
Associative Domain Adaptation

Philip Haeusser1,2

haeusser@in.tum.de

Thomas Frerix1

thomas.frerix@tum.de

Alexander Mordvintsev2

moralex@google.com

Daniel Cremers1

cremers@tum.de

1Dept. of Informatics, TU Munich 2Google, Inc.

Abstract

We propose associative domain adaptation, a novel tech-
nique for end-to-end domain adaptation with neural net-
works, the task of inferring class labels for an unlabeled tar-
get domain based on the statistical properties of a labeled
source domain. Our training scheme follows the paradigm
that in order to effectively derive class labels for the tar-
get domain, a network should produce statistically domain
invariant embeddings, while minimizing the classification
error on the labeled source domain. We accomplish this
by reinforcing associations between source and target data
directly in embedding space. Our method can easily be
added to any existing classification network with no struc-
tural and almost no computational overhead. We demon-
strate the effectiveness of our approach on various bench-
marks and achieve state-of-the-art results across the board
with a generic convolutional neural network architecture
not specifically tuned to the respective tasks. Finally, we
show that the proposed association loss produces embed-
dings that are more effective for domain adaptation com-
pared to methods employing maximum mean discrepancy
as a similarity measure in embedding space.

1. Introduction

Since the publication of LeNet [14] and AlexNet [13],
a methodological shift has been observable in the field of
computer vision. Deep convolutional neural networks have
proved to solve a growing number of problems [28, 7, 29,
27, 6, 17]. On the downside, due to a large amount of model
parameters, an equally rapidly growing amount of labeled
data is needed for training, such as ImageNet [21], compris-
ing millions of labeled training examples. This data may be
costly to obtain or even nonexistent.

In this paper, we focus on an approach to train neural net-
works with a minimum of labeled data: domain adaptation.
We refer to domain adaptation as the task to train a model
on labeled data from a source domain while minimizing test
error on a target domain, for which no labels are available
at training time.

Figure 1: Associative domain adaptation. In order to max-
imize classification accuracy on an unlabeled target do-
main, the discrepancy between neural network embeddings
of source and target samples (red and blue, respectively)
is reduced by an associative loss (→), while minimizing a
classification error on the labeled source domain.

1.1. Domain adaptation

In more formal terms, we consider a source do-
main Ds = {xs

i , y
s
i }i=1,...,ns

and a target domain
Dt = {xt

i, y
t
i}i=1,...,nt . Here, xs

i ∈ RNs ,xt
i ∈ RNt

are the data vectors and ysi ∈ C, yti ∈ C the respective la-
bels, where the target labels {yti}i=1,...,nt

are not available
for training. Note that for domain adaption it is assumed
that source and target domains are associated with the same
label space, while Ds and Dt are drawn from distributions
Ps and Pt, which are assumed to be different, i.e. the source
and target distribution have different joint distributions of
data X and labels Y , Ps(X,Y) 6= Pt(X,Y).

The value of domain adaptation has even more increased
with generative tools producing synthetic datasets. The idea
is compelling: rather than labeling vast amounts of real-
world data, one renders a similar but synthetic dataset that is
automatically labeled. With an effective method for domain
adaptation it becomes possible to train models without the
need for one single labeled target example at training time.

1

In order to combine labeled and unlabeled data for a pre-
dictive task, a variety of notions has emerged. To be clear,
we explicitly distinguish domain adaptation from related
approaches. For semi-supervised learning, labeled source
data is leveraged by unlabeled target data drawn from the
same distribution, i.e. Ps = Pt. In transfer learning, not
only source and target domain are drawn from different dis-
tributions, also their label spaces are generally different. An
example of supervised transfer learning is training a neural
network on a source domain and subsequently fine-tuning
the model on a labeled target domain for a different task
[33, 5].

The problem of domain adaptation was theoretically
studied in [2], relating source and target error with a statis-
tical similarity measure of the respective domains. Their re-
sults suggest that a good domain adaptation method should
be based on features that are as similar as possible for source
and target domain (assimilation), while reducing the pre-
diction error in the source domain as much as possible (dis-
crimination). These effects are opposing each other since
source and target domains are drawn from different distri-
butions. This can be formulated as a cost function that con-
sists of two terms:

L = Lclassification + Lsim , (1)

Here, the classification loss, Lclassification encourages
discrimination between different classes, maximizing the
margin between clusters of embeddings that belong to the
same class. We define the second term as a generic simi-
larity loss Lsim, which enforces statistically similar latent
representations.

Intuitively, for similar latent representations of the
source and target domain, the target class labels can be more
accurately inferred from the labeled source samples.

In the following, we show how previous methods ap-
proached this optimization and then propose a new loss for
Lsim.

1.2. Related work

Several works have approached the problem of domain
adaptation. Here, we mainly focus on methods that are
based on deep learning, as these have proved to be powerful
learning systems and are closest to our scheme.

The CORAL method [24] explicitly forces the covari-
ance of the target data onto the source data (assimilation).
The authors then apply supervised training to this trans-
formed source domain with original labels (discrimination).
This idea is extended to second order statistics of features
in deep neural networks in [25].

Building on the idea of adversarial training [10], the au-
thors of [9] propose an architecture in which a class label
and a domain label predictor are built on top of a general
feature extractor. While the class label predictor is supposed

to correctly classify the labeled training examples (discrim-
ination), the domain label predictor for all training samples
is used in a way to make the feature distributions similar
(assimilation). The authors of [3] use an adversarial ap-
proach to train for similarity in data space instead of feature
space. Their training scheme is closer to standard gener-
ative adversarial networks [10], however, it does not only
condition on noise, but also on an image from the source
domain.

Within the paradigm of training for domain invariant fea-
tures, one popular metric is the maximum mean discrep-
ancy (MMD) [11]. This measure is the distance between
the mean embeddings of two probability distributions in
a reproducing kernel Hilbert space Hk with a character-
istic kernel k. More precisely, the mean embedding of a
distribution P in Hk is the unique element µk(P) ∈ Hk

such that Ex∼P[f(x)] = 〈f(x), µk(P)〉Hk
,∀f ∈ Hk.

The MMD distance between source and target domain then
reads dMMD(Ps,Pt) = ||µk(Ps)−µk(Pt)||Hk

. In practice,
this distance is computed via the kernel trick [31], which
leads to an algorithm with quadratic runtime in the number
of samples. Linear time estimators have previously been
proposed [15].

Most works, which explicitly minimize latent feature
discrepancy, use MMD in some variant. That is, they use
MMD as Lsim in order to achieve assimilation as defined
above. The authors of [15] propose the Deep Adaptation
Network architecture. Exploiting that learned features tran-
sition from general to specific within the network, they train
the first layers of a CNN commonly for source and target
domain, then train individual task-specific layers while min-
imizing the multiple kernel maximum mean discrepancies
between these layers.

The technique of task-specific but coupled layers is fur-
ther explored in [20] and [4]. The authors of [20] propose to
individually train source and target domains while the net-
work parameters of each layer are regularized to be linear
transformations of each other. In order to train for domain
invariant features, they minimize the MMD of the embed-
ding layer. On the other hand, the authors of [4] maintain
a shared representation of both domains and private repre-
sentations of each individual domain in their Domain Sepa-
ration architecture.

As becomes evident in these works, the MMD minimizes
domain discrepancy in some abstract space and requires a
choice of kernels with appropriate hyperparameters, such
as the standard deviation of the Gaussian kernel. In this
work, we propose a different loss for Lsim which is more
intuitive in embedding space, less computationally complex
and better suitable to obtain effective embeddings.

2

1.3. Contribution

We propose the association loss Lassoc as an alternative
discrepancy measure (Lsim) within the domain adaptation
paradigm described in Section 1.1. The reasoning behind
our approach is the following: Ultimately, we want to min-
imize the classification error on the target domain Dt. This
is not directly possible since no labels are available at train-
ing time. Therefore, we minimize the classification error
on the source domain Ds as a proxy while enforcing repre-
sentations of Dt to have similar statistics to those of Ds.
This is accomplished by enforcing associations [12] be-
tween feature representations of Dt with those of Ds that
are in the same class. Therefore, in contrast to MMD as
Lsim, this approach also leverages knowledge about labels
of the source domain and hence avoids unwanted assimi-
lation across class clusters. The implementation is sim-
ple yet powerful as we show in Section 2. It works with
any existing architecture and, unlike most deep learning ap-
proaches for domain adaptation, does not introduce a struc-
tural and almost no computational overhead. In fact, we
used the same generic and simple architecture for all our ex-
periments, each of which achieved state-of-the-art results.

In summary, our contributions are:

• A straightforward training schedule for domain adap-
tation with neural networks.

• An integration of our approach into the prevailing do-
main adaptation formalism and a detailed comparison
with the most commonly used explicit Lsim: the max-
imum mean discrepancy (MMD).

• A simple implementation that works with arbitrary ar-
chitectures1.

• Extensive experiments on various benchmarks for do-
main adaptation that outperform related deep learning
methods.

• A detailed analysis demonstrating that associative do-
main adaptation results in effective embeddings in
terms of classifying target domain samples.

2. Associative domain adaptation
We start from the approach of learning by association

[12] which is geared towards semi-supervised training. La-
beled and unlabeled data are related by associating their em-
beddings, i.e. features of a neural network’s last layer be-
fore the softmax layer. Our work generalizes this approach
for domain adaptation. For the new task, we identify la-
beled data with the source domain and unlabeled data with
the target domain. Specifically, for xs

i ∈ Ds,x
t
i ∈ Dt and

the embedding map φ : RN0 → RNL−1 of an L-layer neural
1https://git.io/vyzrl

network, denote by Ai
..= φ(xs

i), Bj
..= φ(xt

j) the respec-
tive embeddings of source and target domain. Then, simi-
larity is measured by the embedding vectors’ dot product as
Mij = 〈Ai, Bj〉.

If one considers transitions between the parts
({Ai}, {Bj}) of a bipartite graph, the intuition is that
transitions are more probable if embeddings are more
similar. This is formalized by the transition probability
from embedding Ai to embedding Bj :

P ab
ij = P(Bj |Ai) ..=

exp(Mij)∑
j′ exp(Mij′)

. (2)

The basis of associative similarity is the two-step round-
trip probability of an imaginary random walker starting
from an embedding Ai of the labeled source domain and
returning to another embedding Aj via the (unlabeled) tar-
get domain embeddings B,

P aba
ij

..=
(
P abP ba

)
ij
. (3)

The authors of [12] observed that higher order round
trips do not improve performance. The two-step proba-
bilities are forced to be similar to the uniform distribution
over the class labels via a cross-entropy loss term called the
walker loss,

Lwalker
..= H

(
T, P aba

)
, (4)

where

Tij ..=

{
1/|Ai| class(Ai) = class(Aj)

0 else
(5)

This means that all association cycles within the same
class are forced to have equal probability. The walker loss
by itself could be minimized by only visiting target sam-
ples that are easily associated, skipping difficult examples.
This would lead to poor generalization to the target domain.
Therefore, a regularizer is necessary such that each target
sample is visited with equal probability. This is the function
of the visit loss. It is defined by the cross entropy between
the uniform distribution over target samples and the proba-
bility of visiting some target sample starting in any source
sample,

Lvisit
..= H(V, P visit) , (6)

where
P visit
j

..=
∑

xi∈Ds

P ab
ij , Vj ..=

1

|B|
. (7)

Note that this formulation assumes that the class distri-
bution is the same for source and target domain. If this is
not the case, using a low weight for Lvisit may yield better
results.

3

https://git.io/vyzrl

Together, these terms form a loss that enforces associa-
tions between similar embeddings of both domains,

Lassoc = β1Lwalker + β2Lvisit , (8)

where βi is a weight factor. At the same time, the net-
work is trained to minimize the prediction error on the la-
beled source data via a softmax cross-entropy loss term,
Lclassification.

The overall neural network loss for our training scheme
is given by

L = Lclassification + αLassoc . (9)

We want to emphasize once more the essential motiva-
tion for our approach: The association loss enforces similar
embeddings (assimilation) for the source and target sam-
ples, while the classification loss minimizes the prediction
error of the source data (discrimination). Without Lassoc,
we have the case of a neural network that is trained conven-
tionally [13] on the source domain only. As we show in this
work, the (scheduled) addition of Lassoc during training al-
lows to incorporate unlabeled data from a different domain
improving the effectiveness of embeddings for classifica-
tion. Adding Lassoc enables an arbitrary neural network to
be trained for domain adaptation. The neural network learn-
ing algorithm is then able to model the shift in distribution
between source and target domain. More formally, if Lassoc

is minimized, associated embeddings from both source and
target domain become more similar in terms of their dot
product.

In contrast to MMD, Lassoc incorporates knowledge
about source domain classes and hence prevents the case
that source and target domain embeddings are statistically
similar, but not class discriminative. We demonstrate this
experimentally in Section 3.4.

We emphasize that not every semi-supervised training
method can be adapted for domain adaptation in this man-
ner. It is necessary that the method explicitly models the
shift between the source and target distributions, in order
to reduce the discrepancy between both domains, which is
accomplished by Lassoc.

In this respect, associative domain adaptation parallels
the approaches mentioned in Section 1.2. As we demon-
strate experimentally in the next section, Lassoc is em-
ployed as a compact, intuitive and effective training signal
for assimilation yielding superior performance on all tested
benchmarks.

3. Experiments
3.1. Domain adaptation benchmarks

In order to evaluate and compare our method, we chose
common domain adaptation tasks, for which previous re-
sults are reported. Examples for the respective datasets are
shown in Table 1.

MNISTw�
MNIST-M
(10 classes)

SYNTHw�
SVHN

(10 classes)

SVHNw�
MNIST

(10 classes)

SYNTH SIGNSw�
GTSRB

(43 classes)

Table 1: Dataset samples for our domain adaptation tasks.
For three randomly chosen classes, the first row depicts a
source sample, the second row a target sample. The datasets
vary in difficulty due to differences in color space, variance
of transformation or number of classes.

MNIST→ MNIST-M We used the MNIST [14] dataset
as labeled source and generated the unlabeled MNIST-M
target as described in [9]. Background patches from the
color photo BSDS500 dataset [1] were randomly extracted.
Then the absolute value of the difference of each color chan-
nel with the MNIST image was taken. This yields a color
image, which can be easily identified by a human, but is sig-
nificantly more difficult for a machine compared to MNIST
due to two additional color channels and more nuanced
noise. The single channel of the MNIST images was repli-
cated three times to match those of the MNIST-M images
(RGB). The image size is 28 × 28 pixels. This is the only
setting where we used data augmentation: We randomly in-
verted MNIST images since they are always white on black,
unlike MNIST-M.

Synth → SVHN The Street View House Numbers
(SVHN) dataset [19] contains house number signs extracted
from Google Street View. We used the variant Format 2
where images (32 × 32 pixels) are already cropped. Still,
multiple digits can appear in one image. As a labeled source
domain we use the Synthetic Digits dataset provided by the
authors of [9], which expresses a varying number of fonts

4

and properties (background, orientation, position, stroke
color, blur) that aim to mimic the distribution in SVHN.

SVHN→ MNIST MNIST images were resized with bi-
linear interpolation to 32× 32 pixels and extended to three
channels in order to match the shape of SVHN.

Synthetic Signs→ GTSRB The Synthetic Signs dataset
was provided by the authors of [18] and consists of 100,000
images that were generated by taking common street signs
from Wikipedia and applying various artificial transforma-
tions. The German Traffic Signs Recognition Benchmark
(GTSRB) [23] provides 39,209 (training set) and 12,630
(test set) cropped images of German traffic signs. The im-
ages vary in size and were resized with bilinear interpola-
tion to match the Synthetic Signs images’ size of 40 × 40
pixels. Both datasets contain images from 43 different
classes.

3.2. Training setup

3.2.1 Associative domain adaptation

Our formulation of associative domain adaptation is im-
plemented2 as a custom loss function that can be added to
any existing neural network architecture. Results obtained
by neural network learning algorithms often highly depend

2https://git.io/vyzrl

on the complexity of a specifically tuned architecture. Since
we wanted to make the effect of our approach as transparent
as possible, we chose the following generic convolutional
neural network architecture for all our experiments:

C(32, 3)→ C(32, 3)→ P (2)

→ C(64, 3)→ C(64, 3)→ P (2)

→ C(128, 3)→ C(128, 3)→ P (2)→ FC(128)

Here,C(n, k) stands for a convolutional layer with n ker-
nels of size k×k and stride 1. P (k) denotes a max-pooling
layer with window size k× k and stride 1. FC(n) is a fully
connected layer with n output units. The size of the em-
beddings is 128. An additional fully connected layer maps
these embeddings to logits, which are the input to a softmax
cross-entropy loss for classification, Lclassification.

The detailed hyperparameters for each experiment can
be found in the supplementary material. The most important
hyperparameters are the following:

Learning rate We chose the same initial learning rate
(τ = 1e−4) for all experiments, which was reduced by a
factor of 0.33 in the last third of the training time. All train-
ings converged in less than 20k iterations.

Mini-batch sizes It is important to ensure that a mini-
batch represents all classes sufficiently, in order not to in-
troduce a bias. For the labeled mini-batch, we explicitly

Method Domains (source→ target)
MNIST→MNIST-M Syn. Digits→ SVHN SVHN→MNIST Syn. Signs→ GTSRB

Transf. Repr. [22] 13.30 - 21.20 -
SA [8] 43.10 13.56 40.68 18.35

CORAL [24] 42.30 14.80 36.90 13.10
ADDA [30] - - 24.00 -
DANN [9] 23.33 (55.87 %) 8.91 (79.67 %) 26.15 (42.57 %) 11.35 (46.39 %)

DSN w/ DANN [3] 16.80 (63.18 %) 8.80 (78.95 %) 17.30 (58.31 %) 6.90 (54.42 %)
DSN w/ MMD [3] 19.50 (56.77 %) 11.50 (31.58 %) 27.80 (32.26 %) 7.40 (51.02 %)

MMD [15] 23.10 12.00 28.90 8.90
DAMMD 22.90 19.14 28.48 10.69

Ours (DAassoc fixed params†) 10.47 ± 0.28 8.70 ± 0.2 4.32 ± 1.54 17.20 ± 1.32
Ours (DAassoc) 10.53 (85.94 %) 8.14 (87.78 %) 2.40 (93.71 %) 2.34 (81.23)

Source only 35.96 15.68 30.71 4.59
Target only 6.37 7.09 0.50 1.82

Table 2: Domain adaptation. Errors (%) on the target test sets (lower is better). Source only and target only refer to training
only on the respective dataset (supervisedly [12], without domain adaptation) and evaluating on the target dataset. In the
DAMMD setting, we replaced Lassoc with MMD. The metric coverage is reported in parentheses, where available (cf. Sec-
tion 3.3). We used the same network architecture for all our experiments and achieve state of the art results on all benchmarks.
The row “DAassoc fixed params†” reports results from 10 runs (± standard deviation) with an arbitrary choice of fixed hyper
parameters (β2 = 0.5, delay = 500 steps and batch size = 100) for all four domain pairs. The row below shows our results
after individual hyper parameter optimization. No labels of the target domain were used at training time.

5

https://git.io/vyzrl

sample a number of examples per class. For the unlabeled
mini-batch we chose the same overall size as for the labeled
one, usually around 10-100 times the number of classes.

Loss weights The only loss weight that we actively chose
is the one for Lvisit, β2. As was shown in [12], this loss
acts as a regularizer. Since it assumes the same class distri-
bution on both domains, the weight needs to be lowered if
the assumption does not hold. We experimentally chose a
suitable weight.

Delay of Lassoc We observed that convergence is faster if
we first train the network only with the classification loss,
Lclassification, and then add the association loss, Lassoc, af-
ter a number of iterations. This is implemented by defining
α (Equation 8) as a step function. This procedure is in-
tuitive, as the transfer of label information from source to
target domain is most effective when the network has al-
ready learned some class structure and the embeddings are
not random anymore.

Hyper parameter tuning We are aware that hyper pa-
rameter tuning can sometimes obscure the actual effect of
a proposed method. In particular, we want to discuss the
effect of small batch sizes on our algorithm. For the associ-
ation loss to work properly, all classes must be represented
in a mini-batch, which places a restriction on small batch
sizes, when the number of classes is large. To further inves-
tigate this hyperparameter we ran the same architecture with
an arbitrary choice of fixed hyper parameters and smaller
batch size (β2 = 0.5, delay = 500 steps and batch size = 100)
for all four domain pairs and report the mean and standard
deviation of 10 runs in the row “DAassoc fixed params†”. In
all cases except for the traffic signs, these runs outperform
previous methods. The traffic sign setup is special because
there are 4.3× more classes and with larger batches more
classes are expected to be present in the unlabeled batch.
When we removed the batch size constraint, we achieved a
test error of 6.55 ± 0.59, which outperforms state of the art
for the traffic signs.

Hardware All experiments were carried out on an
NVIDIA Titan X (Pascal). Each experiment took less than
120 minutes until convergence.

3.2.2 Domain adaptation with MMD

In order to compare our setup and the proposed Lassoc,
we additionally ran all experiments described above with
MMD instead of Lassoc. We performed the same hyperpa-
rameter search for α and report the respectively best test

errors. We used the open source implementation includ-
ing hyperparameters from [26]. This setup is referred to as
DAMMD.

3.3. Evaluation

All reported test errors are evaluated on the target do-
main. To assess the quality of domain adaptation, we pro-
vide results trained on source and target only (SO and TO,
respectively) as in [12], for associative domain adaptation
(DAassoc) and for the same architecture with MMD instead
of Lassoc. Besides the absolute accuracy, an informative
metric is coverage of the gap between TO and SO by DA,

DA− SO
TO − SO

,

as it is a measure of how much label information is success-
fully transferred from the source to the target domain. In
order to assess a method’s performance on domain adapta-
tion, one should always consider both coverage and abso-
lute error on the target test set since a high coverage could
also stem from poor performance in the SO or TO setting.

Where available, we report the coverage of other meth-
ods (with respect to their own performance on SO and TO).

Table 2 shows the results of our experiments. In all four
popular domain adaptation settings our method performs
best. On average, our approach improves the performance
by 87.17 % compared to training on source only (coverage).
In order to make our results as comparable as possible, we
used a generic architecture that was not handcrafted for the
respective tasks (cf. Section 3.2).

3.4. Analysis of the embedding quality

As described in Section 1, a good intuition for the for-
malism of domain adaptation is the following. On the one
hand, the latent features should cluster in embedding space,
if they belong to the same class (assimilation). On the other
hand, these clusters should separate well in order to facili-
tate classification (discrimination).

We claim that our proposed Lassoc is well suited for this
task compared with maximum mean discrepancy. We use
four points to support this claim:

• t-SNE visualizations show that employing Lassoc pro-
duces embeddings that cluster better compared to
MMD.

• Lassoc simultaneously reduces the maximum mean
discrepancy (MMD) in most cases.

• Lower MMD values do not imply lower target test er-
rors in these settings.

• In all cases, the target domain test error of our ap-
proach is lower compared to training with an MMD
loss.

6

Figure 2: t-SNE embeddings with perplexity 35 of 1,000 test samples for Synthetic Digits (source, red) and SVHN (target,
blue). Left: After training on source only. Middle: after training with associative domain adaptation (DAassoc). Right:
after training with MMD loss (DAMMD). While the target samples are diffuse when embedded with the source only trained
network, the class label information is successfully inferred after associative domain adaptation. When the network is trained
with an MMD loss, the resulting distributions are similar, but less visibly class discriminative.

Domains (source→ target)
MNIST→MNIST-M Syn. Digits→ SVHN SVHN→MNIST Syn. Signs→ GTSRB

Source only 0.1234 (35.96) 0.1010 (15.68) 0.0739 (30.71) 0.0466 (4.59)
DAassoc 0.0504 (10.53) 0.0415 (8.14) 0.2112 (2.40) 0.0459 (2.34)
DAMMD 0.0233 (22.90) 0.0166 (19.29) 0.0404 (34.06) 0.0145 (12.85)

Table 3: Maximum mean discrepancy (MMD) between embeddings of source and target domain, obtained with a network
trained supervisedly on source only (SO), for the domain adaptation setting with Lassoc (DAassoc) and with an MMD loss
(DAMMD). Numbers in parentheses are test errors on the target domain from Table 2. Associative domain adaptation also
reduces the MMD in some cases. Lower MMD values do not correlate with lower test errors. In fact, even though the MMD
for training with the associative loss is higher compared with training with the MMD loss, our approach achieves lower test
errors.

3.4.1 Qualitative evaluation: t-SNE embeddings

A popular method to visualize high-dimensional data in 2D
is t-SNE [16]. We are interested in the distribution of em-
beddings for source and target domain when we employ our
training scheme. Figure 2 shows such visualizations. We
always plotted embeddings of the target domain test set.
The embeddings are obtained with networks trained semi-
supervisedly [12] on the source domain only (SO), with our
proposed associative domain adaptation (DAassoc) and with
MMD instead of Lassoc (DAMMD, cf. Section 3.2).

In the SO setting, samples from the source domain fall
into clusters as expected. Samples from the target domain
are more scattered. For DAassoc, samples from both do-
mains cluster well and become separable. For DAMMD, the
resulting distributions are similar, but not visibly class dis-
criminative.

For completeness, however, we explicitly mention that

t-SNE embeddings are obtained via a non-linear, stochastic
optimization procedure that depends on the choice of pa-
rameters like the perplexity ([16, 32]). We therefore inter-
pret these plots only qualitatively and infer that associative
domain adaptation learns consistent embeddings for source
and target domain that cluster well with observable margins.

3.4.2 Quantitative evaluation: MMD values

While t-SNE plots provide qualitative insights into the la-
tent feature representation of a learning algorithm, we want
to complement this with a quantitative evaluation and com-
pute the discrepancy in embedding space for target and
source domains. We estimated the MMD with a Gaussian
RBF kernel using the TensorFlow implementation provided
by the authors of [26].

The results are shown in Table 3. In parentheses we
copied the test accuracies on the respective target domains

7

from Table 2.
We observe that DAMMD yields the lowest maximum

mean discrepancy, as expected, since this training setup ex-
plicitly minimizes this quantity. At the same time, DAassoc

also reduces this metric in most cases. Interestingly though,
for the setup SVHN → MNIST, we actually obtain a par-
ticularly high MMD. Nevertheless, the test error of the net-
work trained with DAassoc is one of the best results. We
ascribe this to the fact that MMD enforces domain invari-
ant feature representations regardless of the source labels,
whereas Lassoc takes into account the labels of associated
source samples, resulting in better separation of the clus-
ters and higher similarity within the same class. Conse-
quently, DAassoc achieves lower test error on the target do-
main, which is the actual goal of domain adaptation.

4. Conclusion
We have introduced a novel, intuitive domain adapta-

tion scheme for neural networks termed associative domain
adaptation that generalizes a recent approach for semi-
supervised learning[12] to the domain adaptation setting.
The key idea is to optimize a joint loss function combining
the classification loss on the source domain with an associ-
ation loss that imposes consistency of source and target em-
beddings. The implementation is simple, works with arbi-
trary architectures in an end-to-end manner and introduces
no significant additional computational and structural com-
plexity. We have demonstrated the capabilities of associa-
tive domain adaptation on various benchmarks and achieved
state-of-the-art results for all our experiments. Finally, we
quantitatively and qualitatively examined how well our ap-
proach reduces the discrepancy between network embed-
dings from the source and target domain. We have observed
that, compared to explicitly modelling the maximum mean
discrepancy as a cost function, the proposed association loss
results in embeddings that are more effective for classifica-
tion in the target domain, the actual goal of domain adapta-
tion.

References
[1] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Con-

tour detection and hierarchical image segmentation. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
33(5):898–916, 2011. 4

[2] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira,
and J. W. Vaughan. A theory of learning from different do-
mains. Machine Learning, 79(1-2):151–175, 2010. 2

[3] K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, and D. Kr-
ishnan. Unsupervised pixel-level domain adaptation with
generative adversarial networks. arXiv:1612.05424, 2016.
2, 5

[4] K. Bousmalis, G. Trigeorgis, N. Silberman, D. Krishnan, and
D. Erhan. Domain separation networks. In Advances in

Neural Information Processing Systems 29, pages 343–351.
2016. 2

[5] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang,
E. Tzeng, and T. Darrell. Decaf: A deep convolutional acti-
vation feature for generic visual recognition. In International
Conference in Machine Learning (ICML), 2014. 2

[6] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas,
V. Golkov, P. van der Smagt, D. Cremers, and T. Brox.
Flownet: Learning optical flow with convolutional networks.
In Proceedings of the IEEE International Conference on
Computer Vision, pages 2758–2766, 2015. 1

[7] D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction
from a single image using a multi-scale deep network. In
Advances in neural information processing systems, pages
2366–2374, 2014. 1

[8] B. Fernando, A. Habrard, M. Sebban, and T. Tuytelaars. Un-
supervised visual domain adaptation using subspace align-
ment. In Proceedings of the IEEE International Conference
on Computer Vision, pages 2960–2967, 2013. 5

[9] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle,
F. Laviolette, M. Marchand, and V. Lempitsky. Domain-
adversarial training of neural networks. Journal of Machine
Learning Research, 17(1):2096–2030, 2016. 2, 4, 5

[10] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-
erative adversarial nets. Advances in Neural Information
Processing Systems 27, pages 2672–2680, 2014. 2

[11] A. Gretton. A kernel two-sample test. Journal of Machine
Learning Research, 13:723–773, 2012. 2

[12] P. Haeusser, A. Mordvintsev, and D. Cremers. Learning by
association - a versatile semi-supervised training method for
neural networks. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2017. 3, 5, 6, 7, 8

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet
classification with deep convolutional neural networks. In
Proceedings of the 25th International Conference of Neural
Information Processing Systems, 2012. 1, 4

[14] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2323, 1998. 1, 4

[15] M. Long, Y. Cao, J. Wang, and M. I. Jordan. Learning trans-
ferable features with deep adaptation networks. In Proceed-
ings of the 32nd International Conference on International
Conference on Machine Learning - Volume 37, pages 97–
105, 2015. 2, 5

[16] L. v. d. Maaten and G. Hinton. Visualizing data using t-sne.
Journal of Machine Learning Research, 9:2579–2605, 2008.
7

[17] N. Mayer, E. Ilg, P. Hausser, P. Fischer, D. Cremers,
A. Dosovitskiy, and T. Brox. A large dataset to train con-
volutional networks for disparity, optical flow, and scene
flow estimation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 4040–
4048, 2016. 1

[18] B. Moiseev, A. Konev, A. Chigorin, and A. Konushin. Eval-
uation of traffic sign recognition methods trained on synthet-
ically generated data. In International Conference on Ad-

8

vanced Concepts for Intelligent Vision Systems, pages 576–
583. Springer, 2013. 5

[19] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y.
Ng. Reading digits in natural images with unsupervised fea-
ture learning. In NIPS workshop on deep learning and unsu-
pervised feature learning, volume 2011, page 5, 2011. 4

[20] A. Rozantsev, M. Salzmann, and P. Fua. Beyond sharing
weights for deep domain adaptation. arXiv:1603.06432,
2016. 2

[21] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei. Imagenet large scale visual recog-
nition challenge. International Journal of Computer Vision
(IJCV), 115(3):211–252, 2015. 1

[22] O. Sener, H. O. Song, A. Saxena, and S. Savarese. Learning
transferrable representations for unsupervised domain adap-
tation. In Advances in Neural Information Processing Sys-
tems, pages 2110–2118, 2016. 5

[23] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel. The
German Traffic Sign Recognition Benchmark: A multi-class
classification competition. In IEEE International Joint Con-
ference on Neural Networks, pages 1453–1460, 2011. 5

[24] B. Sun, J. Feng, and K. Saenko. Return of frustratingly easy
domain adaptation. In Proceedings of the 30th AAAI Con-
ference on Artificial Intelligence, pages 2058–2065, 2016. 2,
5

[25] B. Sun and K. Saenko. Deep coral: Correlation alignment for
deep domain adaptation. In Computer Vision–ECCV 2016
Workshops, pages 443–450, 2016. 2

[26] D. J. Sutherland, H.-Y. Tung, H. Strathmann, S. De, A. Ram-
das, A. Smola, and A. Gretton. Generative models and
model criticism via optimized maximum mean discrepancy.
arXiv:1611.04488, 2016. 6, 7

[27] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 1–9, 2015. 1

[28] C. Szegedy, A. Toshev, and D. Erhan. Deep neural networks
for object detection. In Advances in Neural Information Pro-
cessing Systems, pages 2553–2561, 2013. 1

[29] A. Toshev and C. Szegedy. Deeppose: Human pose estima-
tion via deep neural networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 1653–1660, 2014. 1

[30] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell. Adversarial
discriminative domain adaptation. Nips, 2016. 5

[31] V. N. Vapnik. The Nature of Statistical Learning Theory.
Springer-Verlag New York, Inc., 1995. 2

[32] M. Wattenberg, F. Vigas, and I. Johnson. How to use t-sne ef-
fectively. Distill, 2016. http://distill.pub/2016/misread-tsne.
7

[33] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How trans-
ferable are features in deep neural networks? Advances in
Neural Information Processing Systems 27, 27:1–9, 2014. 2

9

Supplementary Material for ‘Associative Domain Adaptation’

We provide additional information that is necessary to reproduce our results, as well as plots complementing the eval-
uation section of the main paper. To this end, we begin by stating implementation details for our neural network learning
algorithm. Furthermore, we show additional t-SNE embeddings of source target domain for the different domain adaptation
tasks analyzed in the paper.

1. Hyperparameters
We report the hyperparameters that we used for our experiments for the sake of reproducibility as detailed in Table 1.

2. t-SNE embeddings
We complement our analysis in Section 3.4.1 of the main document, Qualitative evaluation: t-SNE embeddings. In

Figure 1 we show the t-SNE embeddings for all domain adaptation tasks that we have analyzed (cf. Table 3 of the main
paper). The qualitative interpretation that we provide for the task Synthetic Digits to SVHN in the main paper is consistent
across all tasks: when trained on source only, the target domain distribution is diffuse, the respective target classes can be
visibly separated after domain adaptation and the separation is less clear when training with an MMD loss instead of our
associative loss. Note that for the task Synthetic Signs to GTSRB, the target domain test error for the network trained on
source only is already rather low. Subsequent domain adaptation improves the numerical result, which is, however, difficult
to observe qualitatively due to the relatively small coverage compared to the previous settings.

Hyperparameter Domains (source→ target)
MNIST→MNIST-M Syn. Digits→ SVHN SVHN→MNIST Syn. Signs→ GTSRB

New width/height 32 - 32 -
Source domain batch size 1000 1000 1000 1032
Target domain batch size 1000 1000 1000 1032
Learning rate decay steps 9000 9000 9000 9000

Visit loss weight 0.6 0.2 0.2 0.1
Delay (steps) for Lassoc 500 2000 500 0

Table 1: Hyperparameters for our domain adaptation experiments.

10

Figure 1: t-SNE embeddings of test samples for source (red) and target (blue). First row: MNIST to MNIST-M, perplexity
35. Second row: SVHN to MNIST, perplexity 35. Third row: Synthetic Signs to GTSRB, perplexity 25. 1,000 samples per
domain, except for Synthetic Signs to GTSRB, where we took 60 samples for each of the 43 classes due to class imbalance in
GTSRB. Left: After training on source only. Middle: after training with associative domain adaptation (DAassoc). Right:
after training with MMD loss (DAMMD).

11

