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ML for Operations
Pitfalls, Dead Ends, and Hope

S T E V E N  R O S S  A N D  T O D D  U N D E R W O O D

Machine learning (ML) is often proposed as the solution to auto-
mate this unpleasant work. Many believe that ML will provide 
near-magical solutions to these problems. This article is for 

developers and systems engineers with production responsibilities who are 
lured by the siren song of magical operations that ML seems to sing. Assum-
ing no prior detailed expertise in ML, we provide an overview of how ML 
works and doesn’t, production considerations with using it, and an assess-
ment of considerations for using ML to solve various operations problems.

Even in an age of cloud services, maintaining applications in production is full of hard and 
tedious work. This is unrewarding labor, or toil, that we collectively would like to automate. 
The worst of this toil is manual, repetitive, tactical, devoid of enduring value, and scales lin-
early as a service grows. Think of work such as manually building/testing/deploying binaries, 
configuring memory limits, and responding to false-positive pages. This toil takes time from 
activities that are more interesting and produce more enduring value, but it exists because it 
takes just enough human judgment that it is difficult to find simple, workable heuristics to 
replace those humans.

We will list a number of ideas that appear plausible but, in fact, are not workable.

What Is ML?
Machine learning is the study of algorithms that learn from data. More specifically, ML 
is the study of algorithms that enable computer systems to solve some specific problem or 
perform some task by learning from known examples of data. Using ML requires training a 
model on data where each element in the data has variables of interest (features) specified 
for it. This training creates a model that can later be used to make inferences about new data. 
The generated model is a mathematical function, which determines the predicted value(s) 
(“dependent variable(s)”) based on some input values (“independent variables”). How well the 
model’s inferences fit the historical data is the objective function, generally a function of the 
difference between predictions and correct inferences for supervised models. In an iterative 
algorithm, the model parameters are adjusted incrementally on every iteration such that they 
(hopefully) decrease the objective function.

Main Types of ML
In order to understand how we’ll apply ML, it is useful to understand the main types of ML 
and how they are generally used. Here are broad categories:

Supervised Learning
A supervised learning system is presented with example inputs and their desired outputs 
labeled by someone or a piece of software that knows the correct answer. The goal is to learn 
a mapping from inputs to outputs that also works well on new inputs. Supervised learning is 
the most popular form of ML in production. It generally works well if your data consist of a 
large volume (millions to trillions) of correctly labeled training examples. It can be effective 
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with many fewer examples, depending on the specific applica-
tion, but it most commonly does well with lots of input data.

Think of identifying fruit in an image. Given a set of pictures 
that either contain apples or oranges, humans do an amazing job 
of picking out the right label (“apple” or “orange”) for the right 
object. But doing this without ML is actually quite challenging 
because the heuristics are not at all easy. Color won’t work since 
some apples are green and some oranges are green. Shape won’t 
work because it’s hard to project at various angles, and some 
apples are exceedingly round. We could try to figure out the skin/
texture but some oranges are smooth and some apples are bumpy.

With ML we simply train a model on a few hundred (or a few 
thousand) pictures labeled “orange” or “apple.” The model builds 
up a set of combinations of features that predict whether the 
picture has an apple or an orange in it.

Unsupervised Learning
The goal of unsupervised learning is to cluster pieces of data by 
some degree of “similarity” without making any particular opin-
ion about what they are, i.e., what label applies to each cluster. So 
unsupervised learning draws inferences without labels, such as 
classifying patterns in the data. 

One easy-to-understand use case is fraud detection. Unsuper
vised learning on a set of transactions can identify small clusters 
of outliers, where some combination of features (card-not-present, 
account creation time, amount, merchant, expense category, 
location, time of day) is unusual in some way. 

Unsupervised learning is particularly useful as part of a broader 
strategy of ML, as we’ll see below. In particular, in the example 
above, clustering outlier transactions isn’t useful unless we do 
something with that information. 

Semi-Supervised Learning
The goal of semi-supervised learning is to discover characteris-
tics of a data set when only a subset of the data is labeled. Human 
raters are generally very expensive and slow, so semi-supervised 
learning tries to use a hybrid of human-labeled data and auto-
matically “guessed” labels based on those human labels. Heuris-
tics are used to generate assumed labels for the data that isn’t 
labeled, based on its relationship to the data that is labeled.

Semi-supervised learning is often used in conjunction with 
unsupervised learning and supervised learning to generate 
better results from less effort. 

Reinforcement Learning
In reinforcement learning (RL), software is configured to take 
actions in an environment or a simulation of an environment in 
order to accomplish some goal or cumulative set of values. The 
software is often competing with another system (which may 

be a prior copy of itself or might be a human) without externally 
provided labeled training data, following the rules. 

Google’s DeepMind division is well known for using RL to solve 
various real-world problems. Famously, this has included playing 
(and winning) against humans in the strategy game Go [1] as 
well as the video game StarCraft [2]. But it has also included such 
practical and important work as optimizing datacenter power 
utilization [3].

ML for Operations: Why Is It Hard? 
Given that ML facilitates clustering, categorization, and actions 
on data, it is enormously appealing as a system to automate oper
ational tasks. ML offers the promise of replacing the human 
judgment still used in decisions, such as whether a particular new 
deployment works well enough to continue the roll-out, and whether 
a given alert is a false positive or foreshadowing a real outage. Sev-
eral factors make this more difficult than one might think.

ML produces models that encode information by interpreting 
features in a fashion that is often difficult to explain and debug 
(especially with deep neural networks, a powerful ML tech-
nique). Errors in the training data, bugs in the ML algorithm 
implementation, or mismatches between the encoding of data 
between training and inference will often cause serious errors in 
the resulting predictions that are hard to debug. Below we sum-
marize some common issues.

ML Makes Errors
ML is probabilistic in nature, so it will not always be right. It 
can classify cats as dogs or even blueberry muffins [4] as dogs a 
small fraction of the time, especially if the data being analyzed 
is significantly different from any specific training example. 
Of course, humans make errors as well, but we are often better 
able to predict, tolerate, and understand the types of errors that 
humans make. Systems need to be designed so such occasional 
gross errors will be tolerable, which sometimes requires sanity 
tests on the result (especially for numerical predictions).

Large Problem Spaces Require Lots of Training Data
The more possible combinations of feature values that a model 
needs to deal with, the more training data it requires to be accu-
rate. In other words, where many factors could contribute to a 
particular labeling or clustering decision, more data is required. 
But in large feature spaces, there may be a large difference 
between examples being analyzed and the closest training data, 
leading to error caused by trying to generalize over a large space. 
This is one of the most serious issues with using ML in opera-
tions, as it is often hard to find sufficient correctly labeled train-
ing data, and there are often many relevant variables/features. 

Specifically, the problem space of production engineering or 
operations is much messier than the space of fruit categorization. 



www.usenix.org	   S U M M ER 2020   VO L .  45 ,  N O.  2  35

SRE
ML for Operations: Pitfalls, Dead Ends, and Hope

In practice, it turns out to be quite difficult to get experts to 
categorize outages, SLO violations, and causes in a mutually con-
sistent manner. Getting good labels is going to be quite difficult.

Training Data Is Biased Relative to Inference Demand
The data you use to train your model may be too different from 
the data you’re trying to cluster or categorize. If your training 
data only cover a particular subset of all things the model might 
need to infer over, all the other slices it wasn’t trained on will see 
higher errors because of their divergence from the training data. 
Additionally, if the statistical distribution of classifications in 
the training data differs from the statistical distribution in the 
real world, the model will make skewed predictions, thinking 
that things that are more common in the training set are more 
common in the real world than they really are. For example, if 
the training data had 10 million dogs and 1000 cats, and dogs and 
cats are equally likely in the inference examples, it will tend to 
infer the presence of a dog more often than it should.

Lack of Explainability
Many of the best performing ML systems make judgments that 
are opaque to their users. In other words, it is often difficult or 
impossible to know why, in human intelligible terms, an ML 
model made a particular decision with respect to an example.  
In some problem domains, this is absolutely not a difficulty. For 
example, if you have a large number of false positive alerts for a 
production system and you’re simply trying to reduce that, it’s not 
generally a concern to know that an ML model will use unex-
pected combinations of features to decide which alerts are real. 
For this specific application, as long as the model is accurate, it 
is useful.  But models with high accuracy due purely to correla-
tion rather than causation do not support decision making. In 
other situations aspects of provable fairness and lack of bias 
are critical. Finally, sometimes customers or users are simply 
uncomfortable with systems that make decisions that cannot  
be explained to them.

Potential Applications of ML to Operations
Given all of these challenges, it will be useful to examine several 
potential applications of ML to operations problems and consider 
which of these is feasible or even possible.

Monitoring
For complex systems, the first problem of production mainte-
nance is deciding which of many thousands of variables to moni-
tor. Candidates might include RAM use by process, latency for 
particular operations, request rate from end users, timestamp of 
most recent build, storage usage by customer, number, and type 
of connections to other microservices, and so on. The possibili-
ties of exactly what to monitor seem unbounded. 

Systems and software engineering sometimes suggest using ML 
to identify the most relevant variables to monitor. The objective 
would be to correlate particular data series with the kinds of 
events that we are most interested in predicting—for example, 
outages, slowness, capacity shortfalls, or other problems. 

In order to understand why this is a difficult problem, let us 
consider how to build an ML model to solve it. In order to use ML 
to create a dashboard that highlights the best metrics to see any 
current problems with your system, the best approach will be to 
treat the problem as a supervised multiclass prediction problem. 
To address that problem we will need: 

 3 A class to predict for every metric of interest
 3 Labels for all classes that were helpful for millions of production 
events of concern
 3 Training and periodic retraining of your model as you fix bugs 
and create new ones with failure types shifting over time
 3 Periodic (potentially on page load) inferring with the model over 
which metrics should be shown to the user.

There are other complexities, but the biggest issue here is that 
you need millions of labeled training examples of production 
events of concern. Without millions of properly categorized 
examples, simple heuristics, for example that operators select  
the metrics that appear to be the most relevant, are likely to be 
as or more effective and at a fraction of the cost to develop and 
maintain. Simple heuristics also have several advantages over 
ML, as previously mentioned. We hope you don’t have millions  
of serious problematic events to your production infrastruc-
ture to train over. However, if your infrastructure is of a scale 
and complexity that you think that you will, eventually, have 
an appropriate amount of data for this kind of application, you 
should begin accumulating and structuring that data now.

Alerting
Most production systems have some kind of manually configured 
but automated alerting system. The objective of these systems 
is to alert a human if and only if there is something wrong with 
the system that cannot be automatically mitigated by the system 
itself. 

The general idea of an ML-centric approach to alerting is that 
once you have determined which time series of data are worth 
monitoring (see above) it might be possible to automatically and 
semi-continuously correlate values and combinations of these. 
To accomplish this we can start with every alert that we have or 
could easily have and create a class for each. 

We then need to create positive and negative labels. Positive 
labels are applied to the alerts that were both useful and predic-
tive of some serious problem in the system that actually required 
human intervention. Negative labels are the opposite: either not 
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useful or not predictive of required human intervention. We need 
to label many events, those where something bad was happening 
and those where everything was fine, and continuously add new 
training examples. To scope the effort, we estimate that we will 
need at least tens of thousands of positive examples and probably 
even more (millions, most likely) of negative examples in order 
to have a pure-ML solution that is able to differentiate real 
problems from noise more effectively than a simple heuristic. 
We are not discussing potential hybrid heuristic + ML solutions 
here since, in many practical setups, this will lead to increased 
complexity from integrating two systems that need to be kept in 
sync for the intended outcome, which is unlikely to be worth the 
extra effort.

Even if we had all these labels (and they’re correct) and a good 
model, which we know to be difficult from the monitoring case 
above, the on-call will still need to know where to look for the 
problem. While we may be able to correlate anomalous metrics 
with a confident alerting signal, covering the majority of alert 
explanations this way would not be enough. For as long as the 
fraction of “unexplainable” alerts is perceived by alert recipients 
as high, the explainability problem makes adoption cumbersome 
at best. This is the problem of explainability.

Canarying/Validation
Pushing new software to production frequently or continuously 
as soon as it is effectively tested poses risks that new software 
will sometimes be broken in ways the tests won’t catch. The stan-
dard mitigation for this is to use a canary process that gradually 
rolls out to production combined with monitoring for problems 
and a rapid rollback if problems are detected. The problem is 
that monitoring is incomplete, so occasionally bad pushes slip 
through the canary process unnoticed and cause serious issues. 

For this reason, production engineers often suggest using ML to 
automatically detect bad pushes and alert and/or roll them back. 

This is a specialized version of the alerting problem; you need 
positive labels and negative labels, labeling successful pushes 
with positive labels and broken pushes with negative labels. 
Much like with alerting, you will probably need thousands of 
examples of bad pushes and hundreds of thousands of examples 
of good pushes to differentiate real problems from noise better 
than a simple heuristic. The main factor that makes canarying 
a little less hard than general alerting is that you have a strong 
signal of a high-risk event when your canary starts (as opposed 
to continuous monitoring for general alerting) and an obvious 
mitigation step (roll back), but you still need a large number of 
correctly labeled examples to do better than heuristics. Note 
that if you have a bad push that you didn’t notice in your labeling, 
because it was rolled back too fast or got blocked by something 
else and improperly labeled as a good push, it will mess up your 
data and confuse your ML model. 

False-positive canary failures will halt your release (which is 
usually a preferable outcome to an outage). To maintain release 
velocity, these need to be kept to a minimum, but that will lower 
the sensitivity of your model.

Root Cause Analysis
Outages are difficult to troubleshoot because there are a huge 
number of possible root causes. Experienced engineers tend to be 
much faster than inexperienced engineers, showing that there is 
some knowledge that can be learned. 

Production engineers would like to use ML to identify the most 
likely causes and surface information about them in an ordered 
fashion to the people debugging problems so that they can con-
centrate on what is likely. This would require classifying the set 
of most likely causes, and then labeling and training over enough 
data to rank this list of causes appropriately. 

Because you need a fixed list of classes to train over for this 
problem, if a new type of problem shows up your model won’t be 
able to predict it until it has trained over enough new examples. 
If you have a case that isn’t on your list, then people may spend 
excessive time looking through the examples recommended by 
the model even though they’re irrelevant. To minimize this risk, 
you might want to add lots of classes to handle every different 
possibility you can think of, but this makes the training problem 
harder as you need more properly labeled training data for every 
class of problem you want the model to be able to predict. To be 
able to differentiate between a list of a hundred causes, you’ll 
probably need tens of thousands of properly labeled training 
examples. It will be difficult to label these examples with the cor-
rect root cause(s) without a huge number of incidents, and there 
is a strong risk that some of the manually determined root cause 
labels will be incorrect due to the complexity, making the model 
inaccurate. An additional complexity is that events (potential 
causes) sequenced in one order may be harmless (capacity 
taken down for updates after load has dropped), but sequenced 
in another order may cause a serious outage (capacity taken 
down for updates during peak load), and the importance of this 
sequencing may confuse the ML model. 

A manually assembled dashboard with a list of the top N most 
common root causes, how to determine them (some of which 
might be automated heuristics), and related monitoring will 
probably be more helpful than an ML model for root cause analy-
sis in most production systems today. 

Path Forward
We do not recommend that most organizations use machine 
learning to manage production operations at this point in the 
maturity of software services and ML itself. Most systems are 
not large enough and would do better to focus their engineering 
effort and compute resources on more straightforward means of 
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improving production operations or expanding the business by 
improving the product itself. Unless all of your monitoring is well 
curated, alerting is carefully tuned, new code releases thoroughly 
tested, and rollouts carefully and correctly canaried, there is no 
need to expend the effort on ML. 

However, in the future as production deployments scale, data 
collection becomes easier, and ML pipelines are increasingly 
automated, ML will definitely be useful to a larger fraction of 
system operators. Here are some ways to get ready: 

1.	 Collect your data. Figure out what data you think you might use 
to run production infrastructure and collect it.

2.	 Curate those data. Make sure that the data are part of a system 
that separates and, where possible, labels the data.

3.	 Begin to experiment with ML. Identify models that might make 
sense and, with the full understanding that they will not reach 
production any time soon, begin the process of prototyping.

Conclusion
While ML is promising for many applications, it is difficult to 
apply to operations today because it makes errors, it requires a 
large amount of high-quality training data that is hard to obtain 
and label correctly, and it’s hard to explain the reasons behind its 
decisions. We’ve identified some areas where people commonly 
think ML can help in operations and what makes it difficult to 
use in those applications. We recommend using standard tools 
to improve operations first before moving forward with ML, and 
we suggest collecting and curating your training data as the first 
step to take before using ML in operations.
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