
Progressive Raising in Multi-level IR
Lorenzo Chelini

TU Eindhoven
Eindhoven, The Netherlands

l.chelini@tue.nl

Andi Drebes
Inria and École Normale Supérieure

Paris, France
andi@programmierforen.de

Oleksandr Zinenko
Google

Paris, France
zinenko@google.com

Albert Cohen
Google

Paris, France
albertcohen@google.com

Nicolas Vasilache
Google

Zurich, Switzerland
ntv@google.com

Tobias Grosser
University of Edinburgh

Edinburgh, UK
tobias.grosser@ed.ac.uk

Henk Corporaal
TU Eindhoven

Eindhoven, The Netherlands
h.corporaal@tue.nl

Abstract—Multi-level intermediate representations (IR) show
great promise for lowering the design costs for domain-specific
compilers by providing a reusable, extensible, and non-opini-
onated framework for expressing domain-specific and high-level
abstractions directly in the IR. But, while such frameworks
support the progressive lowering of high-level representations to
low-level IR, they do not raise in the opposite direction. Thus, the
entry point into the compilation pipeline defines the highest level
of abstraction for all subsequent transformations, limiting the
set of applicable optimizations, in particular for general-purpose
languages that are not semantically rich enough to model the
required abstractions.

We propose Progressive Raising, a complementary approach to
the progressive lowering in multi-level IRs that raises from lower
to higher-level abstractions to leverage domain-specific transfor-
mations for low-level representations. We further introduce Multi-
Level Tactics, our declarative approach for progressive raising,
implemented on top of the MLIR framework, and demonstrate
the progressive raising from affine loop nests specified in a
general-purpose language to high-level linear algebra operations.
Our raising paths leverage subsequent high-level domain-specific
transformations with significant performance improvements.

Index Terms—MLIR, progressive raising, multi-level interme-
diate representation

I. INTRODUCTION

The increasing complexity of hardware resulting from
the ongoing trend for heterogeneous systems has made it
difficult for general-purpose compilers to generate efficient
code automatically [1]. One of the main issues is the mismatch
between the low level of abstraction at which general-purpose
compilers operate and the various high-level abstractions for
computation required by today’s applications [2]. Although
high-level programming languages allow for the specification
of high-level operations, this information is often not captured
by the low-level intermediate representation (IR) of general-
purpose compilers or lost early in the compilation process
during lowering [3].

Domain-specific languages (DSLs) and compilers attempt
to capture and explicitly preserve high-level information
throughout the compilation process and have been employed
successfully to generate efficient code for modern hardware [4],
[5]. However, such languages commit to a limited set of isolated

C+
+

Multi-Level
Tactics

M
LIR progressive

lowering

High-level of abstraction

Low-level of abstraction

Level of abstraction

C++

C+
+

Mid-level of abstraction

Fig. 1: Multi-Level Tactics lifts general-purpose languages to
higher-abstraction levels to enable effective domain-specific
compilation via progressive lowering.

abstractions and domain-specific optimizations, resulting in
poor interoperability, limited reusability of software compo-
nents, and few opportunities for inter-domain optimizations [6].

Multi-level intermediate representations explicitly allow for
the co-existence of multiple abstractions within the same com-
pilation framework with interoperable representations, breaking
the isolation between domains and enabling comprehensive
optimizations. During compilation, the source program’s high-
level representation is progressively optimized and transformed
to lower-level abstractions, until reaching a low-level, general-
purpose representation for code generation [7].

Multi-level frameworks solve many issues of DSLs, but
the optimizations in progressive lowering compilation scheme
crucially rely on the adequate initial representation of the source
program. If the initial representation is below the required level
of abstraction for a given optimization, the optimization simply
fails to apply. However, providing an adequate high-level input
representation may not always be possible. General-purpose
languages not being semantically rich enough to preserve the
right level of information enter the lowering pipeline at a very
low level, thus precluding most, if not all, domain-specific

optimizations. Asking the user to match the abstraction used
internally by the framework manually is inconvenient, as it
requires the user to learn the internals of the tool and the
different abstraction levels.

We present Multi-Level Tactics, a technique that allows
for raising between different levels of abstractions in multi-
level IRs. In particular, our technique enables progressive
raising, a complementary technique to the progressive lowering,
successively lifting a lower-level representation to a higher-level
specification of the source program. Multi-Level Tactics relaxes
the requirement for specific entry representations and leverages
existing domain-specific optimizations already available in
multi-level IRs for low-level representations.

Figure 1 illustrates the main idea of this work: Starting with a
less expressive representation in the valley, our solution enables
lifting to intermediate levels of abstractions at different heights
of the mountain or up to the highest level of representation
at the peak. The low-level representation for code generation
in the valley can be reached using different lowering and
optimization paths, represented by the different slopes.

The contributions of this work are as follows:
• Multi-Level Tactics, a concept for progressive raising (or

successive lifting) from lower to higher-level abstractions
in multi-level IRs.

• A high-level declarative language to define lifting transfor-
mations independent of the loop, iterator, container, and
indexation abstractions it targets and which are subject to
rewriting and lifting.

• The integration of Multi-Level Tactics within the MLIR
compiler infrastructure and implemented a set of trans-
formations from loop-based MLIR dialects to a linear
algebra dialect, as well as a subsequent optimization for
matrix-chain multiplications showcasing the progressive
raising throughout multiple levels of abstraction.

• An empirical evaluation of the code generated with our
framework including a comparison with state-of-the-art
optimizers, motivating the potential impact of successive
lifting on performance.

The remainder of the paper is organized as follows: Section II
introduces a multi-level IR framework with the necessary
background information. Section III gives a high-level view of
Multi-Level Tactics and how it enables progressive raising in a
multi-level IR. In Section IV, we provide more details on the
syntax introduced by our framework. Section V evaluates our
framework’s applicability for two different raising paths, Affine-
to-Affine and Affine-to-Linalg. We conclude by comparing with
prior works and highlighting future directions.

II. THE MLIR INFRASTRUCTURE

The MLIR compiler infrastructure is a project under
the LLVM umbrella that is well-suited for multi-level IR
rewriting [7]. MLIR provides a non-opinionated intermediate
representation (IR) with only few concepts being built-in,
leaving most of the IR customizable. A customizable IR allows
compiler developers to match the right abstraction level for
their problem at hand by introducing custom types, operations,

TensorFlow
Teckyl

 Linalg & BLAS Stencil

SCF

MLIR LLVM IR

MLIR

MET F18 FORTRAN

GtClang

Loop nest

High-level Op
(matmul)

Af
fin

e

Standard

Fig. 2: Some of the available dialects in MLIR. The higher
is a dialect the higher is its abstraction level. Different entry
points in the MLIR toolchain are also shown.

and attributes. Operations are the essential atomic constituents
of the IR; each operation uses and produces new values. A
value represents data at runtime, and it is associated with a type
known at compile-time, whereas types model compile-time
information about values. Complementary to this, attributes
attach compile-time information to operations. Custom types,
operations, and attributes are logically grouped into dialects. A
dialect is a basic ingredient that enables the MLIR infrastructure
to implement a stack of reusable abstractions. Each abstraction
encodes and preserves transformation validity preconditions
directly in its IR, reducing the complexity and the cost of
analysis passes.

Figures 2 shows some of the dialects available in MLIR
and their entry points. The Linalg dialect models linear-
algebra operations on either tensor or buffer operands. At a
similar abstraction level, the Stencil dialect represents iterative
kernels that update array elements according to a given stencil
pattern [8]. At a lower abstraction level, the Affine dialect
models a simplified polyhedral representation, while F18
models FORTRAN specific constructs (i.e., dispatch table).
SCF and Standard represent structured control flow and a
collection of miscellaneous operations, respectively. Lastly,
MLIR LLVM dialect models LLVM-IR constructs.

IR customization is enabled through a declarative system,
mostly based on TableGen. TableGen is a data modelling tool
for defining and maintaining records of domain-specific infor-
mation, and is extensively used across the LLVM codebase [9].
For example, MLIR declaratively describes operations using an
Operation Description Specification language (ODS) built on
top of TableGen. Declarative specification for new operations
speed up the development of new custom IRs and reduces
the amount of code duplication as well as the probability of
errors. TableGen files are only “containers” of domain-specific
information. They do not have any meaning without a backend.
It is up to the backend at compile time to interpret the stored
information and generate the C++ declarations and definitions.

Progressive lowering (downward arrows in Figure 2) enables

%0 = linalg.matmul(%A, %B, %C) // linalg dialecty
affine.for %i = 0 to %N // affine dialect
affine.for %j = 0 to %N

affine.for %k = 0 to %N {
%0 = affine.load %C[%i, %j] : memref<?x?xf32>
%1 = affine.load %A[%i, %k] : memref<?x?xf32>
%2 = affine.load %B[%k, %j] : memref<?x?xf32>
%3 = std.mulf %1, %2
%4 = std.addf %3, %0
affine.store %4, %C[%i, %j] : memref<?x?xf32>

}

Listing 1: Progressive lowering in MLIR. A linalg matmul
translates into a nested loop with loads from 2-d memrefs, one
addition, and one multiplication in the Affine dialect.

TDL

C/C++ .mlir

TDL DSL
Frontend

TDS
(TableGen) Multi-Level

Tactics Backend

MLIR Pattern
RewriterMET

Access
matchers

Structural
matchers Builders

lifted.mlir

Multi-Level Tactics

Input program transformations

Fig. 3: Multi-Level Tactics compilation flow (orange box) and
transformations of the input program (blue box).

lowering operations from high-level abstractions dialects to low-
level IRs. Listing 1 shows an example of progressive lowering
of a linalg.matmul operation to a triple affine loop containing a
multiplication and an addition in the Affine dialect. Subsequent
lowering fuses the operations of the body to a multiply-and-
accumulate operation (MAC). Efficient progressive lowering is
enabled through a pattern rewriting infrastructure [7].

III. MULTI-LEVEL TACTICS OVERVIEW

The key idea of Multi-Level Tactics is to allow for transfor-
mations from lower to higher levels of abstractions. By pro-
viding the infrastructure for raising from common abstractions
of general-purpose languages to specialized high-level dialects,
Multi-Level Tactics enables domain-specific optimizations for
general-purpose code in multi-level IR compilers.

Figure 3 illustrates the overall flow for transformations
using Multi-Level Tactics. The steps at the top allow tactics
specification and the generation of the code working on the
actual IR (orange box). In contrast, the bottom steps represent
the transformations of the input program (blue box).

All tactics are described in a high-level, declarative specifi-
cation Tactics Description Language (TDL). TDL enables to
specify the computational pattern to which the tactic applies
and a set of replacement expressions. The TDL DSL frontend
processes the high-level declarative specification and emits a
TableGen entry called Tactics Description Specification (TDS).
Sections III-A and III-B provide a detailed description of these
two formats. The actual code for the matching of IR operations

for (int a = 0; a < N; ++a)
for (int b = 0; b < M; ++b)
for (int c = 0; c < N; ++c)
for (int d = 0; d < O; ++d)

S1: C[a][b][c] += A[a][c][d] * B[d][b];
}

Listing 2: Contraction abc-acd-db.

and memory accesses, as well as for building replacement
operations, is generated by the Multi-Level Tactics backend and
uses the MLIR pattern rewriting infrastructure upon execution
(more details in Section III-C).

Transformations on the input program start by translating
C code to Affine using the MLIR Extraction Tool (MET). MET
enables entering the MLIR pipeline at the Affine level from
C code for the subset of the language within the polyhedral
model. During translation, the Cécode is canonicalized by
distributing loops to simplify pattern recognition. The Affine
representation is then fed into the MLIR pattern rewriter engine,
where the generated tactics have been hooked. The output of
the entire flow is a lifted MLIR where loop nests have been
raised to high-level operations. 1

A. Tactics Description Language - TDL

The key user-facing component of Multi-Level Tactics is the
Tactics Description Language (TDL). Pattern and replacements
in TDL are specified in a syntax borrowed from Tensor Com-
prehensions, which is itself a slight variation of the ubiquitous
Einstein tensor index notation [10]. As a concrete example,
we illustrate the syntax for the pattern and replacement for a
transformation lifting a sequential, loop-based implementation
of a contraction of the form abc-acd-bd (Listing 2). We raise
the contraction by rewriting it with an equivalent Transpose-
Transpose-GEMM-Transpose (TTGT) expression taking advan-
tage of highly efficient GEMM implementations offered by
vendor-optimized libraries. The TTGT computation first flattens
the tensors into matrices via explicit tensor transpositions and
reshape operations, then executes GEMM, and finally folds
back the resulting matrix into the original tensor layout.

Listing 3 shows the user-defined tactic to detect and optimize
the contraction. The signature of the tactic is composed of
the keyword def, followed by a name (TTGT). The body
consists of two parts delimited by the keywords pattern and
builder: pattern describes the computational motif to be
detected in the user code, whereas builder describes the
transformation recipe. For example, Lines 5 and 6 reshape the
tensors C and A into matrices. Additionally, a transposition
(a, b, c)→ (a, c, b) is performed for C before reshaping. Line 7
specifies the GEMM operation, while Line 8 folds back the
result into the original tensor layout, again emitting an implicit
transposition (a, c, b)→ (a, b, c) after folding.

B. Tactics Description Specification (TDS)

The role of the TDL DSL frontend is to generate the
TableGen-based Tactics Description Specification (TDS). Each

1Multi-Level Tactics can also lift from SCF.

1 def TTGT {
2 pattern
3 C(a,b,c) += A(a,c,d) * B(d,b)
4 builder
5 D(f,b) = C(a,b,c) where f = a * c
6 E(f,d) = A(a,c,d) where f = a * c
7 D(f,b) += E(f,d) * B(d,b)
8 C(a,b,c) = D(f,b) where f = a * c
9 }

Listing 3: TDL to match a contraction abc-acd-db and apply
the TTGT optimization on each detected pattern.

1 def TTGT : Tactic<C(a, b, c) += A(a, c, d) * B(d, b), [
2 transposeBuilder<In<[C]>, Out<[D]>, Expr<{0, 2, 1}>>,
3 reshapeBuilder<In<[D]>, Out<[E]>, Expr<{{0, 1}, 2}>>,
4 reshapeBuilder<In<[A]>, Out<[F]>, Expr<{{0, 1}, 2}>>,
5 matmulBuilder<In<[F, B]>, Out<[E]>>,
6 reshapeBuilder<In<[E]>, Out<[D]>, Expr<{{0, 1}, 2}>>,
7 transposeBuilder<In<[D]>, Out<[C]>, Expr<{0, 2, 1}>>,
8]>;

Listing 4: TDS to match a contraction abc-acd-db and apply
the TTGT optimization on each detected pattern.

TDS file consists of a series of instantiations of TableGen
templates, from which C++ code is generated at compile
time. The choice of a two-step process instead of direct code
generation from TDL allows common routines for pattern
matching and infrastructure to be factored as reusable templates
in TDS and thus reduces complexity.

Listing 4 shows the generated TDS definition for the TTGT
tactic from Listing 3. Each TDS entry derives from a base
class Tactic, which allows defining the pattern and a list
of builders. The pattern specification matches the pattern
entry in the TDL tactic. The list of builders, on the other hand,
corresponds to a set of high-level operations with a one-to-one
mapping with operations exposed by high-level dialects (i.e.,
Linalg). For example, the transposeBuilder will create a
Linalg TransposeOp or a function call to a transpose BLAS
routine, depending on the lowering path selected by the user.
Considering our running example, line 5 in Listing 3 will map
to a transpose operation followed by a reshape one (lines 2 and
3 in Listing 4). Similarly, lines 6 and 7 will map to a reshape
and a matmul operation, respectively. Finally, line 8 (Listing 3)
will map to a reshape operation followed by a transpose one
(lines 6 and 7 in Listing 4). Ultimately, each entry in TableGen
gets lowered to C++ matchers and builders via Multi-Level
Tactic’s TableGen backend at compile-time, as we will see in
the next section.

C. Matchers and Builders

The code generated from each TDS entry consists of four
parts: Structural matchers, operation matchers, access matchers,
and builders.

Structural and Operation Matchers: The role of a structural
matcher is to detect control flow patterns in the IR. It essentially
replicates the control flow-based structure of the IR with
additional filtering capabilities. A structural matcher consists of
a control flow operation type, a list of children operations, and
an optional filtering function. For example, Listing 5, matches
all the IR subtrees, consisting of a two-dimensional, perfectly

auto isMAC = [&a, &b, &c](Body loop) {
auto MACOp = m_Op<AddOp>(a, m_Op<MulOp>(b, c));
return MACOp.match(loop);

}
/* instantiate the context */
For(
For(isMAC) // filtering function

));

Listing 5: Structural matchers declaratively describe the control-
flow structure of the IR.

nested loop, where the innermost loop body contains a MAC
operation, verified via the callback function isMAC. The top
operation, referred to as a relative root, defines a structural
matcher. The matching operation starts at a specified operation
in the IR. It then recursively walk the operation’s descendant as
well as the relative root matcher descendants. If a mismatch is
encountered during the traversal, the procedure stops, and the
failure is reported immediately. The API to construct structural
matchers is designed to resemble the structure of the IR
itself visually. Leading arguments include optionally a callback
function, which allows the caller to control the matching more
precisely. For example, identify a MAC operation in the loop
body requires checking a non-structural property. Each matcher
must belong to a context which handles memory allocation
and ownership. Operation matchers, on the other hand, verify
the types of arithmetic operations. We rely on the m Op
matcher, which carries the type of operation to be matched.
m Op can be chained to detect sequences of operations. In
our running example, MACOp looks for an Add operation with
two arguments, where the second one is a Mul operation. The
arguments of each operations are captured for later inspection.

Access matchers: Complementary to structural matcher,
Multi-Level Tactics provides access pattern matchers. The
access matchers rely on the idea of “placeholders”, modeled
as m Placeholder and m ArrayPlaceholder. The
former can match any induction dimension of the form
k ∗ ι+ c, where k and c are coefficients forming the pattern,
whereas ι defines a candidate by matching the underneath
mlir::Value representing the induction variable. In contrast
to this, m ArrayPlaceholder can only match tensor
accesses and takes a list of m Placeholder as inputs. In
both cases, a match is an assignment of a candidate to the
placeholder. Candidates assigned to different placeholders are
required to be distinct, while multiple references to the same
placeholder within a matcher expression must refer to the
same candidate. Placeholders can be combined in placeholder
expressions (e.g., C{ i, j) and can be used in the m Op
matcher which allows for the specification of a particular type
of operation (i.e., StoreOp or LoadOp). The matching procedure
starts by inspecting the last store instruction within an MLIR
block–an ordered list of operations without control flow. It then
walks backwards following the use-def chain. If for one or more
placeholders no candidates can be found during the backward
traversal, the absence of a match is reported immediately, and
the procedure stops. The programming interface is similar in
spirit to that of structural matchers providing a declarative way

/* instantiate the context */
auto _i = m_Placeholder(), _j = m_Placeholder();
auto _A = m_ArrayPlaceholder();
auto matcher = m_Op<LoadOp>(_A({2*_i+1, _j+5}));

Listing 6: Declarative access pattern matcher.

1 For(For(For(For(access_callback()))));
2

3 auto access_callback = [&a](Body loop) {
4 {
5 AccessPatternContext pctx(/* MLIR ctx */);
6

7 auto _a = m_Placeholder();
8 auto _b = m_Placeholder();
9 auto _c = m_Placeholder();

10 auto _d = m_Placeholder();
11

12 auto _C = m_ArrayPlaceholder();
13 auto _A = m_ArrayPlaceholder();
14 auto _B = m_ArrayPlaceholder();
15

16 auto var0 = m_Op<AffineStoreOp>(_C({_a, _b, _c}));
17 /* check the store is the last instruction in
18 the block */
19

20 auto var1 = m_Op<AffineLoadOp>(_C({_a, _b, _c}));
21 auto var2 = m_Op<AffineLoadOp>(_A({_a, _c, _d}));
22 auto var3 = m_Op<AffineLoadOp>(_B({_d, _b}));
23 auto body = m_Op<AddOp>(var1, m_Op<MulOp>(var2, var3));
24 /* match the body starting from the store op
25 and make sure we have only the defined
26 operations in the block */
27

28 a = pctx[_a] // read out the matched value
29 ...
30 }
31 };

Listing 7: Structural and access matchers emitted by Multi-
Level Tactic’s backend for the tactic defined in Listing 3.

of specifying access patterns. Similarly, each placeholder must
belong to a context that orchestrates the matching procedure,
handles memory allocation and ownership. Listing 6 shows
how the caller can identify a load from a 2D array.

Builders: The replacement for the matched patterns of a
transformation is generated by the builders, which instantiate IR
operations either directly (e.g., when generating calls to vendor-
optimized libraries) , or using already existing infrastructure
from the MLIR ecosystem (e.g., EDSC builders [11]).

Going back to our running example, Line 1 in Listing 7
shows the structural matchers emitted for our contraction. These
match all 4-dimensional loop nests for which evaluation of
access callback, invoking the generated access matchers
in Lines 5 to 30, evaluates to true. In particular, the access
matchers look for an MLIR block which contains exactly three
read accesses to different tensors: one write access, an index
permutation that satisfies the placeholder pattern [a, b, c] →
[a, c, d][d, b], and two arithmetic operations (+/*) which define
the computation of the contraction.

IV. MULTI-LEVEL TACTIC SYNTAX

Figure 4 and 5 show the grammar of the Tactics Descrip-
tion Language (TDL), and the Tactics Description Specifi-
cation (TDS), respectively. TDL extends the TC syntax [2]
with the pattern and the builder keywords. Figure 4
shows a simplified version of the TDL core syntax. Figure 5

〈id〉 ::= [C identifier]
〈binOp〉 ::= ’+’ | ’-’ | ’*’ | ...

〈idList〉 ::= [comma separated id list]

〈stmt〉 ::= id (idList) ‘=’ id (idList) { binOp 〈 id (idList) 〉 }
〈stmtList〉 ::= [whitespace separated stmt list]

〈pattern〉 ::= 〈stmt〉
〈builder〉 ::= 〈stmtList〉

Fig. 4: Simplified EBNF syntax for Tactics Description
Language. Brackets denote optional clauses, curly brackets
indicate repetitions, and square brackets contain a textual
description for simplicity.

〈tactic〉 ::= 〈pattern〉 { 〈builder〉 }
〈pattern〉 ::= 〈TC-expression〉
〈builderId〉 ::= reshapeBuilder | transposeBuilder | matmulBuilder
| matvecBuilder | convBuilder

〈input〉 ::= 〈whitespace separated list of string〉
〈output〉 ::= 〈string〉
〈affineExpr〉 ::= 〈string〉
〈builder〉 ::= 〈builderId〉(〈input〉, 〈output〉, [〈affineExpr〉])

Fig. 5: Simplified EBNF syntax for Tactics Description
Specification. Curly brackets denote repetitions, and angle
brakets contain textual description.

shows the grammar for TDS where each entry derives from
the Tactic class which allows for the specification of the
pattern using TC syntax and a list of builders. TDS supports
five different builders: reshape, transpose, matmul, matvec
and convolution, each mapping to a high-level operation (i.e.,
linalg.matmul). All builders support multiple inputs, except
transpose and reshape, which only process a single input.
All builders produce a single output. The transpose and
reshape builder require an affine expression as the third
argument, specifying how the dimensions should be transposed
or reshaped, respectively.

Figure 6 shows the grammar for the access and structural
matchers using the extended Backus-Naur form. Each access
matcher, placeholder and array placeholder, must belong to
a context. The context orchestrates the matching by tracking
the assignment of mlir::Value to placeholders. Matchers
cannot be constructed if the context is not already instantiated—
when the context goes out of scope, everything is freed. A place-
holder is a result of calling m Placeholder. Placeholders
support operators overloading to match any affine expression of
the form k∗ι+c, where k and c are coefficients from the pattern
and ι defines the candidate. A placeholder list is an ordered
collection of placeholders. The position of the placeholder in
a placeholder list is implicitly inferred by its position in the
arguments list. The position is taken into account during the
matching. An array placeholder can be constructed by calling
m ArrayPlaceholder, and a list of placeholders can be
assigned to it. Similarly, structural matchers can be constructed
only after the context has been instantiated. Structural matchers
can take a callback as an optional leading argument. A callback

〈AccessPatternContext〉 ::= /*res of calling AccessCtx()*/
〈StructuralPatternContext〉 ::= /*res of calling NestedPatternCtx()*/

〈placeholder〉 ::= /*res of calling m Placeholder()*/

〈placeholder-list〉 ::= 〈placeholder〉[{’,’ 〈placeholder〉}]
〈array-placeholder〉 ::= /*res of calling m ArrayPlaceholder()*/

〈array-placeholder〉 ::= 〈array-placeholder〉, 〈placeholder-list〉
〈load-matcher〉 ::= m Op〈LoadOp〉(〈placeholder-list〉)
〈load-matcher〉 ::= m Op〈LoadOp〉(〈array-placeholder〉)
〈store-matcher〉 ::= m Op〈StoreOp〉(〈placeholder-list〉)
〈store-matcher〉 ::= m Op〈StoreOp〉(〈array-placeholder〉)
〈void〉 ::= m Capt(〈Value &〉)
〈StructuralMatcher〉 ::= 〈StructuralMatcher-type〉(〈StructuralMatcher-list〉)
| 〈StructuralMatcher-type〉([〈callback〉],〈StructuralMatcher-list〉)
〈node-type〉 ::= ’FOR’ | ’IF’

Fig. 6: EBNF syntax for access and structural matchers.

CPU Clock rate OS RAM L1/L2/L3

Intel-i9-9900K 3.6 GHz Ubuntu 18.04 64 GB 32/256/16384 KB
AMD 2920X 4.3 GHz Ubuntu 18.04 64 GB 1.125/6/32 MB

TABLE I: Experimental setup.

allows for finer-grained control over the matching by testing
i.e., access pattern properties.

V. EVALUATION

In this section, we illustrate our framework’s applicability for
two raising paths, Affine-to-Affine and Affine-to-Linalg. In the
former, we show how Multi-Level Tactics is capable of lifting
the level of abstraction within the Affine dialect and improve
the performance of computations involving generalized matrix-
matrix multiplication. In the latter, Multi-Level Tactics is used
to raise loop nests in the Affine dialect to high-level operations
from the Linalg dialect. At the Linalg level, Multi-Level Tactics
emits Blas calls or relies on the Linalg code generator path.

Finally, we show how Multi-Level Tactics leverages further
high-level optimizations detecting and subsequently optimizing
matrix chain multiplications. Figure 7 re-proposes (a simplified)
MLIR lowering pipeline extended with the three raising paths
enabled by Multi-Level Tactics, and discussed in the next
sections.

The experiments (Table I) have been conducted on two test
platforms: an Intel Core i9-9900K (Coffee Lake) and an AMD
Threadripper 2920X. All results were obtained considering the
minimal execution time of five independent runs for single-
precision operands.

A. Raising from Affine loop nests to Affine high-level operations

Generalized matrix-multiplication (GEMM) is a frequently
occurring pattern with decades of research on its optimization
for various architectures [12]. A recent improvement within
MLIR [13] introduced a custom high-level operation matmul
in the Affine dialect that lowers to high-performance code by
implementing the OpenBLAS/Blis optimization [14].

TensorFlow
Teckyl

 Linalg & BLAS

SCF

MLIR LLVM IR

MLIR

MET

GtClang

Loop nest

High-level Op
(matmul)

Af
fin

e

Standard

Sec 5.2
Sec 5.3

Sec 5.1

Fig. 7: Multi-Level Tactics raising paths.

def GEMM {
pattern = builder
C(i,j) += A(i,k) * B(k,j)

}

Listing 8: TDL to raise to a matmul. The user can raise by
specifing -raise-affine-to-affine.

Currently, the operation needs to be instantiated directly
in manual code generation or through modification of an
existing high-level frontend, such as the Teckyl frontend
for tensor computations [15]. However, while this may be
conceivable for specialized tools and specific use cases, the
implementation requires detailed knowledge of MLIR internals,
is time-consuming, and needs to be repeated for each high-level
operation and all IR entry points.

Multi-Level Tactics solves these issues by providing a
convenient way for the user to express high-level patterns,
such as GEMM, and to automatically locate and replace these
at the affine level. Listing 8 shows the user-defined tactics
necessary to detect a contraction E = (×,+) of the form
C → C(i, j) + A(i, k) × B(k, j), where A, B, and C are
matrices. Once defined, the tactic is applied to all loop nests
with a GEMM-like access pattern and replaces them with the
matmul operation.

We test the reliability of our tactic on semantically equivalent
GEMM kernels from Polybench 4.2 and Darknet written C
in different styles. Polybench uses multi-dimensional arrays
references to encode multi-dimensions array accesses. Con-
trary, Darknet—a widely used, open-source deep learning
framework—uses linearized array references [16]. In all cases,
before running Multi-Level Tactics, we perform loop distri-
bution via MET to isolate the GEMM kernels from other
statements. Figure 8 shows the number of callsites detected by
Multi-Level Tactics compared with an Oracle, representing a
perfect matching. The GEMM kernels from Darknet are missed,
since the linearized, 1-d accesses are not matched by the 2-d
array references emitted by the GEMM tactic in Listing 8. A
delinearization pass in MLIR, as done in the LLVM polyhedral
optimizer [17], can solve this issue.

As the quality of the OpenBLIS/BLAS transformation has

mm
2m

m
3m

m

da
rkn

et
0

1

2

3

4
C

al
ls

ite
s

Detected Oracle

Fig. 8: Number of callsites detected by Multi-Level Tactics
compared to perfect matching (Oracle).

already been demonstrated in the original paper, we only report
the result of detecting a single 2088x2048 SGEMM multiplica-
tion on the AMD system. Compilation of a sequential loop nests
implementing a GEMM operation with clang -O3 (release
6.0.0) achieves a baseline performance of 1.76GFLOPS/s,
raising to matmul with Multi-Level Tactics and subsequent
optimization with OpenBLAS/Blis yields 23.59GFLOPS/s,
corresponding to a 13.4× speedup.

B. Raising from Affine to Linalg

The lifting from loop nests to matmul operations improves
performance significantly but remains specialized to GEMM
operations and the specific OpenBLAS/Blis optimization.
In this section, we generalize the lifting with Multi-Level
Tactics from loop nests to the Linalg dialect, covering matrix
multiplications, matrix-vector products, convolutions and TTGT
conversions of tensor contractions to matrix products.

We first evaluate a single-step lifting scheme that re-
places loop nests with Linalg operations and subsequently
lowers these operations using the default Linalg lowering
path (MLT-Linalg). This leverages optimizations already
implemented for Linalg (e.g., tiling for caches)2. We then
present a two-step scheme, which first raises to Linalg and
then invokes a second pass replacing linalg operations with
calls to a vendor-optimized BLAS library (MLT-Blas).

As input programs for the evaluation, we use a set of linear
algebra benchmarks from the Polybench 4.2 suite and collected
from previous studies related to tensor contractions [19]. For the
contractions, we include tensors with different dimensionality
from relevant domains used in coupled-cluster methods [20]
and chemistry kernels [21]. For Polybench 4.2, we selected
only those benchmarks that can be mapped to current available
Linalg operations, leading to the exclusion of syrk, symm,
syr2k, trmm, and doitgen.

Figure 9 shows the performance results for each of the
selected benchmarks:

• Clang -O3 refers to compilation of the sequential C
code with Clang (release 6.0.0)

2As of git version 48c28d5, Linalg primarily performs tiling, but work is
in progress to have more competitive performance with Blas libraries [18].

• MLT-Linalg refers to raising to Linalg using Multi-
Level Tactics and subsequent lowering using the default
scheme. MLT-Blas, on the other hand, replaces Linalg
operations with calls to a BLAS library.

• Pluto-default refers to source-to-source compilation
using Pluto3 with a tiling factor of 32 along each
dimension and the default smartfuse fusion heuristic,
which attempts to balance locality and parallelism. We
lower Pluto’s optimized code using Clang.

• Pluto-best is the best result for Pluto from over 3, 000
combinations of tile sizes from 1 to 1

4 -th of the problem
size and the available fusion heuristics (maximum fusion,
no fusion, and smartfusion).

The horizontal lines at 145.5GFLOPS/s and
63.6GFLOPS/s indicate the performance for a single-
precision matrix multiplication (2048 × 2048) of the Intel
Math Kernel Library for Deep Neural Network (MKL-DNN)
on the respective system. We use the MKL-DNN also for
the AMD system, as the performance gap between the
MKL-DNN and OpenBLAS is less than 3% (OpenBLAS:
65.9GFLOPS/s, MKL-DNN: 63.6GFLOPS/s).

As expected, for both architectures Clang provides the
lowest performance due to the low level of abstraction and
the broad optimization strategy of a general-purpose compiler.
Pluto with the default settings, generally outperforms Clang
but it is not able to match Multi-Level Tactics with the default
Linalg lowering path. For atax, bicg, mvt, gemver and
gesummv, Pluto-default and Pluto-best yield code
that is as fast or faster than Multi-Level Tactics substituting
BLAS operations with calls to the MKL-DNN. The best settings
for Pluto significantly increase performance over the default,
but fail to match BLAS performance for 2mm, 3mm, gemm,
conv2d-nchw and the contractions 4.

When comparing MLT-Blas with Pluto-best for
the AMD the largest speedups are observed for ker-
nels where Multi-Level Tactics maps to level-3 BLAS
(2mm to abcd-aebf-fdec). The highest speedup is for
ab-cad-dcb (294×) while the lowest speedup can be
observed for gemm (2.3×). Considering kernels which map
to level-2 BLAS (atax to gesummv), Pluto-best obtains
better performance than MLT-Blas. This loss in optimization
opportunity is the result of additional overhead introduced
by Multi-Level Tactics (and MLIR) to link vendor-optimized
libraries dynamically. As an example, neglecting the constant
overhead of 1.5ms for the atax kernel, its performance
would be on-par with Pluto-best at 6.5GFLOPS/s. A
similar observation can be made on the Intel system. For
level-3 BLAS kernels, the performance of MLT-BLAS exceeds
Pluto-Best, with the highest speedup for ab-acd-dbc
(66×) and the lowest speedup for gemm (3.78×).

When comparing MLT-Linalg with Pluto-default
for the AMD system, Pluto-default gives slightly better

3git commit f62d61b8
4Contractions are accelerated by rewriting the pattern using the TTGT

transformation and invoking GEMM, transpose, and reshape routines available
in MKL-DNN or the Linalg dialect.

ata
x

bic
g

ge
mve

r

ge
su

mmv
mvt

2m
m

3m
m

ge
mm

co
nv

2d
-nc

hw

ab
-ac

d-d
bc

ab
-ca

d-d
cb

ab
c-a

cd
-db

ab
c-a

d-b
dc

ab
c-b

da
-dc

ab
cd

-ae
bf-

dfc
e

ab
cd

-ae
bf-

fde
c

ge
om

ea
n

1

4

8

16

32

64

128 145.5 GFLOP/s

G
FL

O
P/

se
c

Clang -O3 Pluto-default Pluto-Best MLT-Linalg MLT-BLAS

ata
x

bic
g

ge
mve

r

ge
su

mmv
mvt

2m
m

3m
m

ge
mm

co
nv

2d
-nc

hw

ab
-ac

d-d
bc

ab
-ca

d-d
cb

ab
c-a

cd
-db

ab
c-a

d-b
dc

ab
c-b

da
-dc

ab
cd

-ae
bf-

dfc
e

ab
cd

-ae
bf-

fde
c

ge
om

ea
n

1

4

8

16

32

64
63.6 GFLOP/s

G
FL

O
P/

se
c

Clang -O3 Pluto-Default Pluto-Best MLT-Linalg MLT-BLAS

Fig. 9: Performance obtained for single-precision operands for two different architectures. Multi-Level Tactics allows recovering
semantic information in general-purpose code and exploit domain-specific optimizations by lifting to the Linalg dialect. At the
Linalg abstraction, we follow the Linalg code generation path or emit calls to vendor-optimized libraries directly. Results for
the Intel i9 are shown on top, and for the AMD 2920X at the bottom.

performance for all level-3 BLAS kernels except for the
contractions. This is expected, as Pluto’s smartfuse heuristic
applied on top of the tiling transformations significantly reduces
control-flow overhead, while for the contractions, the TTGT
transformation allows for significant improvements in data
locality for MLT-Linalg. An exception is abc-acd-db
and abc-bda-dc, where in the latter Pluto vectorizes the
innermost loop, resulting in better performance. Similar behav-
ior is observed for the Intel system, where Pluto-default
performs better on all kernels except for contractions, exception
made for abc-acd-db.

Finally, we evaluate the compile-time overhead introduced by
Multi-Level Tactics. Lowering the 16 benchmarks considered
above from Affine to MLIR LLVM takes 0.64 s with an

unmodified MLIR version5 compiled in release mode. In
comparison, it takes 0.72 s for Multi-Level Tactics to lift
from Affine to Linalg and then lower to MLIR LLVM, which
represents an increase of only 12% of the compilation time.

C. A case for progressive raising: reordering matrix chain
multiplications

We have shown how Multi-Level Tactics can be employed
to implement a single-step raising procedure, e.g., from Affine
to Linalg. As an illustration for progressive raising using
Multi-Level Tactics, we present an optimization reducing
the number of operations in matrix chain multiplications
exploiting associativity. This problem has multiple applications

5git commit 48c28d5

using namespace Linalg
auto A, B, C, D;
auto OutMatMul1, OutMatMul2, OutMatMul3;
auto _chain =
m_Op<MatmulOp>(m_Capt(A), m_Capt(B),

m_Op<MatmulOp>(OutMatMul1, m_Capt(C),
m_Op<MatmulOp>(OutMatMul2, m_Capt(D), OutMatMul3)))

Listing 9: Structural matcher to detect a chain of 3 matrices
multiplications in the Linalg dialect.

in real-world problems spanning from robotics to computer
animation [22], [23] and is formulated as follows: Given a
product of n matrices of the form A1×A2× ...×An of sizes
pi−1 × pi, the matrix-chain optimization problem consists in
finding the optimal parenthesizations that minimize the number
of scalar multiplications [24].

For example, consider the product of three matrices A1, A2

and A3 with sizes 800× 1100, 1100× 1200 and 1200× 100,
the parenthesization (A1×A2)×A3 results in 1.152·109 multi-
plications, while the parenthesization A1× (A2×A3) obtained
by the optimization requires only 2.2 · 108 multiplications.

As a starting point, we consider a matrix-chain multiplication
expressed as a set of nested loops in C and use MET to
enter the MLIR compilation pipeline at the Affine dialect. We
then use the tactic shown in Listing 8 with the compilation
flag -raise-affine-to-linalg to raise from the Affine
loop-based abstraction to Linalg. To detect chains of matrix
multiplications, we use a set of rewriting rules based on our
m Op matcher. Listing 9 shows an example for chains of three
matrices. The input matrices A, B, and C and the final result
D are captured via m Capt to enable the builder to generate
the re-parenthesized expression with the minimal number of
scalar multiplications.

We evaluate the impact of the above transformation on the
AMD system on three different matrix-chain multiplications
taken from the literature [22]. Table II reports the sizes of the
various matrices we consider as well as the initial and optimal
parenthesizations. We additionally report the execution time for
the optimized (time OP) and naive (time IP) parenthesizations.
In all cases, the reduction in the scalar multiplication is reflected
by faster execution time. For example, if we consider the chain
with four matrices, the original order’s execution takes 1.289 s
(2.37GFLOPS/s). In contrast, the new order only requires
0.212 s for completion, corresponding to a speedup that is
proportional to the reduced scalar operations of 6.08×.

In conclusion, the experiments presented in this section
illustrate real-world examples of how Multi-Level Tactics can
be used to raise from lower-level representations of general-
purpose languages to domain-specific abstractions without user
intervention. The concise notations allow for quick prototyping
and implementation of raising procedures, leveraging high-level
transformations with significant performance improvements that
general-purpose compilers fail to apply due to the low level
of abstraction and the generic optimizations.

VI. RELATED WORK

Idiom recognition is an old and well-known problem in
computer science since the 1990s. Each previous work can
be broadly classified in one of the following categories: text,
syntactic, and semantic. Text-based tools operate directly on
the source code while syntactic ones at the AST level [25],
[26], [27]. On the other hand, semantic tools go one step below
and annotate the AST with data and control flow information.
The first two categories have fallen out of fashion, mainly
due to the weak robustness against code changes, leaving the
stage for the more systematic semantic approaches. In this
category, Ginsbach et al. propose IDL an Idiom Description
Language that gets lowered to a set of constraints [28]. A match
is a code fragment that adheres to the set of specifications.
Their approach is fully automated and implemented in the
LLVM compiler. Compared with Multi-Level Tactics, IDL
has the advantages of detecting spare-linear algebra, which
is not yet supported in MLIR and Multi-Level Tactics. But
relying on a constraints solver to discover idioms increases the
compilation time by a large margin. In the paper, they report
an increase in compilation time of 82% on average. Contrary,
as demonstrated in the evaluation, Multi-Level Tactics has
a negligible overhead. In a follow-up work, Ginsbach et al.
propose LiLAC, a language and a compiler for accelerating
sparse and dense linear algebra [29]. Idiom discovery is still
based on a constraints solver, but the pattern specification is
made easier by introducing a DSL. Similarly, to TDL their
DSL enables the specification of the “what” and the “how”.
The “what” defines what to match while the “how” how the
library should be invoked to accelerate the “what”. LiLAC
can accelerate spare linear algebra but each pattern maps to
a single BLAS call. Vice-versa, Multi-Level Tactics enables
expressing a pattern as a composition of library calls but
does not support sparse linear algebra. Arenaz et al. with
the XARK compiler enable idiom recognition by analyzing
use-def chains in Strongly Connected Components (SCCs)
on the Gate Single Assignment Form, an extension of the
popular SSA form [30]. However, the linearization of multi-
dimensional arrays fundamentally limits the complexity of the
patterns that can be detected. Contrary, Multi-Level Tactics
works within the MLIR infrastructure, which enables whenever
possible (i.e., the access is not already linearized) to treat multi-
dimensional accesses as first-class citizens. Chelini et al. with
Declarative Loop Tactics bring domain-specific optimizations
in general-purpose flow by providing compiler developers
with a tool to add highly customized optimizations for a
given computation motif [1]. Despite Multi-Level Tactics
shares a lot of commonality with Loop Tactics, it goes one
step further by lowering the barrier of writing matchers and
boosting productivity by enabling their automatic synthesis
via TableGen. Felleisen et al. introduce Racket, a language
extension API, to extend the host language’s syntax and
semantics [31]. Thus enabling programmers to embed context
sensitive-information for optimization purpose. While MLT
has some similarity with Racket, and in more general with

N Matrix Dimensions Initial Parenthesization (IP) Optimal Parenthesization (OP) Time IP Time OP Speedup

4 800 1100 900 1200 100 (((A1 ×A2)×A3)×A4) (A1 × (A2 × (A3 ×A4))) 1.289 s 0.212 s 6.08X
5 1000 2000 900 1500 600 800 ((((A1 ×A2)×A3)×A4)×A5) ((A1 × (A2 × (A3 ×A4)))×A5) 5.850 s 2.567 s 2.27X
6 1500 400 2000 2200 600 1400 1000 (((((A1 ×A2)×A3)×A4)×A5)×A6) (A1 × ((((A2 ×A3)×A4)×A5)×A6)) 28.490 s 7.762 s 3.67X

TABLE II: Multi-Level Tactics enables the matrix-chain multiplication optimization at Linalg level by providing a raising path
from source code written in C.

language-oriented programming framework, it also a significant
difference [32], [33]. Specifically, MLT focus on the IR level
and not the source level, benefiting compiler developers, not
application developers. Brown et al. in the Delite framework
use rewriting rules to apply domain-specific optimizations,
while our end goal is similar (i.e., applying domain-specific
optimizations), Multi-Level Tactics does that by raising from
low-level abstractions [5]. Frameworks such as Halide decouple
the function description of a problem from its execution
strategy [34], [35]. Generally, the former is written by a domain
expert while the latter by a performance one. Such tools require
domain experts to get acquainted with the tooling syntax (i.e.,
Halide syntax) to write the problem’s function description. On
the other hand, using Multi-Level Tactics, a domain expert can
write plain C++ code, thus lowering the language barrier–no
need to learn a new language assuming the expert already
knows C++. In parallel or even before, thanks to the decoupled
nature of matchers and builders, a performance expert can
provide a tactic to decide the best execution strategy.

VII. CONCLUSION AND FUTURE WORK

We presented Multi-Level Tactics and its implementation in
the MLIR framework. At the heart of this paper is the idea
of enabling progressive raising—a complementary path to the
progressive lowering offered by multi-level IR compilers. Our
progressive raising enables us to lift the entry point of general-
purpose languages, thus enabling domain-specific optimizations
in a multi-level IR.

We show how Multi-Level Tactics allows expressing patterns
and builders concisely based on a Tensor Comprehension
inspired syntax, and demonstrate our framework for two raising
paths: Affine to Affine or Affine to Linalg. Besides, we show a
case for progressive raising by implementing a transformation
on top of the Linalg dialect by reordering chains of matrix
multiplications. To the best of our knowledge, we are the first
to provide an infrastructure and a demonstration to achieve
progressive raising in a multi-level IR compiler like MLIR.
Shortly, we will provide more raising paths.

ACKNOWLEDGMENT

The research of Lorenzo Chelini and Andi Drebes is
partially supported by the European Commission Horizon
2020 programme through the NeMeCo grant agreement, id.
676240, and the MNEMOSENE grant agreement, id 780215.
The research of Tobias Grosser is partially supported through
the Swiss National Science Foundation under the Ambizione
programme (grant PZ00P2168016) and ARM Ltd. and Xilinx
Inc., in the context of Polly Labs.

REFERENCES

[1] L. Chelini, O. Zinenko, T. Grosser, and H. Corporaal, “Declarative
loop tactics for domain-specific optimization,” ACM Trans. Archit. Code
Optim., vol. 16, Dec. 2019.

[2] N. Vasilache, O. Zinenko, T. Theodoridis, P. Goyal, Z. Devito, W. S.
Moses, S. Verdoolaege, A. Adams, and A. Cohen, “The next 700 accel-
erated layers: From mathematical expressions of network computation
graphs to accelerated gpu kernels, automatically,” ACM Trans. Archit.
Code Optim., vol. 16, Oct. 2019.

[3] A. Hartono, B. Norris, and P. Sadayappan, “Annotation-based empirical
performance tuning using orio,” in 2009 IEEE International Symposium
on Parallel Distributed Processing, pp. 1–11, 2009.

[4] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and
S. Amarasinghe, “Halide: A language and compiler for optimizing
parallelism, locality, and recomputation in image processing pipelines,”
in Proceedings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’13, (New York, NY, USA),
p. 519–530, Association for Computing Machinery, 2013.

[5] K. J. Brown, A. K. Sujeeth, H. J. Lee, T. Rompf, H. Chafi, M. Odersky,
and K. Olukotun, “A heterogeneous parallel framework for domain-
specific languages,” in 2011 International Conference on Parallel
Architectures and Compilation Techniques, pp. 89–100, 2011.

[6] A. K. Sujeeth, T. Rompf, K. J. Brown, H. Lee, H. Chafi, V. Popic, M. Wu,
A. Prokopec, V. Jovanovic, M. Odersky, and K. Olukotun, “Composition
and reuse with compiled domain-specific languages,” in Proceedings
of the 27th European Conference on Object-Oriented Programming,
ECOOP’13, (Berlin, Heidelberg), p. 52–78, Springer-Verlag, 2013.

[7] C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. Pienaar,
R. Riddle, T. Shpeisman, N. Vasilache, and O. Zinenko, “MLIR: Scaling
Compiler Infrastructure for Domain Specific Computation,” CGO’21,
p. to appear.

[8] T. Gysi, C. Müller, O. Zinenko, S. Herhut, E. Davis, T. Wicky, O. Fuhrer,
T. Hoefler, and T. Grosser, “Domain-Specific Multi-Level IR Rewriting
for GPU,” arXiv preprint arXiv:2005.13014, 2020.

[9] LLVM Developers, “Tablegen overview.” https://llvm.org/docs/TableGen/.
[Online; accessed 04-01-2021].

[10] N. Vasilache, O. Zinenko, T. Theodoridis, P. Goyal, Z. DeVito, W. S.
Moses, S. Verdoolaege, A. Adams, and A. Cohen, “Tensor com-
prehensions: Framework-agnostic high-performance machine learning
abstractions,” arXiv preprint arXiv:1802.04730, 2018.

[11] M. Team, “Embedded domain specific constructs - EDSC.” https://mlir.
llvm.org/docs/EDSC/. [Online; accessed 01-09-2020].

[12] R. Gareev, T. Grosser, and M. Kruse, “High-performance generalized
tensor operations: A compiler-oriented approach,” ACM Trans. Archit.
Code Optim., vol. 15, Sept. 2018.

[13] U. Bondhugula, “High performance code generation in mlir: An early
case study with gemm,” arXiv preprint arXiv:2003.00532, 2020.

[14] T. M. Low, F. D. Igual, T. M. Smith, and E. S. Quintana-Orti, “Analytical
modeling is enough for high-performance blis,” ACM Trans. Math. Softw.,
vol. 43, Aug. 2016.

[15] A. Drebes, “Teckyl: An MLIR frontend for Tensor Operations.” https:
//github.com/andidr/teckyl. [Online; accessed 19-06-2020].

[16] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Optimal speed
and accuracy of object detection,” arXiv preprint arXiv:2004.10934, 2020.

[17] T. Grosser, J. Ramanujam, L.-N. Pouchet, P. Sadayappan, and S. Pop,
“Optimistic delinearization of parametrically sized arrays,” in Proceedings
of the 29th ACM on International Conference on Supercomputing, ICS
’15, (New York, NY, USA), p. 351–360, Association for Computing
Machinery, 2015.

[18] N. Vasilache, “Progress on codegen with the vector
dialect.” https://drive.google.com/drive/folders/1lLhWopx
WCtFq3gTDGVJEzV9hFD7dwmI. [Online; accessed 20-08-2020].

https://llvm.org/docs/TableGen/
https://mlir.llvm.org/docs/EDSC/
https://mlir.llvm.org/docs/EDSC/
https://github.com/andidr/teckyl
https://github.com/andidr/teckyl
https://drive.google.com/drive/folders/1lLhWopx_WCtFq3gTDGVJEzV9hFD7dwmI
https://drive.google.com/drive/folders/1lLhWopx_WCtFq3gTDGVJEzV9hFD7dwmI

[19] P. Springer and P. Bientinesi, “Design of a high-performance gemm-like
tensor–tensor multiplication,” ACM Trans. Math. Softw., vol. 44, Jan.
2018.

[20] K. Stock, T. Henretty, I. Murugandi, P. Sadayappan, and R. Harrison,
“Model-driven simd code generation for a multi-resolution tensor kernel,”
in 2011 IEEE International Parallel Distributed Processing Symposium,
pp. 1058–1067, 2011.

[21] G. Baumgartner, A. Auer, D. E. Bernholdt, A. Bibireata, V. Choppella,
D. Cociorva, Xiaoyang Gao, R. J. Harrison, S. Hirata, S. Krishnamoorthy,
S. Krishnan, Chi-chung Lam, Qingda Lu, M. Nooijen, R. M. Pitzer,
J. Ramanujam, P. Sadayappan, and A. Sibiryakov, “Synthesis of high-
performance parallel programs for a class of ab initio quantum chemistry
models,” Proceedings of the IEEE, vol. 93, no. 2, pp. 276–292, 2005.

[22] B. B. Mabrouk, H. Hasni, and Z. Mahjoub, “Performance evaluation of
a parallel dynamic programming algorithm for solving the matrix chain
product problem,” in 2014 IEEE/ACS 11th International Conference
on Computer Systems and Applications (AICCSA), pp. 109–116, IEEE,
2014.

[23] S. S. Godbole, “On efficient computation of matrix chain products,” IEEE
Transactions on Computers, vol. 100, no. 9, pp. 864–866, 1973.

[24] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms. MIT press, 2009.

[25] W. Blume, R. Eigenmann, K. Faigin, J. Grout, J. Hoeflinger, D. Padua,
P. Petersen, W. Pottenger, L. Rauchwerger, P. Tu, and S. Weatherford,
“Polaris: Improving the effectiveness of parallelizing compilers,” in Lan-
guages and Compilers for Parallel Computing (K. Pingali, U. Banerjee,
D. Gelernter, A. Nicolau, and D. Padua, eds.), (Berlin, Heidelberg),
pp. 141–154, Springer Berlin Heidelberg, 1995.

[26] B. Pottenger and R. Eigenmann, “Idiom recognition in the polaris paral-
lelizing compiler,” in Proceedings of the 9th International Conference on
Supercomputing, ICS ’95, (New York, NY, USA), pp. 444–448, ACM,
1995.

[27] S.-I. Lee, T. A. Johnson, and R. Eigenmann, “Cetus – an extensible com-
piler infrastructure for source-to-source transformation,” in Languages
and Compilers for Parallel Computing (L. Rauchwerger, ed.), (Berlin,
Heidelberg), pp. 539–553, Springer Berlin Heidelberg, 2004.

[28] P. Ginsbach, T. Remmelg, M. Steuwer, B. Bodin, C. Dubach, and M. F. P.
O’Boyle, “Automatic matching of legacy code to heterogeneous apis: An
idiomatic approach,” SIGPLAN Not., vol. 53, p. 139–153, Mar. 2018.

[29] P. Ginsbach, B. Collie, and M. F. P. O’Boyle, “Automatically harnessing
sparse acceleration,” in Proceedings of the 29th International Conference
on Compiler Construction, CC 2020, (New York, NY, USA), p. 179–190,
Association for Computing Machinery, 2020.

[30] M. Arenaz, J. Touriño, and R. Doallo, “XARK: An Extensible Framework
for Automatic Recognition of Computational Kernels,” ACM Trans.
Program. Lang. Syst., vol. 30, Oct. 2008.

[31] M. Felleisen, R. B. Findler, M. Flatt, S. Krishnamurthi, E. Barzilay,
J. McCarthy, and S. Tobin-Hochstadt, “A programmable programming
language,” Commun. ACM, vol. 61, p. 62–71, Feb. 2018.

[32] M. P. Ward, “Language-oriented programming,” Software - Concepts
and Tools, vol. 15, no. 4, pp. 147–161, 1994.

[33] S. Tobin-Hochstadt, V. St-Amour, R. Culpepper, M. Flatt, and
M. Felleisen, “Languages as libraries,” in Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation, PLDI ’11, (New York, NY, USA), p. 132–141, Association for
Computing Machinery, 2011.

[34] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and
S. Amarasinghe, “Halide: a language and compiler for optimizing
parallelism, locality, and recomputation in image processing pipelines,”
Acm Sigplan Notices, vol. 48, no. 6, pp. 519–530, 2013.

[35] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan,
L. Wang, Y. Hu, L. Ceze, et al., “TVM: An automated end-to-end
optimizing compiler for deep learning,” in 13th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 18), pp. 578–
594, 2018.

ARTIFACT APPENDIX

A. Abstract

The artifact’s goal is to show how Multi-Level Tactics (MLT)
lifts general-purpose languages to higher-abstractions to enable
effective domain-specific compilation via progressive lowering.
The artifact consists of a docker container with accompanying
scripts to replicate figure 8, 9 and Table 2. The docker container
is the only piece needed to run all the experiments. Scripts to
generate the figures and the table come with the docker.

B. Artifact check-list (meta-information)
• Algorithm: Multi-Level Tactics a declarative approach for

progressive raising implemented on top of the MLIR framework.
• Program: Polybench/C 4.2.1 beta and collected on previous

studies on tensor contractions. Besides, we consider a 2-D
convolution. For Polybench/C 4.2.1 we use a modified version
where each kernel has been loop distributed and translated into
the Affine dialect in MLIR. All the benchmarks used come with
the MLT repository https://github.com/LoopTactics/mlir (cgo
branch).

• Compilation: Any C++11-compatible compiler to bootstrap
LLVM/MLIR.

• Data set: LARGE DATASET predefined in Polybench/C 4.2.1.
• Run-time environment: Any Unix system supported by LLVM.
• Hardware: Any platform supported by LLVM.
• Output: The result are PDF files replicating Figures 8, 9 and

Table 2. The scripts are already in the docker container. Figure
8 and 9 express results using GFLOP/s while Table 2 using
seconds. Intermediate files are also generated and are named
result X.txt. All the result X.txt files contain results expressed
in seconds.

• How much disk space required (approximately)?: The docker
is 7GB, 15GB of disk space should be enough.

• How much time is needed to prepare workflow (approxi-
mately)?: Mainly the time to build MLT (more than 20 minutes).

• How much time is needed to complete experiments (approx-
imately)?: 20/25 minutes.

• Publicly available?: Yes, via Github and Dockerhub.

C. Description
1) How delivered:
• We deliver the artifact via docker. Available at: https://hub.docker.

com/r/lchelini/cgo
• MLT and MLT’s TDL DSL are available at: https://github.com/

LoopTactics/mlir and https://github.com/LoopTactics/TacticsDSL
• A presentation of MLT at the MLIR Open Design Meeting is

available here
2) Hardware dependencies: Any platform supported by LLVM,

see https://llvm.org/docs/GettingStarted.html#hardware
3) Software dependencies: The docker container has all the

dependencies, which are:
• All requirements needed to compile LLVM/MLIR see https:

//llvm.org/docs/GettingStarted.html#software
• MKL-DNNL available at https://github.com/chelini/mkl-dnn.git
• MKL libraries

For the MLT’s TDL DSL we suggest using llvm-9.0, that can be
installed using sudo apt-get install llvm-9-dev on your
machine. No need to install it in the provided docker container.

D. Installation
No installation required.

E. Experiment workflow
The docker container comes with three files:
• experiment5.1.sh to reproduce Figure 8
• experiment5.2.sh to reproduce Figure 9
• experiment5.2.time.sh to reproduce the overhead introduce by

MLT
• experiment5.3.sh to reproduce Table 2
Steps:
• $ docker pull lchelini/cgo
• $ docker run -it lchelini/cgo
• $./build.sh
• $./experiment5.1.sh
• $./experiment5.2.sh
• $./experiment5.2.time.sh
• $./experiment5.3.sh

After running ./experiment5.X.sh a
main.pdf with results can be found in
llvm-project/mlir/benchmark section5.X. To open the
pdf file, copy it outside the container using docker cp command,
see https://docs.docker.com/engine/reference/commandline/cp/. The
script ./experiment5.2.time.sh print on stdout, no file
are generated.

F. Evaluation and expected result
In experiment 5.1, we evaluate MLT’s reliability by considering

different flavours of GEMMs written in different styles but seman-
tically equivalent. We expect to miss a raising opportunity only for
the Darknet benchmark as we do not emit matchers for linearized
access patterns, nor do we provide a delinearization pass.

In experiment 5.2, we demonstrate how lifting to higher abstractions
(i.e., MLT-Linalg or MLT-Blas) allows us to get better perfor-
mance than Clang -O3. We expect MLT Linalg and MLT Blas
to reach higher GFLOP/s than the baseline Clang -O3. Besides,
we provide also another baseline: Pluto. We expect Pluto to be
better than Clang -O3 but less effective (or comparable) to MLT
Linalg. We expect Pluto to be less effective than MLT BLAS.
Note that Pluto-best is not available as it relies on expensive
autotuning and takes days to converge.

In experiment 5.3, we show a case for a more progressive raising by
implementing the matrix-chain reordering transformation. We expect
Time IP > Time OP. IP is the time for the matrix chain without
reordering, while OP is the time of the reordered chain.

https://github.com/LoopTactics/mlir
https://hub.docker.com/r/lchelini/cgo
https://hub.docker.com/r/lchelini/cgo
https://github.com/LoopTactics/mlir
https://github.com/LoopTactics/mlir
https://github.com/LoopTactics/TacticsDSL
https://drive.google.com/file/d/1mfvAiJck4WDDcSPaWbc3D_Dvh86pp3MD/edit
https://llvm.org/docs/GettingStarted.html#hardware
https://llvm.org/docs/GettingStarted.html#software
https://llvm.org/docs/GettingStarted.html#software
https://github.com/chelini/mkl-dnn.git
https://docs.docker.com/engine/reference/commandline/cp/

	Introduction
	The MLIR Infrastructure
	Multi-Level Tactics Overview
	Tactics Description Language - TDL
	Tactics Description Specification (TDS)
	Matchers and Builders

	Multi-Level Tactic syntax
	Evaluation
	Raising from Affine loop nests to Affine high-level operations
	Raising from Affine to Linalg
	A case for progressive raising: reordering matrix chain multiplications

	Related Work
	Conclusion and Future Work
	References
	Abstract
	Artifact check-list (meta-information)
	Description
	How delivered
	Hardware dependencies
	Software dependencies

	Installation
	Experiment workflow
	Evaluation and expected result

