uses two divide-and-conquer strategies and
one key optimization that aggregates data during collection.

4.1 Data Collection Overview
The right side of Figure 1 gives an overview of Monarch’s

collection path. The two levels of routers perform two lev-
els of divide-and-conquer: ingestion routers regionalize time
series data into zones according to location fields, and leaf
routers distribute data across leaves according to the range
assigner. Recall that each time series is associated with a
target and one of the target fields is a location field.

Writing time series data into Monarch follows four steps:

1. A client sends data to one of the nearby ingestion
routers, which are distributed across all our clusters.
Clients usually use our instrumentation library, which
automatically writes data at the frequency necessary
to fulfill retention policies (see Section 6.2.2).

2. The ingestion router finds the destination zone based
on the value of the target’s location field, and forwards
the data to a leaf router in the destination zone. The
location-to-zone mapping is specified in configuration
to ingestion routers and can be updated dynamically.

3. The leaf router forwards the data to the leaves re-
sponsible for the target ranges containing the target.
Within each zone, time series are sharded lexicographi-
cally by their target strings (see Section 4.2). Each leaf
router maintains a continuously-updated range map
that maps each target range to three leaf replicas.
Note that leaf routers get updates to the range map
from leaves instead of the range assigner. Also, target
ranges jointly cover the entire string universe; all new

targets will be picked up automatically without inter-
vention from the assigner. So data collection continues
to work if the assigner suffers a transient failure.

4. Each leaf writes data into its in-memory store and re-
covery logs. The in-memory time series store is highly
optimized: it (1) encodes timestamps efficiently and
shares timestamp sequences among time series from
the same target; (2) handles delta and run-length en-
coding of time series values of complex types including
distribution and tuple; (3) supports fast read, write,
and snapshot; (4) operates continuously while process-
ing queries and moving target ranges; and (5) mini-
mizes memory fragmentation and allocation churn. To
achieve a balance between CPU and memory [22], the
in-memory store performs only light compression such
as timestamp sharing and delta encoding. Timestamp
sharing is quite effective: one timestamp sequence is
shared by around ten time series on average.

Note that leaves do not wait for acknowledgement when
writing to the recovery logs per range. Leaves write logs to
distributed file system instances (i.e., Colossus [18]) in mul-
tiple distinct clusters and independently fail over by prob-
ing the health of a log. However, the system needs to con-
tinue functioning even when all Colossus instances are un-
available, hence the best-effort nature of the write to the
log. Recovery logs are compacted, rewritten into a format
amenable for fast reads (leaves write to logs in a write-
optimized format), and merged into the long-term repository
by continuously-running background processes whose details
we omit from this paper. All log files are also asynchronously
replicated across three clusters to increase availability.

Data collection by leaves also triggers updates in the zone
and root index servers which are used to constrain query
fanout (see Section 5.4).

4.2 Intra-zone Load Balancing
As a reminder, a table schema consists of a target schema

and a metric schema. The lexicographic sharding of data
in a zone uses only the key columns corresponding to the
target schema. This greatly reduces ingestion fanout: in
a single write message, a target can send one time series
point each for hundreds of different metrics; and having all
the time series for a target together means that the write
message only needs to go to up to three leaf replicas. This
not only allows a zone to scale horizontally by adding more
leaf nodes, but also restricts most queries to a small subset of
leaf nodes. Additionally, commonly used intra-target joins
on the query path can be pushed down to the leaf-level,
which makes queries cheaper and faster (see Section 5.3).

In addition, we allow heterogeneous replication policies (1
to 3 replicas) for users to trade off between availability and
storage cost. Replicas of each target range have the same
boundaries, but their data size and induced CPU load may
differ because, for example, one user may retain only the first
replica at a fine time granularity while another user retains
all three replicas at a coarse granularity. Therefore, the
range assigner assigns each target range replica individually.
Of course, a leaf is never assigned multiple replicas of a single
range. Usually, a Monarch zone contains leaves in multiple
failure domains (clusters); the assigner assigns the replicas
for a range to different failure domains.

Range assigners balance load in ways similar to Slicer [1].
Within each zone, the range assigner splits, merges, and
moves ranges between leaves to cope with changes in the
CPU load and memory usage imposed by the range on the
leaf that stores it. While range assignment is changing, data
collection works seamlessly by taking advantage of recovery
logs. For example (range splits and merges are similar), the
following events occur once the range assigner decided to
move a range, say R, to reduce the load on the source leaf:

1. The range assigner selects a destination leaf with light
load and assigns R to it. The destination leaf starts to
collect data for R by informing leaf routers of its new
assignment of R, storing time series with keys within
R, and writing recovery logs.

2. After waiting for one second for data logged by the
source leaf to reach disks2, the destination leaf starts
to recover older data within R, in reverse chronologi-
cal order (since newer data is more critical), from the
recovery logs.

3. Once the destination leaf fully recovers data in R,
it notifies the range assigner to unassign R from the
source leaf. The source leaf then stops collecting data
for R and drops the data from its in-memory store.

During this process, both the source and destination leaves
are collecting, storing, and logging the same data simulta-
neously to provide continuous data availability for the range
R. Note that it is the job of leaves, instead of the range as-
signer, to keep leaf routers updated about range assignments
for two reasons: (1) leaves are the source of truth where data
is stored; and (2) it allows the system to degrade gracefully
during a transient range assigner failure.

4.3 Collection Aggregation
For some monitoring scenarios, it is prohibitively expen-

sive to store time series data exactly as written by clients.
One example is monitoring disk I/O, served by millions of
disk servers, where each I/O operation (IOP) is accounted
to one of tens of thousands of users in Google. This gener-
ates tens of billions of time series, which is very expensive
to store naively. However, one may only care about the ag-
gregate IOPs per user across all disk servers in a cluster.
Collection aggregation solves this problem by aggregating
data during ingestion.

Delta time series. We usually recommend clients use
cumulative time series for metrics such as disk IOPs because
they are resilient to missing points (see Section 3.2). How-
ever, aggregating cumulative values with very different start
times is meaningless. Therefore, collection aggregation re-
quires originating targets to write deltas between adjacent
cumulative points instead of cumulative points directly. For
example, each disk server could write to Monarch every TD

seconds the per-user IOP counts it served in the past TD sec-
onds. The leaf routers accept the writes and forward all the
writes for a user to the same set of leaf replicas. The deltas
can be pre-aggregated in the client and the leaf routers, with
final aggregation done at the leaves.
2Recall that, to withstand file system failures, leaves do not
wait for log writes to be acknowledged. The one second
wait length is almost always sufficient in practice. Also,
the range assigner waits for the recovery from logs to finish
before finalizing the range movement.

TrueTime.now.latest

bucket bucketbucket
(finalized)

deltadelta
The oldest delta is rejected
because its end time is out
of the admission window.

The two latest
deltas are admitted
into the two latest
buckets.

delta

x

TW
TB Admission Window

TD

Figure 5: Collection aggregation using buckets and
a sliding admission window.

Bucketing. During collection aggregation, leaves put
deltas into consecutive time buckets according to the end
time of deltas, as illustrated in Figure 5. The bucket length
TB is the period of the output time series, and can be con-
figured by clients. The bucket boundaries are aligned differ-
ently among output time series for load-smearing purposes.
Deltas within each bucket are aggregated into one point ac-
cording to a user-selected reducer; e.g., the disk I/O example
uses a sum reducer that adds up the number of IOPs for a
user from all disk servers.

Admission window. In addition, each leaf also main-
tains a sliding admission window and rejects deltas older
than the window length TW . Therefore, older buckets be-
come immutable and generate finalized points that can be
efficiently stored with delta and run-length encoding. The
admission window also enables Monarch to recover quickly
from network congestion; otherwise, leaves may be flooded
by delayed traffic and never catch up to recent data, which
is more important for critical alerting. In practice, rejected
writes comprise only a negligible fraction of traffic. Once a
bucket’s end time moves out of the admission window, the
bucket is finalized: the aggregated point is written to the
in-memory store and the recovery logs.

To handle clock skews, we use TrueTime [13] to times-
tamp deltas, buckets, and the admission window. To com-
promise between ingestion traffic volume and time series ac-
curacy, the delta period TD is set to 10 seconds in prac-
tice. The length of the admission window is TW = TD +
TT .now .latest − TT .now .earliest , where TT is TrueTime.
The bucket length, 1s ≤ TB ≤ 60s, is configured by clients.
It takes time TB + TW to finalize a bucket, so recovery logs
are normally delayed by up to around 70 seconds with a max
TB of 60 seconds. During range movement, TB is temporar-
ily adjusted to 1 second, since 70 seconds is too long for load
balancing, as the leaf may be overloaded in the meantime.

5. SCALABLE QUERIES
To query time series data, Monarch provides an expres-

sive language powered by a distributed engine that localizes
query execution using static invariants and a novel index.

5.1 Query Language
A Monarch query is a pipeline of relational-algebra-like

table operations, each of which takes zero or more time se-
ries tables as input and produces a single table as output.
Figure 6 shows a query that returns the table shown in Fig-
ure 7: the RPC latency distribution of a set of tasks broken
down by build labels (i.e., binary versions). This query can
be used to detect abnormal releases causing high RPC la-
tency. Each line in Figure 6 is a table operation.

1 { fetch ComputeTask ::/rpc/server/latency
2 | filter user=="monarch"
3 | align delta(1h)
4 ; fetch ComputeTask ::/ build/label
5 | filter user=="monarch" && job=~"mixer.*"
6 } | join
7 | group_by [label], aggregate(latency)

Figure 6: An example query of latency distributions
broken down by build label. The underlined are table
operators. delta and aggregate are functions. “=~” de-
notes regular expression matching.

Value column: latency (aka /rpc/server/latency)

 10:40 10:41 10:42 ...
 10:40 10:41 10:42 ...
 10:40 10:41 10:42 ...

“mixer-20190105-1”
“mixer-20190105-2”
“mixer-20190110-0”

Key column: label (aka /build/label)

Figure 7: An example output time series table.

The fetch operation on Line 1 reads the time series table
defined by the named target and metric schema from Fig-
ure 2. On Line 4, the fetch reads the table for the same
target schema and metric /build/label whose time series
value is a build label string for the target.

The filter operation has a predicate that is evaluated
for each time series and only passes through those for which
the predicate is true. The predicate on Line 2 is a single
equality field predicate on the user field. Predicates can be
arbitrarily complex, for example combining field predicates
with logical operators as shown on Line 5.

The align operation on Line 3 produces a table in which
all the time series have timestamps at the same regularly
spaced interval from the same start time. The delta win-
dow operation estimates the latency distribution between
the time of each aligned output point and one hour ear-
lier. Having aligned input is important for any operation
that combines time series, such as join or group by. The
align can be automatically supplied where needed as it is
for /build/label (which lacks an explicit align operation).

The join operation on Line 6 does a natural (inner) join
on the key columns of the input tables from the queries
separated by the semicolon in the brackets { }. It produces
a table with key columns from both inputs and a time series
with dual value points: the latency distribution and the
build label. The output contains a time series for each pair of
input time series whose common key columns match. Left-,
right-, and full-outer joins are also supported.

The group by operation on Line 7 makes the key columns
for each time series to contain only label, the build label.
It then combines all the time series with the same key (same
build label) by aggregating the distribution values, point by
point. Figure 7 shows its results.

The operations in Figure 6 are a subset of the available
operations, which also include the ability to choose the top
n time series according to a value expression, aggregate val-
ues across time as well as across different time series, remap
schemas and modify key and value columns, union input ta-
bles, and compute time series values with arbitrary expres-
sions such as extracting percentiles from distribution values.

5.2 Query Execution Overview
There are two kinds of queries in the system: ad hoc

queries and standing queries. Ad hoc queries come from

users outside of the system. Standing queries are periodic
materialized-view queries whose results are stored back into
Monarch; teams use them: (1) to condense data for faster
subsequent querying and/or cost saving; and (2) to generate
alerts. Standing queries can be evaluated by either regional
zone evaluators or global root evaluators. The decision is
based on static analysis of the query and the table schemas
of the inputs to the query (details in Section 5.3). The ma-
jority of standing queries are evaluated by zone evaluators
which send identical copies of the query to the correspond-
ing zone mixers and write the output to their zone. Such
queries are efficient and resilient to network partition. The
zone and root evaluators are sharded by hashes of stand-
ing queries they process, allowing us to scale to millions of
standing queries.

Query tree. As shown in Figure 1, global queries are
evaluated in a tree hierarchy of three levels. A root mixer
receives the query and fans out to zone mixers, each of which
fans out to leaves in that zone. The zonal standing queries
are sent directly to zone mixers. To constrain the fanout,
root mixers and zone mixers consult the index servers for
a set of potentially relevant children for the query (see Sec-
tion 5.4). A leaf or zone is relevant if the field hints index
indicates that it could have data relevant to the query.

Level analysis. When a node receives a query, it de-
termines the levels at which each query operation runs and
sends down only the parts to be executed by the lower levels
(details in Section 5.3). In addition, the root of the execu-
tion tree performs security and access-control checks and
potentially rewrites the query for static optimization. Dur-
ing query execution, lower-level nodes produce and stream
the output time series to the higher-level nodes which com-
bine the time series from across their children. Higher-level
nodes allocate buffer space for time series from each par-
ticipating child according to the network latency from that
child, and control the streaming rate by a token-based flow
control algorithm.

Replica resolution. Since the replication of data is
highly configurable, replicas may retain time series with dif-
ferent duration and frequency. Additionally, as the target
ranges may be moving (see Section 4.2), some replicas can
be in recovery with incomplete data. To choose the leaf with
the best quality of data in terms of time bounds, density, and
completeness, zonal queries go through the replica resolution
process before processing data. Relevant leaves return the
matched targets and their quality summary, and the zone
mixer shards the targets into target ranges, selecting for
each range a single leaf based on the quality. Each leaf then
evaluates the table operations sent to it for the target range
assigned to it. Though the range assigner has the target
information, replica resolution is done purely from the tar-
get data actually on each leaf. This avoids a dependency on
the range assigner and avoids overloading it. While process-
ing queries, relevant data may be deleted because of range
movements and retention expiration; to prevent that, leaves
take a snapshot of the input data until queries finish.

User isolation. Monarch runs as a shared service; the
resources on the query execution nodes are shared among
queries from different users. For user isolation, memory used
by queries is tracked locally and across nodes, and queries
are cancelled if a user’s queries use too much memory. Query
threads are put into per-user cgroups [45], each of which is
assigned a fair share of CPU time.

5.3 Query Pushdown
Monarch pushes down evaluation of a query’s table opera-

tions as close to the source data as possible. This pushdown
uses static invariants on the data layout, derived from the
target schema definition, to determine the level at which an
operation can be fully completed, with each node in this
level providing a disjoint subset of all output time series
for the operation. This allows the subsequent operations to
start from that level. Query pushdown increases the scale
of queries that can be evaluated and reduces query latency
because (1) more evaluation at lower levels means more con-
currency and evenly distributed load; and (2) full or partial
aggregations computed at lower levels substantially decrease
the amount of data transferred to higher level nodes.

Pushdown to zone. Recall that data is routed to zones
by the value in the location target field. Data for a specific
location can live only in one zone. If an output time series
of an operation only combines input time series from a sin-
gle zone, the operation can complete at the zone level. For
example, a group by where the output time series keys con-
tain the location field, and a join between two inputs with
a common location field can both be completed at the zone
level. Therefore, the only standing queries issued by the root
evaluators are those that either (a) operate on some input
data in the regionless zone which stores the standing query
results with no location field, or (b) aggregate data across
zones, for example by either dropping the location field in
the input time series or by doing a top n operation across
time series in different zones. In practice, this allows up to
95% of standing queries to be fully evaluated at zone level
by zone evaluators, greatly increasing tolerance to network
partition. Furthermore, this significantly reduces latency by
avoiding cross-region writes from root evaluators to leaves.

Pushdown to leaf. As mentioned in Section 4.2, the
data is sharded according to target ranges across leaves within
a zone. Therefore, a leaf has either none or all of the data
from a target. Operations within a target complete at the
leaf level. For example, a group by that retains all the tar-
get fields in the output and a join whose inputs have all the
target fields can both complete at the leaf level. Intra-target
joins are very common in our monitoring workload, such as
filtering with slow changing metadata time series stored in
the same target. In the example query in Figure 6, the join

completes at the leaf and /build/label can be considered
as metadata (or a property) of the target (i.e., the running
task), which changes only when a new version of the binary
is pushed. In addition, since a target range contains con-
secutive targets (i.e., the first several target fields might be
identical for these targets), a leaf usually contains multiple
targets relevant to the query. Aggregations are pushed down
as much as possible, even when they cannot be completed
at the leaf level. The leaves aggregate time series across
the co-located targets and send these results to the mixers.
The group by in the example query is executed at all three
levels. No matter how many input time series there are for
each node, the node only outputs one time series for each
group (i.e., one time series per build label in the example).

Fixed Fields. Some fields can be determined to fix to
constant values by static analysis on the query and schemas,
and they are used to push down more query operations. For
example, when fetching time series from a specific cluster
with a filter operation of filter cluster == "om", a global
aggregation can complete at the zone level, because the in-

put time series are stored in only one zone that contains the
specific cluster value om.

5.4 Field Hints Index
For high scalability, Monarch uses field hints index (FHI),

stored in index servers, to limit the fanout when sending a
query from parent to children, by skipping irrelevant chil-
dren (those without input data to the particular query).
An FHI is a concise, continuously-updated index of time
series field values from all children. FHIs skip irrelevant
children by analyzing field predicates from queries, and han-
dle regular expression predicates efficiently without iterating
through the exact field values. FHI works with zones with
trillions of time series keys and more than 10,000 leaves while
keeping the size small enough to fit in memory. False posi-
tives are possible in FHI just as in Bloom filters [7]; that is,
FHIs may also return irrelevant children. False positives do
not affect correctness because irrelevant children are ignored
via replica resolution later.

A field hint is an excerpt of a field value. The most com-
mon hints are trigrams; for example, ^^m, ^mo, mon, ona,
nar, arc, rch, ch$, and h$$ are trigram hints of field value
monarch where ^ and $ represent the start and end of text,
respectively. A field hint index is essentially a multimap that
maps the fingerprint of a field hint to the subset of children
containing the hint. A fingerprint is an int64 generated
deterministically from three inputs of a hint: the schema
name, the field name, and the excerpt (i.e., trigrams).

When pushing down a query, a root (zone) mixer extracts
a set of mandatory field hints from the query, and looks
up the root (zone) FHI for the destination zones (leaves).
Take the query in Figure 6 for example: its predicate reg-
exp ‘mixer.*’ entails ^^m, ^mi, mix, ixe, and xer. Any
child matching the predicate must contain all these trigrams.
Therefore, only children in FHI[^^m] ∩ FHI[^mi] ∩ FHI[mix]

∩ FHI[ixe] ∩ FHI[xer] need to be queried.
We minimize the size of FHI to fit it in memory so that

Monarch still works during outages of secondary storage sys-
tems. Storing FHI in memory also allows fast updates and
lookups. FHI trades accuracy for a small index size: (1)
It indexes short excerpts to reduce the number of unique
hints. For instance, there are at most 263 unique trigrams
for lowercase letters. Consequently, in the previous example,
FHI considers a leaf with target job:‘mixixer’ relevant al-
though the leaf’s target does not match regexp ‘mixer.*’.
(2) FHI treats each field separately. This causes false posi-
tives for queries with predicates on multiple fields. For ex-
ample, a leaf with two targets user:‘monarch’,job:‘leaf’
and user:‘foo’,job:‘mixer.root’ is considered by FHI
a match for predicate user==‘monarch’&&job=~‘mixer.*’

(Figure 6) although neither of the two targets actually match.
Despite their small sizes (a few GB or smaller), FHIs re-

duce query fanout by around 99.5% at zone level and by
80% at root level. FHI also has four additional features:

1. Indexing trigrams allows FHIs to filter queries with
regexp-based field predicates. The RE2 library can
turn a regexp into a set algebra expression with tri-
grams and operations (union and intersection) [14]. To
match a regexp predicate, Monarch simply looks up its
trigrams in FHIs and evaluates the expression.

2. FHIs allow fine-grained tradeoff between index accu-
racy and size by using different excerpts. For instance,

string fields with small character sets (e.g. ISBN) can
be configured to use fourgrams and full strings, in ad-
dition to trigrams, as excerpts for higher accuracy.

3. Monarch combines static analysis and FHIs to further
reduce the fanout of queries with joins: it sends the
example query (which contains a leaf-level inner join)
only to leaves satisfying both of the two filter predicates
in Figure 6 (the join will only produce output on such
leaves anyway). This technique is similarly applied to
queries with nested joins of varying semantics.

4. Metric names are also indexed, by full string, and are
treated as values of a reserved “:metric” field. Thus,
FHIs even help queries without any field predicates.

As illustrated in Figure 1, FHIs are built from bottom up
and maintained in index servers. Due to its small size, an
FHI need not be stored persistently. It is built (within min-
utes) from live leaves when an index server starts. A zone
index server maintains a long-lived streaming RPC [26] to
every leaf in the zone for continuous updates to the zone
FHI. A root index server similarly streams updates to the
root FHI from every zone. Field hints updates are trans-
ported over the network at high priority. Missing updates
to the root FHI are thus reliable indicators of zone unavail-
ability, and are used to make global queries resilient to zone
unavailability.

Similar Index Within Each Leaf. Field hints index in-
troduced so far resides in index servers and helps each query
to locate relevant leaves. Within each leaf, there is a similar
index that helps each query to find relevant targets among
the large number of targets the leaf is responsible for. To
summarize, a query starts from the root, uses root-level FHI
in root index servers to find relevant zones, then uses zone-
level FHI in zone index servers to find relevant leaves, and
finally uses leaf-level FHI in leaves to find relevant targets.

5.5 Reliable Queries
As a monitoring system, it is especially important for

Monarch to handle failures gracefully. We already discussed
that Monarch zones continue to function even during fail-
ures of the file system or global components. Here we discuss
how we make queries resilient to zonal and leaf-level failures.

Zone pruning. At the global level, we need to protect
global queries from regional failures. Long-term statistics
show that almost all (99.998%) successful global queries
start to stream results from zones within the first half of
their deadlines. This enabled us to enforce a shorter per-
zone soft query deadline as a simple way of detecting the
health of queried zones. A zone is pruned if it is completely
unresponsive by the soft query deadline. This gives each
zone a chance to return responses but not significantly de-
lay query processing if it suffers from low availability. Users
are notified of pruned zones as part of the query results.

Hedged reads. Within a zone, a single query may still
fanout to more than 10,000 leaves. To make queries resilient
to slow leaf nodes, Monarch reads data from faster replicas.
As described in Section 4.2, leaves can contain overlapping
but non-identical sets of targets relevant to a query. As
we push down operations that can aggregate across all the
relevant targets at the leaf (see Section 5.3), there is no
trivial output data equivalence across leaves. Even when
leaves return the same output time series keys, they might be

aggregations from different input data. Therefore, a vanilla
hedged read approach does not work.

Monarch constructs the equivalence of input data on the
query path with a novel hedged-read approach. As men-
tioned before, the zone mixer selects a leaf (called the pri-
mary leaf) to run the query for each target range during
replica resolution. The zone mixer also constructs a set of
fallback leaves for the responsible ranges of each primary
leaf. The zone mixer starts processing time series reads from
the primary leaves while tracking their response latencies. If
a primary leaf is unresponsive or abnormally slow, the zone
mixer replicates the query to the equivalent set of fallback
leaves. The query continues in parallel between the primary
leaf and the fallback leaves, and the zone mixer extracts and
de-duplicates the responses from the faster of the two.

6. CONFIGURATION MANAGEMENT
Due to the nature of running Monarch as a distributed,

multi-tenant service, a centralized configuration manage-
ment system is needed to give users convenient, fine-grained
control over their monitoring and distribute configuration
throughout the system. Users interact with a single global
view of configuration that affects all Monarch zones.

6.1 Configuration Distribution
All configuration modifications are handled by the con-

figuration server, as shown in Figure 1, which stores them
in a global Spanner database [13]. A configuration element
is validated against its dependencies (e.g., for a standing
query, the schemas it uses) before being committed.

The configuration server is also responsible for transform-
ing high-level configuration to a form that is more efficiently
distributed and cached by other components. For example,
leaves only need to be aware of the output schema of a stand-
ing query to store its results. Doing this transformation
within the configuration system itself ensures consistency
across Monarch components and simplifies client code, re-
ducing the risk of a faulty configuration change taking down
other components. Dependencies are tracked to keep these
transformations up to date.

Configuration state is replicated to configuration mirrors
within each zone, which are then distributed to other com-
ponents within the zone, making it highly available even in
the face of network partitions. Zonal components such as
leaves cache relevant configuration in memory to minimize
latency of configuration lookups, which are copied from the
configuration mirror at startup with subsequent changes be-
ing sent periodically. Normally the cached configuration is
up to date, but if the configuration mirror becomes unavail-
able, zonal components can continue to operate, albeit with
stale configuration and our SREs alerted.

6.2 Aspects of Configuration
Predefined configuration is already installed to collect,

query, and alert on data for common target and metric
schemas, providing basic monitoring to new users with min-
imal setup. Users can also install their own configuration to
utilize the full flexibility of Monarch. The following subsec-
tions describe major parts of users’ configuration state:

6.2.1 Schemas
There are predefined target schemas and metric schemas,

such as ComputeTask and /rpc/server/latency as described

Table 1: Number of Monarch tasks by component,
rounded to the third significant digit. Components for
logging, recovery, long-term repository, quota management,
and other supporting services are omitted.

Component #Task Component #Task
Leaf 144,000 Range assigner 114

Config mirror 2,590 Config server 15
Leaf router 19,700 Ingestion router 9,390
Zone mixer 40,300 Root mixer 1,620

Zone index server 3,390 Root index server 139
Zone evaluator 1,120 Root evaluator 36

in Section 3, that allow data to be collected automatically
for common workloads and libraries. Advanced users can
define their own custom target schemas, providing the flex-
ibility to monitor many types of entities.

Monarch provides a convenient instrumentation library
for users to define schematized metrics in code. The library
also periodically sends measurements as time series points
to Monarch as configured in Section 6.2.2. Users can con-
veniently add columns as their monitoring evolves, and the
metric schema will be updated automatically. Users can set
access controls on their metric namespace to prevent other
users from modifying their schemas.

6.2.2 Collection, Aggregation, and Retention
Users have fine-grained control over data retention poli-

cies, i.e., which metrics to collect from which targets and
how to retain them. They can control how frequently data is
sampled, how long it is retained, what the storage medium
is, and how many replicas to store. They can also down-
sample data after a certain age to reduce storage costs.

To save costs further, users can also configure aggregation
of metrics during collection as discussed in Section 4.3.

6.2.3 Standing Queries
Users can set up standing queries that are evaluated pe-

riodically and whose results are stored back into Monarch
(Section 5.2). Users can configure their standing query to
execute in a sharded fashion to handle very large inputs.
Users can also configure alerts, which are standing queries
with a boolean output comparing against user-defined alert-
ing conditions. They also specify how to be notified (e.g.,
email or page) when alerting conditions are met.

7. EVALUATION
Monarch has many experimental deployments and three

production deployments: internal, external, and meta. In-
ternal and external are for customers inside and outside
Google; meta runs a proven-stable older version of Monarch
and monitors all other Monarch deployments. Below, we
only present numbers from the internal deployment, which
does not contain external customer data. Note that Mon-
arch’s scale is not merely a function of the scale of the sys-
tems being monitored. In fact, it is significantly more influ-
enced by other factors such as continuous internal optimiza-
tions, what aspects are being monitored, how much data is
aggregated, etc.

7.1 System Scale
Monarch’s internal deployment is in active use by more

than 30,000 employees and teams inside Google. It runs in

 0

 200

 400

 600

 800

 1000

2016-07
2017-01

2017-07
2018-01

2018-07
2019-01

2019-07

C
o
u
n
t
(B

ill
io

n
)

Figure 8: Time series count.

 0

 200

 400

 600

 800

2016-07
2017-01

2017-07
2018-01

2018-07
2019-01

2019-07

S
iz

e
 (

T
B

)

Figure 9: Time series memory size.

 0

 2

 4

 6

 8

2016-07
2017-01

2017-07
2018-01

2018-07
2019-01

2019-07

Q
P

S
 (

M
ill

io
n
)

Figure 10: Queries per second.

 0

 0.5

 1

 1.5

 2

 2.5

2016-07
2017-01

2017-07
2018-01

2018-07
2019-01

2019-07W
ri
te

 R
a

te
 (

T
B

/s
)

Figure 11: Time series data written per second. The
write rate was almost zero around July 2016 because back
then data was ingested using a different mechanism, which
is not included in this figure. Detailed measurement of the
old mechanism is no longer available; its traffic peaked at
around 0.4TB/s, gradually diminished, and became negligi-
ble around March 2018.

38 zones spread across five continents. It has round 400,000
tasks (the important ones are listed in Table 1), with the
vast majority of tasks being leaves because they serve as the
in-memory time series data store. Classifying zones by the
number of leaves, there are: 5 small zones (< 100 leaves),
16 medium zones (< 1000), 11 large zones (< 10, 000), and
6 huge zones (≥ 10, 000). Each zone contains three range
assigners, one of which is elected to be the master. Other
components in Table 1 (config, router, mixer, index server,
and evaluator) appear at both zone and root levels; the
root tasks are fewer than the zone counterparts because root
tasks distribute work to zone tasks as much as possible.

Monarch’s unique architecture and optimizations make it
highly scalable. It has sustained fast growth since its in-
ception and is still growing rapidly. Figure 8 and Figure 9
show the number of time series and the bytes they consume
in Monarch’s internal deployment. As of July 2019, Mon-
arch stored nearly 950 billion time series, consuming around
750TB memory with a highly-optimized data structure. Ac-
commodating such growth rates requires not only high hori-
zontal scalability in key components but also innovative op-
timizations for collection and query, such as collection ag-
gregation (Section 4.3) and field hints index (Section 5.4).

As shown in Figure 11, Monarch’s internal deployment
ingested around 2.2 terabytes of data per second in July
2019. Between July 2018 and January 2019, the ingestion
rate almost doubled because collection aggregation enabled
collection of metrics (e.g., disk I/O) with tens of billions of
time series keys. On average, Monarch aggregates 36 input
time series into one time series during collection; in extreme
cases, over one million input time series into one. Collection
aggregation is highly efficient and can aggregate one million
typical time series using only a single CPU core. In addition
to the obvious RAM savings (fewer time series to store),
collection aggregation uses approximately 25% of the CPU
of the alternative procedure of writing the raw time series to
Monarch, querying via a standing query, and then writing
the desired output.

Table 2: Field hints index (FHI) statistics. Children
of the root FHI are the 38 zones. Zone FHIs are named after
the zone, and their children are leaves. Suppression ratio is
the percentage of children skipped by query thanks to FHI.
Hit ratio is the percentage of visited children that actually
have data. 26 other zones are omitted.

FHI Name Child Fingerprint Suppr. Hit
Count Count (k) Ratio Ratio

root 38 214,468 75.8 45.0
small-zone-1 15 56 99.9 60.5
small-zone-2 56 1,916 99.7 51.8
small-zone-3 96 3,849 99.5 43.8
medium-zone-1 156 6,377 99.4 36.3
medium-zone-2 330 12,186 99.5 32.9
medium-zone-3 691 23,404 99.2 33.4
large-zone-1 1,517 43,584 99.3 26.5
large-zone-2 5,702 159,090 99.2 22.5
large-zone-3 7,420 280,816 99.3 21.6
huge-zone-1 12,764 544,815 99.4 17.8
huge-zone-2 15,475 654,750 99.4 18.4
huge-zone-3 16,681 627,571 99.6 21.4

7.2 Scalable Queries
To evaluate query performance, we present key statistics

about query pushdown, field hints index (FHI, Section 5.4),
and query latency. We also examine the performance impact
of various optimizations using an example query.

7.2.1 Overall Query Performance
Figure 10 shows the query rate of Monarch’s internal de-

ployment: it has sustained exponential growth and was serv-
ing over six million QPS as of July 2019. Approximately
95% of all queries are standing queries (including alerting
queries). This is because users usually set up standing
queries (1) to reduce response latency for queries that are
known to be exercised frequently and (2) for alerting, whereas
they only issue ad hoc non-standing-queries very occasion-
ally. Additionally, the majority of such standing queries are
initiated by the zone evaluators (as opposed to the root eval-
uators) because Monarch aggressively pushes down those
standing queries that can be independently evaluated in each
zone to the zone evaluators to reduce the overall amount of
unnecessary work performed by the root evaluators.

To quantify the query pushdown from zone mixers to
leaves, we measured that the overall ratio of output to in-
put time series count at leaves is 23.3%. Put another way,
pushdown reduces the volume of data seen by zone mixers
by a factor of four.

Besides query pushdown, field hints index is another key
enabler for scalable queries. Table 2 shows the statistics of
the root and some zone FHIs. The root FHI contains around
170 million fingerprints; it narrows average root query fanout
down to 34×(1−0.758) ≈ 9, among which around 9×0.45 ≈
4 zones actually have data. Zones vary a lot in their leaf

 1

 10

 100

 1000

 10000

 100000

root
small-zone-1

small-zone-2

small-zone-3

medium-zone-1

medium-zone-2

medium-zone-3

large-zone-1

large-zone-2

large-zone-3

huge-zone-1

huge-zone-2

huge-zone-3

L
a
te

n
c
y
 (

m
s
)

50%-ile
90%-ile
99%-ile

99.9%-ile

Figure 12: 50, 90, 99, and 99.9 percentile query la-
tency. Root queries include ad hoc queries and root-level
standing queries; zone queries are mostly standing queries
initiated by zone evaluators. The Y-axis is milliseconds on
a log scale.

counts, so do the fingerprint counts in their FHIs. Yet, all
zone FHIs have a suppression ratio of 99.2% or higher. FHI’s
hit ratio ranges from 15.7% to 60.5% across zones. In gen-
eral, FHIs have higher hit ratio in smaller zones because
false positives in field hints are less likely when a zone has
fewer targets. FHI is space efficient; on average, a finger-
print occupies only 1.3 bytes of memory. huge-zone-2 has
the largest number of fingerprints (654 million); yet its FHI
size is merely 808MB. We achieved this by encoding leaves
with small integers and storing integer codes of popular fin-
gerprints in bitsets.

As shown in Figure 12, root queries have a median latency
of 79ms, and a 99.9%-ile latency of 6s. The latency difference
is due to the number of input time series to a query: a
median query involves only 1 time series whereas a 99.9%-ile
query involves 12,500. Zones also differ significantly in query
latency. In general, smaller zones have faster queries. There
are exceptions: noticeably, large-zone-2 has much higher
median query latency than large-zone-1 and large-zone-3.
This is because the median number of input time series in
large-zone-2 is more than twice the other two large zones.
The 99.9%-ile query latency of the large and huge zones
are all around 50s. These are expensive standing queries
that fetch 9 to 23 million time series per query. Many of
them are queries that aggregate popular metrics (such as the
predefined metric /rpc/server/latency) across all tasks of
each job in a zone; because such metrics tend to be used by
many users, we set up automatic standing queries for them
to avoid redundant installations from individual users.

7.2.2 Individual Query Performance
Table 3 shows the performance impact of query optimiza-

tions on the example query in Figure 6. The query reads
approximately 0.3 million input time series. The field hints
index suggests 68k leaves to query, out of which 40k leaves
contain relevant data matching the query.

As shown in Table 3, the query completes in 6.73 seconds
when query pushdown and field hints index are enabled. If
we disable partial aggregations (1) only on the leaves and (2)
on both the leaves and the zone mixers, the query takes 9.75
seconds and 34.44 seconds to complete, resulting in a 1.4x
and a 5.1x slowdown respectively. This is because, without
the partial aggregations on the leaf and zone mixers, more
time series need to be transferred to and be aggregated by
higher execution levels with less parallelism (e.g., by only

Table 3: Performance impact on the query shown in
Figure 6 with different query features enabled. We
measured the latency and query fanout by pushing join and
group by to different levels and disabling field hints.

FHI Join Group by Latency(s) #Leaves(k)
Yes Leaf Leaf 6.73 68
Yes Leaf Zone 9.75 68
Yes Leaf Root 34.44 68
Yes Zone Zone 242.50 92
Yes Root Root 1728.33 92
No Leaf Leaf 67.54 141

one root mixer vs. concurrently by many leaves).
Additionally, if we perform joins only on (1) the zone mix-

ers and (2) the root mixers, and aggregations on the same
and higher levels, the query takes 242.5 seconds and 1728.3
seconds to complete, resulting in a 36.0x and 256.7x slow-
down, respectively. Moving the execution of joins from lower
level to higher level increases the number of time series trans-
ferred between levels, because both sides of the joins need
to send the input time series to the higher level, some of
which would have been filtered by the inner join. In addi-
tion, the higher level nodes work on a much larger input set
of time series sequentially, which also significantly increases
the processing latency. Note that leaf level joins also helped
reduce the fanout from 92k to 68k leaves, thanks to the op-
timization in field hint index that intersects the matching
leaves from the predicates on both sides of a leaf level inner
join (the third additional feature of FHI in Section 5.4).

Finally, if we execute the query without consulting the
field hint index on root and zone index servers and leaves,
the query takes 67.54 seconds to complete, resulting in a
10.0x slowdown. This demonstrates that the field hints
index can be very effective in reducing query fanout and im-
proving query latency because (1) field hints index reduces
the fanout by eliminating 73k irrelevant leaves; (2) the in-
dexing on leaves also eliminate huge amount of irrelevant
targets and time series.

8. RELATED WORK
The explosive growth of time series data drives a prolif-

eration of research [29, 5, 48] on its collection [35], clus-
tering [34, 2], compression [11, 33, 6], modeling [44, 23],
mining [17], query [4, 43], search [32, 38], storage [3], and
visualization [31]. Much of the recent research focuses on
managing time series in constrained hardware of wireless
sensor network [11, 33] and the Internet of Things [24]; fewer
studies are about cloud-scale time series management sys-
tems that store and query data in real-time [37, 30].

There are many open source time series databases [5];
Graphite [16], InfluxDB [27], OpenTSDB [12], Promethe-
us [39], and tsdb [15] are popular ones. They store data on
secondary storage (local or distributed such as HBase [19,
27, 12]); the use of secondary storage makes them less de-
sirable for critical monitoring. They support distributed
deployment by scaling horizontally similar to a Monarch
zone, but they lack the global configuration management
and query aggregation that Monarch provides.

Gorilla [37, 25] is Facebook’s in-memory time series data-
base. A Gorilla time series is identified by a string key, as
opposed to Monarch’s structured data model. Gorilla lacks
an expressive query language. Gorilla replicates data across

regions for disaster recovery, limiting availability during a
network partition. In contrast, Monarch, replicates data in
nearby data centers for data locality. Gorilla also does not
have an equivalent to Monarch’s planet-scale query engine,
or the optimizations that power it, such as localization of
query execution based on field hints index, and query push-
down. Other Monarch features that Gorilla lacks include:
(1) rich data types, such as distribution with exemplars; (2)
collection optimizations, including lexicographical sharding
and collection aggregation; (3) fine-grained configurations
for retention policies; (4) standing and alerting queries.

Monarch’s collection aggregation (Section 4.3), which re-
duces storage cost of cumulative metrics by aggregating time
series as they are being ingested, is similar to in-network ag-
gregation [42] used in wireless sensor networks.

9. LESSONS LEARNED
Over the past decade of active development and use, Mon-

arch’s feature set, architecture and core data structures have
been constantly evolving. Key lessons learned include:

• Lexicographic sharding of time series keys improves in-
gestion and query scalability, enabling Monarch zones
to scale to tens of thousands of leaves. All metrics
from one target can be sent to their destination leaf in
a single message. Query operations that aggregate or
join data by target can be completed by a single leaf.
Aggregations over adjacent targets are also more effi-
cient where adjacent targets are present on the same
leaf, limiting query fanout and reducing data transfer
between leaves and mixers.

• Push-based data collection improves system robustness
while simplifying system architecture. Early versions
of Monarch discovered monitored entities and “pulled”
monitoring data by querying the monitored entity. This
required setting up discovery services and proxies, com-
plicating system architecture and negatively impacting
overall scalability. Push-based collection, where en-
tities simply send their data to Monarch, eliminates
these dependencies.

• A schematized data model improves robustness and en-
hances performance. While requiring slightly more
effort to setup than systems like Borgmon [47] that
work with unschematized data, operating on struc-
tured data allows queries to be validated and opti-
mized before execution. In our experience, schemas
have not imposed any significant burden on our users
compared to Borgmon, thanks to our convenient and
flexible configuration management.

• System scaling is a continuous process. Index servers,
collection aggregation, and sharded standing queries
are examples of features that were added after Mon-
arch’s initial design to address scaling issues. We con-
tinue to refine Monarch’s architecture to support bet-
ter horizontal scaling, and are constantly evolving in-
ternal data structures and algorithms to support larger
data volumes and new usage patterns.

• Running Monarch as a multi-tenant service is conve-
nient for users, but challenging for developers. Users
have tremendous flexibility with how they use Mon-
arch, and are isolated from the operational side of the

service. The coexistence of vastly differing usage pat-
terns, however, makes ensuring system stability a chal-
lenge. Features such as usage accounting, data sanita-
tion, user isolation, and traffic throttling are necessary
so that Monarch can provide service-level objectives
(SLOs) for availability, correctness, and latency. Opti-
mizations need to work for almost all use cases. Code
changes to Monarch must be backwards-compatible
to allow graceful live updates with possible rollbacks.
We are constantly improving Monarch’s multi-tenancy
support as Monarch continues to onboard more users
that stress many different aspects of the system.

10. CONCLUSION
Monarch is a planet-scale, multi-tenant in-memory time

series database that manages trillions of time series. It is
deployed across data centers in many different geograph-
ical regions. Monarch operates efficiently and reliably at
this scale due to its architecture of autonomous regional
monitoring sub-systems integrated into a coherent whole by
global configuration and query planes. It adopts a novel,
type-rich relational time series data model that allows effi-
cient and scalable data storage while powering an expressive
query language for rich data analysis. To accommodate this
massive scale, Monarch employs a variety of optimization
techniques for both data collection and query execution. For
data collection, Monarch performs intra-zone load balancing
and collection aggregation for improved reliability and effi-
ciency. For query execution, Monarch executes each query in
a distributed, hierarchical fashion, performing aggressive fil-
tering and aggregation pushdown for improved performance
and throughput, taking advantage of a compact yet powerful
distributed index for efficient data pruning.

Since its initial deployment to production, Monarch has
sustained years of rapid usage growth. It currently ingests
terabytes of data per second, stores close to a petabyte of
highly-compressed time series data in memory, and serves
millions of queries per second. Monarch is instrumental to
serving Google’s monitoring and alerting needs at billion-
user scale. It is also the foundational infrastructure layer
that unlocks many use cases including anomaly detection for
alerting, canary analysis for continuous integration and de-
ployment, and automatic task sizing for resource optimiza-
tions on Google clusters.

Acknowledgement
Monarch would not have been possible without critical con-
tributions provided by Alex Kehlenbeck, Ben Sigelman and
Daniel Sturman; we thank them for their work and leader-
ship. We also thank many engineers who made significant
contributions to Monarch over the years, in particular (listed
alphabetically): Karsten Behrmann, Dan Bulger, Steven
Canfield, Onur Çakmak, Fay Chang, Shishi Chen, Mike Cor-
coran, Thibaut Coutelou, Lia Davitashvili, Alan Donovan,
Mark Goudreau, Leonhard Gruenschloss, Sergey Ivanyuk,
Maciej Kowalewski, Rory Kulz, Adam Mckaig, Josh Mon-
tana, Oleg Morfiianets, Lajos Nagy, Dustin Pho, Thomas
Rast, Gunnar Ritter, Kirill Shevchuk, Dan Tulovsky, Adam
Vartanian, Matthew Weaver and numerous others.

Finally, we thank the anonymous VLDB reviewers for
their valuable comments.

11. REFERENCES
[1] A. Adya, D. Myers, J. Howell, J. Elson, C. Meek,

V. Khemani, S. Fulger, P. Gu, L. Bhuvanagiri,
J. Hunter, and et al. Slicer: Auto-sharding for
datacenter applications. In Proceedings of the 12th
USENIX Conference on Operating Systems Design
and Implementation, OSDI’16, page 739–753, USA,
2016. USENIX Association.

[2] S. Aghabozorgi, A. S. Shirkhorshidi, and T. Y. Wah.
Time-series clustering — a decade review. Information
Systems, 53:16–38, 2015.

[3] M. P. Andersen and D. E. Culler. BTrDB: Optimizing
storage system design for timeseries processing. In
Proceedings of the 14th Usenix Conference on File and
Storage Technologies, pages 39–52. USENIX
Association, Feb. 2016.

[4] A. Arasu, S. Babu, and J. Widom. The CQL
continuous query language: Semantic foundations and
query execution. Technical Report 2003-67, Stanford
InfoLab, 2003.

[5] A. Bader, O. Kopp, and M. Falkenthal. Survey and
comparison of open source time series databases. In
B. Mitschang, D. Nicklas, F. Leymann, H. Schöning,
M. Herschel, J. Teubner, T. Härder, O. Kopp, and
M. Wieland, editors, Datenbanksysteme für Business,
Technologie und Web (BTW 2017) - Workshopband,
pages 249–268. Gesellschaft für Informatik e.V., 2017.

[6] D. Blalock, S. Madden, and J. Guttag. Sprintz: Time
series compression for the internet of things.
Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies,
2(3):93:1–93:23, Sept. 2018.

[7] B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Communications of the ACM,
13(7):422–426, July 1970.

[8] E. Brewer. Cap twelve years later: How the” rules”
have changed. Computer, 45(2):23–29, 2012.

[9] E. Brewer. Spanner, truetime and the cap theorem.
Technical report, 2017.

[10] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and
R. E. Gruber. Bigtable: A distributed storage system
for structured data. ACM Transactions on Computer
Systems (TOCS), 26(2):1–26, 2008.

[11] H. Chen, J. Li, and P. Mohapatra. Race: time series
compression with rate adaptivity and error bound for
sensor networks. In 2004 IEEE International
Conference on Mobile Ad-hoc and Sensor Systems,
pages 124–133, Oct 2004.

[12] B. S. Chris Larsen. OpenTSDB - a distributed,
scalable monitoring system. http://opentsdb.net.

[13] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li,
A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quinlan,
R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor,
R. Wang, and D. Woodford. Spanner: Google’s
globally distributed database. ACM Transactions on
Computer Systems, 31(3):8:1–8:22, Aug. 2013.

[14] R. Cox. Regular expression matching with a trigram
index, 2012.
https://swtch.com/~rsc/regexp/regexp4.html.

[15] L. Deri, S. Mainardi, and F. Fusco. tsdb: A
compressed database for time series. In Proceedings of
the 14th International Workshop on Traffic
Monitoring and Analysis, pages 143–156, Mar. 2012.

[16] J. Dixon. Monitoring with Graphite: Tracking
Dynamic Host and Application Metrics at Scale.
O’Reilly Media, 1 edition, March 2017.

[17] P. Esling and C. Agon. Time-series data mining. ACM
Computing Surveys, 45(1):12:1–12:34, Dec. 2012.

[18] A. Fikes. Storage architecture and challenges.
https://cloud.google.com/files/storage archite

cture and challenges.pdf.

[19] L. George. HBase: The Definitive Guide. O’Reilly
Media, 1 edition, 2011.

[20] S. Ghemawat, H. Gobioff, and S.-T. Leung. The
Google file system. In Proceedings of the Nineteenth
ACM Symposium on Operating Systems Principles,
SOSP ’03, pages 29–43. ACM, 2003.

[21] S. Gilbert and N. Lynch. Perspectives on the cap
theorem. Computer, 45(2):30–36, 2012.

[22] Google. Snappy — a fast compressor/decompressor.
https://github.com/google/snappy.

[23] K. W. Hipel and A. I. McLeod. Time series modelling
of water resources and environmental systems,
volume 45 of Developments in Water Science.
Elsevier, 1994.

[24] J. Huang, A. Badam, R. Chandra, and E. B.
Nightingale. Weardrive: Fast and energy-efficient
storage for wearables. In Proceedings of the 2015
USENIX Annual Technical Conference, pages
613–625. USENIX Association, 2015.

[25] F. Inc. Beringei: a high performance, in memory time
series storage engine, 2016.
https://github.com/facebookarchive/beringei.

[26] G. Inc. gRPC: Bidirectional streaming RPC, 2017.
https://grpc.io/docs/guides/concepts/.

[27] InfluxData. InfluxDB — open source time series,
metrics, and analytics database.
http://influxdata.com.

[28] Y. E. Ioannidis. Universality of serial histograms.
PVLDB, pages 256–267, 1993.

[29] S. K. Jensen, T. B. Pedersen, and C. Thomsen. Time
series management systems: A survey. IEEE
Transactions on Knowledge and Data Engineering,
29(11):2581–2600, Nov. 2017.

[30] S. K. Jensen, T. B. Pedersen, and C. Thomsen.
ModelarDB: Modular model-based time series
management with Spark and Cassandra. PVLDB,
11(11):1688–1701, 2018.

[31] U. Jugel, Z. Jerzak, G. Hackenbroich, and V. Markl.
M4: A visualization-oriented time series data
aggregation. PVLDB, 7(10):797–808, 2014.

[32] H. Kondylakis, N. Dayan, K. Zoumpatianos, and
T. Palpanas. Coconut: A scalable bottom-up
approach for building data series indexes. PVLDB,
11(6):677–690, 2018.

[33] I. Lazaridis and S. Mehrotra. Capturing
sensor-generated time series with quality guarantees.
In Proceedings of the 19th International Conference on
Data Engineering, pages 429–440, Mar. 2003.

[34] T. W. Liao. Clustering of time series data — a survey.
Pattern Recognition, 38(11):1857–1874, 2005.

[35] J. Meehan, C. Aslantas, S. Zdonik, N. Tatbul, and
J. Du. Data ingestion for the connected world. In
Proceedings of the 8th Biennial Conference on
Innovative Data Systems Research, Jan. 2017.

[36] A. Merchant. Keynote address II: Optimal flash
partitioning for storage workloads in google’s colossus
file system. Broomfield, CO, Oct. 2014. USENIX
Association. The 2nd workshop on interactions of
NVM/Flash with operating systems and workloads.

[37] T. Pelkonen, S. Franklin, J. Teller, P. Cavallaro,
Q. Huang, J. Meza, and K. Veeraraghavan. Gorilla: A
fast, scalable, in-memory time series database.
PVLDB, 8(12):1816–1827, 2015.

[38] T. Rakthanmanon, B. Campana, A. Mueen,
G. Batista, B. Westover, Q. Zhu, J. Zakaria, and
E. Keogh. Searching and mining trillions of time series
subsequences under dynamic time warping. In
Proceedings of the 18th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pages 262–270. ACM, Aug. 2012.

[39] F. Reinartz, J. Volz, and B. Rabenstein. Prometheus –
monitoring system & time series database.
http://prometheus.io/.

[40] B. Samwel, J. Cieslewicz, B. Handy, J. Govig,
P. Venetis, C. Yang, K. Peters, J. Shute, D. Tenedorio,
H. Apte, and et al. F1 query: Declarative querying at
scale. PVLDB, 11(12):1835–1848, 2018.

[41] B. H. Sigelman, L. A. Barroso, M. Burrows,
P. Stephenson, M. Plakal, D. Beaver, S. Jaspan, and

C. Shanbhag. Dapper, a large-scale distributed
systems tracing infrastructure. Technical report,
Google, Inc., 2010.

[42] I. Solis and K. Obraczka. In-network aggregation
trade-offs for data collection in wireless sensor
networks. Int. J. Sen. Netw., 1(3/4):200–212, Jan.
2006.

[43] N. Tatbul and S. Zdonik. Window-aware load
shedding for aggregation queries over data streams.
PVLDB, pages 799–810, 2006.

[44] S. J. Taylor. Modelling Financial Time Series. World
Scientific, second edition, 2007.

[45] The Linux man-pages project. cgroups — Linux
control groups. http:
//man7.org/linux/man-pages/man7/cgroups.7.html.

[46] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer,
E. Tune, and J. Wilkes. Large-scale cluster
management at Google with Borg. In Proceedings of
the Tenth European Conference on Computer Systems,
pages 18:1–18:17. ACM, 2015.

[47] J. Wilkinson. Practical alerting from time-series data.
In B. Beyer, C. Jones, J. Petoff, and N. R. Murphy,
editors, Site Reliability Engineering, pages 107–123.
O’Reilly Media, 2016.

[48] T. W. Wlodarczyk. Overview of time series storage
and processing in a cloud environment. In Proceedings
of the 4th IEEE International Conference on Cloud
Computing Technology and Science, pages 625–628,
Dec. 2012.

