
www.usenix.org	   S U M M ER 2020  VO L . 45 , N O. 2  33

SRE

ML for Operations
Pitfalls, Dead Ends, and Hope

S T E V E N R O S S A N D T O D D U N D E R W O O D

Machine learning (ML) is often proposed as the solution to auto-
mate this unpleasant work. Many believe that ML will provide
near-magical solutions to these problems. This article is for

developers and systems engineers with production responsibilities who are
lured by the siren song of magical operations that ML seems to sing. Assum-
ing no prior detailed expertise in ML, we provide an overview of how ML
works and doesn’t, production considerations with using it, and an assess-
ment of considerations for using ML to solve various operations problems.

Even in an age of cloud services, maintaining applications in production is full of hard and
tedious work. This is unrewarding labor, or toil, that we collectively would like to automate.
The worst of this toil is manual, repetitive, tactical, devoid of enduring value, and scales lin-
early as a service grows. Think of work such as manually building/testing/deploying binaries,
configuring memory limits, and responding to false-positive pages. This toil takes time from
activities that are more interesting and produce more enduring value, but it exists because it
takes just enough human judgment that it is difficult to find simple, workable heuristics to
replace those humans.

We will list a number of ideas that appear plausible but, in fact, are not workable.

What Is ML?
Machine learning is the study of algorithms that learn from data. More specifically, ML
is the study of algorithms that enable computer systems to solve some specific problem or
perform some task by learning from known examples of data. Using ML requires training a
model on data where each element in the data has variables of interest (features) specified
for it. This training creates a model that can later be used to make inferences about new data.
The generated model is a mathematical function, which determines the predicted value(s)
(“dependent variable(s)”) based on some input values (“independent variables”). How well the
model’s inferences fit the historical data is the objective function, generally a function of the
difference between predictions and correct inferences for supervised models. In an iterative
algorithm, the model parameters are adjusted incrementally on every iteration such that they
(hopefully) decrease the objective function.

Main Types of ML
In order to understand how we’ll apply ML, it is useful to understand the main types of ML
and how they are generally used. Here are broad categories:

Supervised Learning
A supervised learning system is presented with example inputs and their desired outputs
labeled by someone or a piece of software that knows the correct answer. The goal is to learn
a mapping from inputs to outputs that also works well on new inputs. Supervised learning is
the most popular form of ML in production. It generally works well if your data consist of a
large volume (millions to trillions) of correctly labeled training examples. It can be effective

Steven Ross is a Technical Lead
in site reliability engineering for
Google in Pittsburgh, and has
worked on machine learning at
Google since Pittsburgh Pattern

Recognition was acquired by Google in 2011.
Before that he worked as a Software Engineer
for Dart Communications, Fishtail Design
Automation, and then Pittsburgh Pattern
Recognition until Google acquired it. Steven
has a BS from Carnegie Mellon University
(1999) and an MS in electrical and computer
engineering from Northwestern University
(2000). He is interested in mass-producing
machine learning models. stross@google.com

Todd Underwood is a lead
Machine Learning for Site
Reliability Engineering Director
at Google and is a Site Lead for
Google’s Pittsburgh office. ML

SRE teams build and scale internal and external
ML services and are critical to almost every
product area at Google. Todd was in charge of
operations, security, and peering for Renesys’s
Internet intelligence services that is now part of
Oracle’s cloud service. He also did research for
some early social products that Renesys worked
on. Before that Todd was Chief Technology
Officer of Oso Grande, an independent Internet
service provider (AS2901) in New Mexico.
Todd has a BA in philosophy from Columbia
University and a MS in computer science from
the University of New Mexico. He is interested
in how to make computers and people work
much, much better together. tmu@goggle.com

34    S U M M ER 2020  VO L . 45 , N O. 2 	 www.usenix.org

SRE
ML for Operations: Pitfalls, Dead Ends, and Hope

with many fewer examples, depending on the specific applica-
tion, but it most commonly does well with lots of input data.

Think of identifying fruit in an image. Given a set of pictures
that either contain apples or oranges, humans do an amazing job
of picking out the right label (“apple” or “orange”) for the right
object. But doing this without ML is actually quite challenging
because the heuristics are not at all easy. Color won’t work since
some apples are green and some oranges are green. Shape won’t
work because it’s hard to project at various angles, and some
apples are exceedingly round. We could try to figure out the skin/
texture but some oranges are smooth and some apples are bumpy.

With ML we simply train a model on a few hundred (or a few
thousand) pictures labeled “orange” or “apple.” The model builds
up a set of combinations of features that predict whether the
picture has an apple or an orange in it.

Unsupervised Learning
The goal of unsupervised learning is to cluster pieces of data by
some degree of “similarity” without making any particular opin-
ion about what they are, i.e., what label applies to each cluster. So
unsupervised learning draws inferences without labels, such as
classifying patterns in the data.

One easy-to-understand use case is fraud detection. Unsuper
vised learning on a set of transactions can identify small clusters
of outliers, where some combination of features (card-not-present,
account creation time, amount, merchant, expense category,
location, time of day) is unusual in some way.

Unsupervised learning is particularly useful as part of a broader
strategy of ML, as we’ll see below. In particular, in the example
above, clustering outlier transactions isn’t useful unless we do
something with that information.

Semi-Supervised Learning
The goal of semi-supervised learning is to discover characteris-
tics of a data set when only a subset of the data is labeled. Human
raters are generally very expensive and slow, so semi-supervised
learning tries to use a hybrid of human-labeled data and auto-
matically “guessed” labels based on those human labels. Heuris-
tics are used to generate assumed labels for the data that isn’t
labeled, based on its relationship to the data that is labeled.

Semi-supervised learning is often used in conjunction with
unsupervised learning and supervised learning to generate
better results from less effort.

Reinforcement Learning
In reinforcement learning (RL), software is configured to take
actions in an environment or a simulation of an environment in
order to accomplish some goal or cumulative set of values. The
software is often competing with another system (which may

be a prior copy of itself or might be a human) without externally
provided labeled training data, following the rules.

Google’s DeepMind division is well known for using RL to solve
various real-world problems. Famously, this has included playing
(and winning) against humans in the strategy game Go [1] as
well as the video game StarCraft [2]. But it has also included such
practical and important work as optimizing datacenter power
utilization [3].

ML for Operations: Why Is It Hard?
Given that ML facilitates clustering, categorization, and actions
on data, it is enormously appealing as a system to automate oper
ational tasks. ML offers the promise of replacing the human
judgment still used in decisions, such as whether a particular new
deployment works well enough to continue the roll-out, and whether
a given alert is a false positive or foreshadowing a real outage. Sev-
eral factors make this more difficult than one might think.

ML produces models that encode information by interpreting
features in a fashion that is often difficult to explain and debug
(especially with deep neural networks, a powerful ML tech-
nique). Errors in the training data, bugs in the ML algorithm
implementation, or mismatches between the encoding of data
between training and inference will often cause serious errors in
the resulting predictions that are hard to debug. Below we sum-
marize some common issues.

ML Makes Errors
ML is probabilistic in nature, so it will not always be right. It
can classify cats as dogs or even blueberry muffins [4] as dogs a
small fraction of the time, especially if the data being analyzed
is significantly different from any specific training example.
Of course, humans make errors as well, but we are often better
able to predict, tolerate, and understand the types of errors that
humans make. Systems need to be designed so such occasional
gross errors will be tolerable, which sometimes requires sanity
tests on the result (especially for numerical predictions).

Large Problem Spaces Require Lots of Training Data
The more possible combinations of feature values that a model
needs to deal with, the more training data it requires to be accu-
rate. In other words, where many factors could contribute to a
particular labeling or clustering decision, more data is required.
But in large feature spaces, there may be a large difference
between examples being analyzed and the closest training data,
leading to error caused by trying to generalize over a large space.
This is one of the most serious issues with using ML in opera-
tions, as it is often hard to find sufficient correctly labeled train-
ing data, and there are often many relevant variables/features.

Specifically, the problem space of production engineering or
operations is much messier than the space of fruit categorization.

www.usenix.org	   S U M M ER 2020  VO L . 45 , N O. 2  35

SRE
ML for Operations: Pitfalls, Dead Ends, and Hope

In practice, it turns out to be quite difficult to get experts to
categorize outages, SLO violations, and causes in a mutually con-
sistent manner. Getting good labels is going to be quite difficult.

Training Data Is Biased Relative to Inference Demand
The data you use to train your model may be too different from
the data you’re trying to cluster or categorize. If your training
data only cover a particular subset of all things the model might
need to infer over, all the other slices it wasn’t trained on will see
higher errors because of their divergence from the training data.
Additionally, if the statistical distribution of classifications in
the training data differs from the statistical distribution in the
real world, the model will make skewed predictions, thinking
that things that are more common in the training set are more
common in the real world than they really are. For example, if
the training data had 10 million dogs and 1000 cats, and dogs and
cats are equally likely in the inference examples, it will tend to
infer the presence of a dog more often than it should.

Lack of Explainability
Many of the best performing ML systems make judgments that
are opaque to their users. In other words, it is often difficult or
impossible to know why, in human intelligible terms, an ML
model made a particular decision with respect to an example.
In some problem domains, this is absolutely not a difficulty. For
example, if you have a large number of false positive alerts for a
production system and you’re simply trying to reduce that, it’s not
generally a concern to know that an ML model will use unex-
pected combinations of features to decide which alerts are real.
For this specific application, as long as the model is accurate, it
is useful. But models with high accuracy due purely to correla-
tion rather than causation do not support decision making. In
other situations aspects of provable fairness and lack of bias
are critical. Finally, sometimes customers or users are simply
uncomfortable with systems that make decisions that cannot
be explained to them.

Potential Applications of ML to Operations
Given all of these challenges, it will be useful to examine several
potential applications of ML to operations problems and consider
which of these is feasible or even possible.

Monitoring
For complex systems, the first problem of production mainte-
nance is deciding which of many thousands of variables to moni-
tor. Candidates might include RAM use by process, latency for
particular operations, request rate from end users, timestamp of
most recent build, storage usage by customer, number, and type
of connections to other microservices, and so on. The possibili-
ties of exactly what to monitor seem unbounded.

Systems and software engineering sometimes suggest using ML
to identify the most relevant variables to monitor. The objective
would be to correlate particular data series with the kinds of
events that we are most interested in predicting—for example,
outages, slowness, capacity shortfalls, or other problems.

In order to understand why this is a difficult problem, let us
consider how to build an ML model to solve it. In order to use ML
to create a dashboard that highlights the best metrics to see any
current problems with your system, the best approach will be to
treat the problem as a supervised multiclass prediction problem.
To address that problem we will need:

 3 A class to predict for every metric of interest
 3 Labels for all classes that were helpful for millions of production
events of concern
 3 Training and periodic retraining of your model as you fix bugs
and create new ones with failure types shifting over time
 3 Periodic (potentially on page load) inferring with the model over
which metrics should be shown to the user.

There are other complexities, but the biggest issue here is that
you need millions of labeled training examples of production
events of concern. Without millions of properly categorized
examples, simple heuristics, for example that operators select
the metrics that appear to be the most relevant, are likely to be
as or more effective and at a fraction of the cost to develop and
maintain. Simple heuristics also have several advantages over
ML, as previously mentioned. We hope you don’t have millions
of serious problematic events to your production infrastruc-
ture to train over. However, if your infrastructure is of a scale
and complexity that you think that you will, eventually, have
an appropriate amount of data for this kind of application, you
should begin accumulating and structuring that data now.

Alerting
Most production systems have some kind of manually configured
but automated alerting system. The objective of these systems
is to alert a human if and only if there is something wrong with
the system that cannot be automatically mitigated by the system
itself.

The general idea of an ML-centric approach to alerting is that
once you have determined which time series of data are worth
monitoring (see above) it might be possible to automatically and
semi-continuously correlate values and combinations of these.
To accomplish this we can start with every alert that we have or
could easily have and create a class for each.

We then need to create positive and negative labels. Positive
labels are applied to the alerts that were both useful and predic-
tive of some serious problem in the system that actually required
human intervention. Negative labels are the opposite: either not

36    S U M M ER 2020  VO L . 45 , N O. 2 	 www.usenix.org

SRE
ML for Operations: Pitfalls, Dead Ends, and Hope

useful or not predictive of required human intervention. We need
to label many events, those where something bad was happening
and those where everything was fine, and continuously add new
training examples. To scope the effort, we estimate that we will
need at least tens of thousands of positive examples and probably
even more (millions, most likely) of negative examples in order
to have a pure-ML solution that is able to differentiate real
problems from noise more effectively than a simple heuristic.
We are not discussing potential hybrid heuristic + ML solutions
here since, in many practical setups, this will lead to increased
complexity from integrating two systems that need to be kept in
sync for the intended outcome, which is unlikely to be worth the
extra effort.

Even if we had all these labels (and they’re correct) and a good
model, which we know to be difficult from the monitoring case
above, the on-call will still need to know where to look for the
problem. While we may be able to correlate anomalous metrics
with a confident alerting signal, covering the majority of alert
explanations this way would not be enough. For as long as the
fraction of “unexplainable” alerts is perceived by alert recipients
as high, the explainability problem makes adoption cumbersome
at best. This is the problem of explainability.

Canarying/Validation
Pushing new software to production frequently or continuously
as soon as it is effectively tested poses risks that new software
will sometimes be broken in ways the tests won’t catch. The stan-
dard mitigation for this is to use a canary process that gradually
rolls out to production combined with monitoring for problems
and a rapid rollback if problems are detected. The problem is
that monitoring is incomplete, so occasionally bad pushes slip
through the canary process unnoticed and cause serious issues.

For this reason, production engineers often suggest using ML to
automatically detect bad pushes and alert and/or roll them back.

This is a specialized version of the alerting problem; you need
positive labels and negative labels, labeling successful pushes
with positive labels and broken pushes with negative labels.
Much like with alerting, you will probably need thousands of
examples of bad pushes and hundreds of thousands of examples
of good pushes to differentiate real problems from noise better
than a simple heuristic. The main factor that makes canarying
a little less hard than general alerting is that you have a strong
signal of a high-risk event when your canary starts (as opposed
to continuous monitoring for general alerting) and an obvious
mitigation step (roll back), but you still need a large number of
correctly labeled examples to do better than heuristics. Note
that if you have a bad push that you didn’t notice in your labeling,
because it was rolled back too fast or got blocked by something
else and improperly labeled as a good push, it will mess up your
data and confuse your ML model.

False-positive canary failures will halt your release (which is
usually a preferable outcome to an outage). To maintain release
velocity, these need to be kept to a minimum, but that will lower
the sensitivity of your model.

Root Cause Analysis
Outages are difficult to troubleshoot because there are a huge
number of possible root causes. Experienced engineers tend to be
much faster than inexperienced engineers, showing that there is
some knowledge that can be learned.

Production engineers would like to use ML to identify the most
likely causes and surface information about them in an ordered
fashion to the people debugging problems so that they can con-
centrate on what is likely. This would require classifying the set
of most likely causes, and then labeling and training over enough
data to rank this list of causes appropriately.

Because you need a fixed list of classes to train over for this
problem, if a new type of problem shows up your model won’t be
able to predict it until it has trained over enough new examples.
If you have a case that isn’t on your list, then people may spend
excessive time looking through the examples recommended by
the model even though they’re irrelevant. To minimize this risk,
you might want to add lots of classes to handle every different
possibility you can think of, but this makes the training problem
harder as you need more properly labeled training data for every
class of problem you want the model to be able to predict. To be
able to differentiate between a list of a hundred causes, you’ll
probably need tens of thousands of properly labeled training
examples. It will be difficult to label these examples with the cor-
rect root cause(s) without a huge number of incidents, and there
is a strong risk that some of the manually determined root cause
labels will be incorrect due to the complexity, making the model
inaccurate. An additional complexity is that events (potential
causes) sequenced in one order may be harmless (capacity
taken down for updates after load has dropped), but sequenced
in another order may cause a serious outage (capacity taken
down for updates during peak load), and the importance of this
sequencing may confuse the ML model.

A manually assembled dashboard with a list of the top N most
common root causes, how to determine them (some of which
might be automated heuristics), and related monitoring will
probably be more helpful than an ML model for root cause analy-
sis in most production systems today.

Path Forward
We do not recommend that most organizations use machine
learning to manage production operations at this point in the
maturity of software services and ML itself. Most systems are
not large enough and would do better to focus their engineering
effort and compute resources on more straightforward means of

www.usenix.org	   S U M M ER 2020  VO L . 45 , N O. 2  37

SRE
ML for Operations: Pitfalls, Dead Ends, and Hope

improving production operations or expanding the business by
improving the product itself. Unless all of your monitoring is well
curated, alerting is carefully tuned, new code releases thoroughly
tested, and rollouts carefully and correctly canaried, there is no
need to expend the effort on ML.

However, in the future as production deployments scale, data
collection becomes easier, and ML pipelines are increasingly
automated, ML will definitely be useful to a larger fraction of
system operators. Here are some ways to get ready:

1.	 Collect your data. Figure out what data you think you might use
to run production infrastructure and collect it.

2.	 Curate those data. Make sure that the data are part of a system
that separates and, where possible, labels the data.

3.	 Begin to experiment with ML. Identify models that might make
sense and, with the full understanding that they will not reach
production any time soon, begin the process of prototyping.

Conclusion
While ML is promising for many applications, it is difficult to
apply to operations today because it makes errors, it requires a
large amount of high-quality training data that is hard to obtain
and label correctly, and it’s hard to explain the reasons behind its
decisions. We’ve identified some areas where people commonly
think ML can help in operations and what makes it difficult to
use in those applications. We recommend using standard tools
to improve operations first before moving forward with ML, and
we suggest collecting and curating your training data as the first
step to take before using ML in operations.

References
[1] https://deepmind.com/research/case-studies/alphago-the​
-story-so-far.

[2] https://www.seas.upenn.edu/~cis520/papers/RL_for​
_starcraft.pdf.

[3] https://static.googleusercontent.com/media/research​
.google.com/en//pubs/archive/42542.pdf.

[4] https://www.topbots.com/chihuahua-muffin-searching​
-best-computer-vision-api/.

https://deepmind.com/research/case-studies/alphago-the-story-so-far
https://deepmind.com/research/case-studies/alphago-the-story-so-far
https://www.seas.upenn.edu/~cis520/papers/RL_for_starcraft.pdf
https://www.seas.upenn.edu/~cis520/papers/RL_for_starcraft.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42542.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42542.pdf
https://www.topbots.com/chihuahua-muffin-searching-best-computer-vision-api/
https://www.topbots.com/chihuahua-muffin-searching-best-computer-vision-api/

