
Learning and Evaluating Contextual Embedding of Source Code

Aditya Kanade * 1 2 Petros Maniatis * 2 Gogul Balakrishnan 2 Kensen Shi 2

Abstract

Recent research has achieved impressive results
on understanding and improving source code by
building up on machine-learning techniques de-
veloped for natural languages. A significant ad-
vancement in natural-language understanding has
come with the development of pre-trained con-
textual embeddings, such as BERT, which can
be fine-tuned for downstream tasks with less la-
beled data and training budget, while achieving
better accuracies. However, there is no attempt
yet to obtain a high-quality contextual embed-
ding of source code, and to evaluate it on multiple
program-understanding tasks simultaneously; that
is the gap that this paper aims to mitigate. Specifi-
cally, first, we curate a massive, deduplicated cor-
pus of 7.4M Python files from GitHub, which we
use to pre-train CuBERT, an open-sourced code-
understanding BERT model; and, second, we cre-
ate an open-sourced benchmark that comprises
five classification tasks and one program-repair
task, akin to code-understanding tasks proposed
in the literature before. We fine-tune CuBERT on
our benchmark tasks, and compare the resulting
models to different variants of Word2Vec token
embeddings, BiLSTM and Transformer models,
as well as published state-of-the-art models, show-
ing that CuBERT outperforms them all, even with
shorter training, and with fewer labeled exam-
ples. Future work on source-code embedding can
benefit from reusing our benchmark, and from
comparing against CuBERT models as a strong
baseline.

*Equal contribution 1Indian Institute of Science, Bangalore,
India 2Google Brain, Mountain View, USA. Correspondence to:
Aditya Kanade <kanade@iisc.ac.in>, Petros Maniatis <mani-
atis@google.com>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

1. Introduction
Modern software engineering places a high value on writing
clean and readable code. This helps other developers under-
stand the author’s intent so that they can maintain and extend
the code. Developers use meaningful identifier names and
natural-language documentation to make this happen (Mar-
tin, 2008). As a result, source code contains substantial
information that can be exploited by machine-learning algo-
rithms. Indeed, sequence modeling on source code has been
shown to be successful in a variety of software-engineering
tasks, such as code completion (Hindle et al., 2012; Raychev
et al., 2014), source code to pseudo-code mapping (Oda
et al., 2015), API-sequence prediction (Gu et al., 2016), pro-
gram repair (Pu et al., 2016; Gupta et al., 2017), and natural
language to code mapping (Iyer et al., 2018), among others.

The distributed vector representations of tokens, called to-
ken (or word) embeddings, are a crucial component of
neural methods for sequence modeling. Learning useful
embeddings in a supervised setting with limited data is
often difficult. Therefore, many unsupervised learning ap-
proaches have been proposed to take advantage of large
amounts of unlabeled data that are more readily available.
This has resulted in ever more useful pre-trained token em-
beddings (Mikolov et al., 2013a; Pennington et al., 2014;
Bojanowski et al., 2017). However, the subtle differences
in the meaning of a token in varying contexts are lost when
each word is associated with a single representation. Recent
techniques for learning contextual embeddings (McCann
et al., 2017; Peters et al., 2018; Radford et al., 2018; 2019;
Devlin et al., 2019; Yang et al., 2019) provide ways to com-
pute representations of tokens based on their surrounding
context, and have shown significant accuracy improvements
in downstream tasks, even with only a small number of
task-specific parameters.

Inspired by the success of pre-trained contextual embed-
dings for natural languages, we present the first attempt to
apply the underlying techniques to source code. In partic-
ular, BERT (Devlin et al., 2019) produces a bidirectional
Transformer encoder (Vaswani et al., 2017) by training it to
predict values of masked tokens, and whether two sentences
follow each other in a natural discourse. The pre-trained
model can be fine-tuned for downstream supervised tasks
and has been shown to produce state-of-the-art results on

Learning and Evaluating Contextual Embedding of Source Code

a number of natural-language understanding benchmarks.
In this work, we derive a contextual embedding of source
code by training a BERT model on source code. We call our
model CuBERT, short for Code Understanding BERT.

In order to achieve this, we curate a massive corpus of
Python programs collected from GitHub. GitHub projects
are known to contain a large amount of duplicate code. To
avoid biasing the model to such duplicated code, we perform
deduplication using the method of Allamanis (2018). The
resulting corpus has 7.4 million files with a total of 9.3
billion tokens (16 million unique). For comparison, we
also train Word2Vec embeddings (Mikolov et al., 2013a;b),
namely, continuous bag-of-words (CBOW) and Skipgram
embeddings, on the same corpus.

For evaluating CuBERT, we create a benchmark of five clas-
sification tasks, and a sixth localization and repair task. The
classification tasks range from classification of source code
according to presence or absence of certain classes of bugs,
to mismatch between a function’s natural language descrip-
tion and its body, to predicting the right kind of exception to
catch for a given code fragment. The localization and repair
task, defined for variable-misuse bugs (Vasic et al., 2019),
is a pointer-prediction task. Although similar tasks have
appeared in prior work, the associated datasets come from
different languages and varied sources; instead we create a
cohesive multiple-task benchmark dataset in this work. To
produce a high-quality dataset, we ensure that there is no
overlap between pre-training and fine-tuning examples, and
that all of the tasks are defined on Python code.

We fine-tune CuBERT on each of the classification tasks
and compare the results to multi-layered bidirectional
LSTM (Hochreiter & Schmidhuber, 1997) models, as well
as Transformers (Vaswani et al., 2017). We train the LSTM
models from scratch and also using pre-trainined Word2Vec
embeddings. Our results show that CuBERT consistently
outperforms these baseline models by 3.2% to 14.7%
across the classification tasks. We perform a number of
additional studies by varying the sampling strategies used
for training Word2Vec models, and by varying program
lengths. In addition, we also show that CuBERT can be
fine-tuned effectively using only 33% of the task-specific
labeled data and with only 2 epochs, and that, even then,
it attains results competitive to the baseline models trained
with the full datasets and many more epochs. CuBERT,
when fine-tuned on the variable-misuse localization and
repair task, produces high classification, localization and
localization+repair accuracies and outperforms published
state-of-the-art models (Hellendoorn et al., 2020; Vasic et al.,
2019). Our contributions are as follows:

• We present the first attempt at pre-training a BERT
contextual embedding of source code.

• We show the efficacy of the pre-trained contextual em-
bedding on five classification tasks. Our fine-tuned
models outperform baseline LSTM models (with/with-
out Word2Vec embeddings), as well as Transformers
trained from scratch, even with reduced training data.

• We evaluate CuBERT on a pointer prediction task and
show that it outperforms state-of-the-art results signifi-
cantly.

• We make the models and datasets publicly available.1

We hope that future work benefits from our contribu-
tions, by reusing our benchmark tasks, and by compar-
ing against our strong baseline models.

2. Related Work
Given the abundance of natural-language text, and the rel-
ative difficulty of obtaining labeled data, much effort has
been devoted to using large corpora to learn about language
in an unsupervised fashion, before trying to focus on tasks
with small labeled training datasets. Word2Vec (Mikolov
et al., 2013a;b) computed word embeddings based on word
co-occurrence and proximity, but the same embedding is
used regardless of the context. The continued advances in
word (Pennington et al., 2014) and subword (Bojanowski
et al., 2017) embeddings led to publicly released pre-trained
embeddings, used in a variety of tasks.

To deal with varying word context, contextual word embed-
dings were developed (McCann et al., 2017; Peters et al.,
2018; Radford et al., 2018; 2019), in which an embedding
is learned for the context of a word in a particular sentence,
namely the sequence of words preceding it and possibly
following it. BERT (Devlin et al., 2019) improved natural-
language pre-training by using a de-noising autoencoder.
Instead of learning a language model, which is inherently
sequential, BERT optimizes for predicting a noised word
within a sentence. Such prediction instances are gener-
ated by choosing a word position and either keeping it un-
changed, removing the word, or replacing the word with a
random wrong word. It also pre-trains with the objective
of predicting whether two sentences can be next to each
other. These pre-training objectives, along with the use of
a Transformer-based architecture, gave BERT an accuracy
boost in a number of NLP tasks over the state-of-the-art.
BERT has been improved upon in various ways, including
modifying training objectives, utilizing ensembles, combin-
ing attention with autoregression (Yang et al., 2019), and
expanding pre-training corpora and time (Liu et al., 2019).
However, the main architecture of BERT seems to hold up
as the state-of-the-art, as of this writing.

1https://github.com/google-research/
google-research/tree/master/cubert

https://github.com/google-research/google-research/tree/master/cubert
https://github.com/google-research/google-research/tree/master/cubert

Learning and Evaluating Contextual Embedding of Source Code

In the space of programming languages, embeddings have
been learned for specific software-engineering tasks (Chen
& Monperrus, 2019). These include embeddings of variable
and method identifiers using local and global context (Al-
lamanis et al., 2015), abstract syntax trees (ASTs) (Mou
et al., 2016; Zhang et al., 2019), AST paths (Alon et al.,
2019), memory heap graphs (Li et al., 2016), and ASTs
enriched with data-flow information (Allamanis et al., 2018;
Hellendoorn et al., 2020). These approaches require an-
alyzing source code beyond simple tokenization. In this
work, we derive a pre-trained contextual embedding of tok-
enized source code without explicitly modeling source-code-
specific information, and show that the resulting embedding
can be effectively fine-tuned for downstream tasks.

CodeBERT (Feng et al., 2020) targets paired natural-
language (NL) and multi-lingual programming-language
(PL) tasks, such as code search and generation of code doc-
umentation. It pre-trains a Transformer encoder by treating
a natural-language description of a function and its body
as separate sentences in the sentence-pair representation
of BERT. We also handle natural language directly, but do
not require such a separation. Natural-language tokens can
be mixed with source-code tokens both within and across
sentences in our encoding. One of our benchmark tasks,
function-docstring mismatch, illustrates the ability of Cu-
BERT to handle NL-PL tasks.

3. Experimental Setup
We now outline our benchmarks and experimental study.
The supplementary material contains deeper detail aimed at
reproducing our results.

3.1. Code Corpus for Fine-Tuning Tasks

We use the ETH Py150 corpus (Raychev et al., 2016) to gen-
erate datasets for the fine-tuning tasks. This corpus consists
of 150K Python files from GitHub, and is partitioned into
a training split (100K files) and a test split (50K files). We
held out 10K files from the training split as a validation split.
We deduplicated the dataset in the fashion of Allamanis
(2018). Finally, we drop from this corpus those projects
for which licensing information was not available or whose
licenses restrict use or redistribution. We call the resulting
corpus the ETH Py150 Open corpus.2 This is our Python
fine-tuning code corpus, and it consists of 74,749 training
files, 8,302 validation files, and 41,457 test files.

3.2. The GitHub Python Pre-Training Code Corpus

We used the public GitHub repository hosted on Google’s
BigQuery platform (the github repos dataset under Big-

2https://github.com/
google-research-datasets/eth_py150_open

Query’s public-data project, bigquery-public-data).
We extracted all files ending in .py, under open-source, re-
distributable licenses, removed symbolic links, and retained
only files reported to be in the refs/heads/master
branch. This resulted in about 16.2 million files.

To avoid duplication between pre-training and fine-tuning
data, we removed files that had high similarity to the files in
the ETH Py150 Open corpus, using the method of Allamanis
(2018). In particular, two files are considered similar to each
other if the Jaccard similarity between the sets of tokens
(identifiers and string literals) is above 0.8 and in addition,
it is above 0.7 for multi-sets of tokens. This brought the
dataset to 14.3 million files. We then further deduplicated
the remaining files, by clustering them into equivalence
classes holding similar files according to the same similarity
metric, and keeping only one exemplar per equivalence class.
This helps avoid biasing the pre-trained embedding. Finally,
we removed files that could not be parsed. In the end, we
were left with 7.4 million Python files containing over 9.3
billion tokens. This is our Python pre-training code corpus.

3.3. Source-Code Modeling

We first tokenize a Python program using the standard
Python tokenizer (the tokenize package). We leave lan-
guage keywords intact and produce special tokens for syn-
tactic elements that have either no string representation (e.g.,
DEDENT tokens, which occur when a nested program scope
concludes), or ambiguous interpretation (e.g., new-line char-
acters inside string literals, at the logical end of a Python
statement, or in the middle of a Python statement result in
distinct special tokens). We split identifiers according to
common heuristic rules (e.g., snake or Camel case). Finally,
we split string literals using heuristic rules, on white-space
characters, and on special characters. We limit all thus pro-
duced tokens to a maximum length of 15 characters. We
call this the program vocabulary. Our Python pre-training
code corpus contained 16 million unique tokens.

We greedily compress the program vocabulary into a
subword vocabulary (Schuster & Nakajima, 2012) us-
ing the SubwordTextEncoder from the Tensor2Tensor
project (Vaswani et al., 2018)3, resulting in about 50K to-
kens. All words in the program vocabulary can be losslessly
encoded using one or more of the subword tokens.

We tokenize programs first into program tokens, as de-
scribed above, and then encode those tokens one by one
in the subword vocabulary. The objective of this encod-
ing scheme is to preserve syntactically meaningful bound-
aries of tokens. For example, the identifier “snake case”

3https://github.com/tensorflow/
tensor2tensor/blob/master/tensor2tensor/
data_generators/text_encoder.py

https://github.com/google-research-datasets/eth_py150_open
https://github.com/google-research-datasets/eth_py150_open
https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/data_generators/text_encoder.py
https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/data_generators/text_encoder.py
https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/data_generators/text_encoder.py

Learning and Evaluating Contextual Embedding of Source Code

could be encoded as “sna ke ca se”, preserving the
snake case split of its characters, even if the subtoken “e c”
were very popular in the corpus; the latter encoding might
result in a smaller representation but would lose the intent of
the programmer in using a snake-case identifier. Similarly,
“i=0” may be very frequent in the corpus, but we still force
it to be encoded as separate tokens i, =, and 0, ensuring that
we preserve the distinction between operators and operands.
Both the BERT model and the Word2Vec embeddings are
built on the subword vocabulary.

3.4. Fine-Tuning Tasks

To evaluate CuBERT, we design five classification tasks and
a multi-headed pointer task. These are motivated by prior
work, but unfortunately, the associated datasets come from
different languages and varied sources. We want the tasks
to be on Python code, and for accurate results, we ensure
that there is no overlap between pre-training and fine-tuning
datasets. We therefore create all the tasks on the ETH Py150
Open corpus (see Section 3.1). As discussed in Section 3.2,
we ensure that there is no duplication between this and the
pre-training corpus. We hope that our datasets for these
tasks will be useful to others as well. The fine-tuning tasks
are described below. A more detailed discussion is presented
in the supplementary material.

Variable-Misuse Classification Allamanis et al. (2018)
observed that developers may mistakenly use an incorrect
variable in the place of a correct one. These mistakes may
occur when developers copy-paste similar code but forget
to rename all occurrences of variables from the original
fragment, or when there are similar variable names that can
be confused with each other. These can be subtle errors
that remain undetected during compilation. The task by
Allamanis et al. (2018) is to choose the correct variable name
at a location within a C# function. We take the classification
version restated by Vasic et al. (2019), wherein, given a
function, the task is to predict whether there is a variable
misuse at any location in the function, without specifying
a particular location to consider. Here, the classifier has to
consider all variables and their usages to make the decision.
In order to create negative (buggy) examples, we replace a
variable use at some location with another variable that is
defined within the function.

Wrong Binary Operator Pradel & Sen (2018) proposed
the task of detecting whether a binary operator in a given
expression is correct. They use features extracted from
limited surrounding context. We use the entire function
with the goal of detecting whether any binary operator in
the function is incorrect. The negative examples are created
by randomly replacing some binary operator with another
type-compatible operator.

Swapped Operand Pradel & Sen (2018) propose the
wrong binary operand task where a variable or constant
is used incorrectly in an expression, but that task is quite
similar to the variable-misuse task we already use. We
therefore define another class of operand errors where the
operands of non-commutative binary operators are swapped.
The operands can be arbitrary subexpressions, and are not
restricted to be just variables or constants. To simplify ex-
ample generation, we restrict this task to examples in which
the operator and operands all fit within a single line.

Function-Docstring Mismatch Developers are encour-
aged to write descriptive docstrings to explain the function-
ality and usage of functions. This provides parallel corpora
between code and natural language sentences that have been
used for machine translation (Barone & Sennrich, 2017),
detecting uninformative docstrings (Louis et al., 2018) and
to evaluate their utility to provide supervision in neural code
search (Cambronero et al., 2019). We prepare a sentence-
pair classification problem where the function and its doc-
string form two distinct sentences. The positive examples
come from the correct function-docstring pairs. We create
negative examples by replacing correct docstrings with doc-
strings of other functions, randomly chosen from the dataset.
For this task, the existing docstring is removed from the
function body.

Exception Type While it is possible to write generic
exception handlers (e.g., “except Exception” in
Python), it is considered a good coding practice to catch
and handle the precise exceptions that can be raised by a
code fragment.4 We identified the 20 most common excep-
tion types from the GitHub dataset, excluding the catch-all
Exception (full list in Table 1 in the supplementary ma-
terial). Given a function with an except clause for one of
these exception types, we replace the exception with a spe-
cial “hole” token. The task is the multi-class classification
problem of predicting the original exception type.

Variable-Misuse Localization and Repair As an in-
stance of a non-classification task, we consider the joint
classification, localization, and repair version of the variable-
misuse task from Vasic et al. (2019). Given a function, the
task is to predict one pointer (called the localization pointer)
to identify a variable-misuse location, and another pointer
(called the repair pointer) to identify a variable from the
same function that is the right one to use at the faulty loca-
tion. The model is also trained to classify functions that do
not contain any variable misuse as bug-free by making the
localization pointer point to a special location in the func-
tion. We create negative examples using the same method

4https://google.github.io/styleguide/
pyguide.html#24-exceptions

https://google.github.io/styleguide/pyguide.html##24-exceptions
https://google.github.io/styleguide/pyguide.html##24-exceptions

Learning and Evaluating Contextual Embedding of Source Code

Train Validation Test

Variable-Misuse Classification 700,708 8,192 (75,478) 378,440
Wrong Binary Operator 459,400 8,192 (49,804) 251,804
Swapped Operand 236,246 8,192 (26,118) 130,972
Function-Docstring 340,846 8,192 (37,592) 186,698
Exception Type 18,480 2,088 (2,088) 10,348
Variable-Misuse Localization and Repair 700,708 8,192 (75,478) 378,440

Table 1. Benchmark fine-tuning datasets. Note that for validation, we have subsampled the original datasets (in parentheses) down to
8,192 examples, except for exception classification, which only had 2,088 validation examples, all of which are included.

as used in the Variable-Misuse Classification task.

Table 1 lists the sizes of the resulting benchmark datasets
extracted from the fine-tuning corpus. The Exception Type
task contains significantly fewer examples than the other
tasks, since examples for this task only come from functions
that catch one of the chosen 20 exception types.

3.5. BERT for Source Code

The BERT model (Devlin et al., 2019) consists of a multi-
layered Transformer encoder. It is trained with two tasks:
(1) to predict the correct tokens in a fraction of all positions,
some of which have been replaced with incorrect tokens or
the special [MASK] token (the Masked Language Model
task, or MLM) and (2) to predict whether the two sentences
separated by the special [SEP] token follow each other
in some natural discourse (the Next-Sentence Prediction
task, or NSP). Thus, each example consists of one or two
sentences, where a sentence is the concatenation of con-
tiguous lines from the source corpus, sized to fit the target
example length. To ensure that every sentence is treated in
multiple instances of both MLM and NSP, BERT by default
duplicates the corpus 10 times, and generates independently
derived examples from each duplicate. With 50% proba-
bility, the second example sentence comes from a random
document (for NSP). A token is chosen at random for an
MLM prediction (up to 20 per example), and from those
chosen, 80% are masked, 10% are left undisturbed, and
10% are replaced with a random token.

CuBERT is similarly formulated, but a CuBERT line is a log-
ical code line, as defined by the Python standard. Intuitively,
a logical code line is the shortest sequence of consecutive
lines that constitutes a legal statement, e.g., it has correctly
matching parentheses. We count example lengths by count-
ing the subword tokens of both sentences (see Section 3.3).

We train the BERT Large model having 24 layers with 16
attention heads and 1024 hidden units. Sentences are cre-
ated from our pre-training dataset. Task-specific classifiers
pass the embedding of a special start-of-example [CLS]
token through feed-forward and softmax layers. For the
pointer prediction task, the pointers are computed exactly as

by Vasic et al. (2019); whereas in that work, the pointers are
computed from the output of an LSTM layer, in our model,
they are computed from the last-layer hiddens of BERT.

3.6. Baselines

3.6.1. WORD2VEC

We train Word2Vec models using the same pre-training
corpus as the BERT model. To maintain parity, we gen-
erate the dataset for Word2Vec using the same pipeline as
BERT but by disabling masking and generation of negative
examples for NSP. The dataset is generated without any
duplication. We train both CBOW and Skipgram models
using GenSim (Řehůřek & Sojka, 2010). To deal with the
large vocabulary, we use negative sampling and hierarchical
softmax (Mikolov et al., 2013a;b) to train the two versions.
In all, we obtain four types of Word2Vec embeddings.

3.6.2. BIDIRECTIONAL LSTM AND TRANSFORMER

In order to obtain context-sensitive encodings of input se-
quences for the fine-tuning tasks, we use multi-layered bidi-
rectional LSTMs (Hochreiter & Schmidhuber, 1997) (BiL-
STMs). These are initialized with the pre-trained Word2Vec
embeddings. To further evaluate whether LSTMs alone
are sufficient without pre-training, we also train BiLSTMs
with an embedding matrix that is initialized from scratch
with Xavier initialization (Glorot & Bengio, 2010). We
also trained Transformer models (Vaswani et al., 2017) for
our fine-tuning tasks. We used BERT’s own Transformer
implementation, to ensure comparability of results. For com-
parison with prior work, we use the unidirectional LSTM
and pointer model from Vasic et al. (2019) for the Variable-
Misuse Localization and Repair task.

4. Experimental Results
4.1. Training Details

CuBERT’s dataset generation duplicates the corpus 10 times,
whereas Word2Vec is trained without duplication. To com-
pensate for this difference, we trained Word2Vec for 10

Learning and Evaluating Contextual Embedding of Source Code

epochs and CuBERT for 1 epoch. We chose models by
validation accuracy, both during hyperparameter searches,
and during model selection within an experiment.

We pre-train CuBERT with the default configuration of the
BERT Large model, one model per example length (128,
256, 512, and 1,024 subword tokens) with batch sizes of
8,192, 4,096, 2,048, and 1,024 respectively, and the default
BERT learning rate of 1× 10−4. Fine-tuned models also
used the same batch sizes as for pre-training, and BERT’s
default learning rate (5× 10−5). For both, we gradually
warm up the learning rate for the first 10% of examples,
which is BERT’s default value.

For Word2Vec, when training with negative samples, we
choose 5 negative samples. The embedding size for all
the Word2Vec pre-trained models is set at 1,024. For the
baseline BiLSTM models, we performed a hyperparameter
search on each task and pre-training configuration separately
(5 tasks, each trained with the four Word2Vec embeddings,
plus the randomly initialized embeddings), for the 512 ex-
ample length. For each of these 25 task configurations, we
varied the number of layers (1 to 3), the number of hid-
den units (128, 256 and 512), the LSTM output dropout
probability (0.1 and 0.5), and the learning rate (1× 10−3,
1× 10−4 and 1× 10−5). We used the Adam (Kingma &
Ba, 2014) optimizer throughout, and batch size 8,192 for
all tasks except the Exception-Type task, for which we used
batch size 64. Invariably, the best hyperparameter selection
had 512 hidden units per layer and learning rate of 1× 10−3,
but the number of layers (mostly 2 or 3) and dropout prob-
ability varied across best task configurations. Though no
single Word2Vec configuration is the best, CBOW trained
with negative sampling gives the most consistent results
overall.

For the baseline Transformer models, we originally at-
tempted to train a model of the same configuration as Cu-
BERT. However, the sizes of our fine-tuning datasets seemed
too small to train that large a Transformer. Instead, we
performed a hyperparameter search for each task individ-
ually, for the 512 example length. We varied the num-
ber of transformer layers (1 to 6), hidden units (128, 256
and 512), learning rates (1× 10−3, 5× 10−4, 1× 10−4,
5× 10−5 and 1× 10−5) and batch sizes (512, 1,024, 2,048
and 4,096). The best architecture varied across the tasks: for
example, 5 layers with 128 hiddens and the highest learning
rate worked best for the Function-Docstring task, whereas
for the Exception-Type task, 2 layers, 512 hiddens, and the
second lowest learning rate worked best.

Finally, for our baseline pointer model (referred to as
LSTM+pointer below) we searched over the following hy-
perparameter choices: hidden sizes of 512 and 1,024, token
embedding sizes of 512 and 1,024, and learning rates of
1× 10−1, 1× 10−2 and 1× 10−3. We used the Adam op-

timizer, a batch size of 256, and example length 512. In
contrast to the original work (Vasic et al., 2019), we gen-
erated one pair of buggy/bug-free examples per function
(rather than one per variable use, per function, which would
bias towards longer functions), and use CuBERT’s subword-
tokenized vocabulary of 50K subtokens (rather than a lim-
ited full-token vocabulary, which leaves many tokens out of
vocabulary).

We used TPUs for training our models, except for pre-
training Word2Vec embeddings, and the pointer model by
Vasic et al. (2019). For the rest, and for all evaluations,
we used P100 or V100 GPUs. All experiments using pre-
trained word or contextual embeddings continued to fine-
tune weights throughout training.

4.2. Research Questions

We set out to answer the following research questions. We
will address each with our results.

1. Do contextual embeddings help with source-code anal-
ysis tasks, when pre-trained on an unlabeled code cor-
pus? We compare CuBERT to BiLSTM models with
and without pre-trained Word2Vec embeddings on the
classification tasks (Section 4.3).

2. Does fine-tuning actually help, or is the Transformer
model by itself sufficient? We compare fine-tuned
CuBERT models to Transformer-based models trained
from scratch on the classification tasks (Section 4.4).

3. How does the performance of CuBERT on the classifi-
cation tasks scale with the amount of labeled training
data? We compare the performance of fine-tuned Cu-
BERT models when fine-tuning with 33%, 66% and
100% of the task training data (Section 4.5).

4. How does context size affect CuBERT? We compare
fine-tuning performance for different example lengths
on the classification tasks (Section 4.6).

5. How does CuBERT perform on complex tasks, against
state-of-the-art methods? We implemented and fine-
tuned a model for a multi-headed pointer prediction
task, namely, the Variable-Misuse Localization and
Repair task (Section 4.7). We compare it to the models
from (Vasic et al., 2019) and (Hellendoorn et al., 2020).

Except for Section 4.6, all the results are presented for se-
quences of length 512. We give examples of classification
instances in the supplementary material and include visual-
izations of attention weights for them.

Learning and Evaluating Contextual Embedding of Source Code

Setting Misuse Operator Operand Docstring Exception

BiLSTM

From scratch 76.29% 83.65% 88.07% 76.01% 52.79%

CBOW ns 80.33% 86.82% 89.80% 89.08% 67.01%

(100 epochs) hs 78.00% 85.85% 90.14% 87.69% 60.31%

Skipgram ns 77.06% 85.14% 89.31% 83.81% 60.07%
hs 80.53% 86.34% 89.75% 88.80% 65.06%

CuBERT
2 epochs 94.04% 89.90% 92.20% 97.21% 61.04%
10 epochs 95.14% 92.15% 93.62% 98.08% 77.97%
20 epochs 95.21% 92.46% 93.36% 98.09% 79.12%

Transformer 100 epochs 78.28% 76.55% 87.83% 91.02% 49.56%

Table 2. Test accuracies of fine-tuned CuBERT against BiLSTM (with and without Word2Vec embeddings) and Transformer trained from
scratch on the classification tasks. “ns” and “hs” respectively refer to negative sampling and hierarchical softmax settings used for training
CBOW and Skipgram models. “From scratch” refers to training with freshly initialized token embeddings, without pre-training.

4.3. Contextual vs. Word Embeddings

The purpose of this analysis is to understand how much pre-
trained contextual embeddings help, compared to word em-
beddings. For each classification task, we trained BiLSTM
models starting with each of the Word2Vec embeddings,
namely, continuous bag of words (CBOW) and Skipgram
trained with negative sampling or hierarchical softmax. We
trained the BiLSTM models for 100 epochs and the Cu-
BERT models for 20 epochs, and all models stopped im-
proving by the end.

The resulting test accuracies are shown in Table 2 (first 5
rows and next-to-last row). CuBERT consistently outper-
forms BiLSTM (with the best task-wise Word2Vec configu-
ration) on all tasks, by a margin of 3.2% to 14.7%. Thus,
the pre-trained contextual embedding provides superior re-
sults even with a smaller budget of 20 epochs, compared
to the 100 epochs used for BiLSTMs. The Exception-Type
classification task has an order of magnitude less training
data than the other tasks (see Table 1). The difference be-
tween the performance of BiLSTM and CuBERT is substan-
tially higher for this task. Thus, fine-tuning is of much value
for tasks with limited labeled training data.

We analyzed the performance of CuBERT with the reduced
fine-tuning budget of only 2 and 10 epochs (see the remain-
ing rows of the CuBERT section in Table 2). Except for
the Exception Type task, CuBERT outperforms the best
100-epoch BiLSTM within 2 fine-tuning epochs. On the
Exception-Type task, CuBERT with 2 fine-tuning epochs
outperforms all but two configurations of the BiLSTM base-
line. This shows that, even when restricted to just a few
fine-tuning epochs, CuBERT can reach accuracies that are
comparable to or better than those of BiLSTMs trained with
Word2Vec embeddings.

To sanity-check our findings about BiLSTMs, we also
trained the BiLSTM models from scratch, without pre-

trained embeddings. The results are shown in the first row
of Table 2. Compared to those, the use of Word2Vec embed-
dings performs better by a margin of 2.7% to 14.2%.

4.4. Is Transformer All You Need?

One may wonder if CuBERT’s promising results derive
more from using a Transformer-based model for its classi-
fication tasks, and less from the actual, unsupervised pre-
training. Here we compare our results on the classification
tasks to a Transformer-based model trained from scratch,
i.e., without the benefit of a pre-trained embedding. As
discussed in Section 4.1, the size of the training data limited
us to try out Transformers that were substantially smaller
than the CuBERT model (BERT Large architecture). All
the Transformer models were trained for 100 epochs during
which their performance stopped improving. We selected
the best model within the chosen hyperparameters for each
task based on best validation accuracy.

As seen from the last row of Table 2, the performance of Cu-
BERT is substantially higher than the Transformer models
trained from scratch. Thus, for the same choice of archi-
tecture (i.e., Transformer) pre-training seems to help by
enabling training of a larger and better model.

4.5. The Effects of Little Supervision

The big draw of unsupervised pre-training followed by
fine-tuning is that some tasks have small labeled datasets.
We study here how CuBERT fares with reduced training
data. We sampled uniformly the fine-tuning dataset to 33%
and 66% of its size, and produced corresponding training
datasets for each classification task. We then fine-tuned
the pre-trained CuBERT model with each of the 3 different
training splits. Validation and testing were done with the
same original datasets. Table 3 shows the results.

The Function Docstring task seems robust to the reduction

Learning and Evaluating Contextual Embedding of Source Code

Best of
Epochs

Train
Fraction Misuse Operator Operand Docstring Exception

2
100% 94.04% 89.90% 92.20% 97.21% 61.04%
66% 93.11% 88.76% 91.61% 97.04% 19.49%
33% 91.40% 86.42% 90.52% 96.38% 20.09%

10
100% 95.14% 92.15% 93.62% 98.08% 77.97%
66% 94.78% 91.51% 93.37% 97.93% 75.24%
33% 94.28% 90.66% 92.58% 97.36% 67.34%

20
100% 95.21% 92.46% 93.36% 98.09% 79.12%
66% 94.90% 91.79% 93.39% 97.99% 77.31%
33% 94.45% 91.09% 92.82% 97.63% 74.98%

Table 3. Effects of reducing training-split size on fine-tuning performance on the classification tasks.

Length Misuse Operator Operand Docstring Exception Misuse on BiLSTM

128 83.97% 79.29% 78.02% 98.19% 62.03% 74.32%
256 92.02% 88.19% 88.03% 98.14% 72.80% 78.47%
512 95.21% 92.46% 93.36% 98.09% 79.12% 80.33%

1024 95.83% 93.38% 95.62% 97.90% 81.27% 81.92%

Table 4. Best out of 20 epochs of fine-tuning, for four example lengths, on the classification tasks. For contrast, we also include results for
Variable Misuse using the BiLSTM Word2Vec (CBOW + ns) classifier as length varies.

of the training dataset, both early and late in the fine-tuning
process (that is, within 2 vs. 20 epochs), whereas the Excep-
tion Classification task is heavily impacted by the dataset
reduction, given that it has relatively few training exam-
ples to begin with. Interestingly enough, for some tasks,
even fine-tuning for only 2 epochs and only using a third of
the training data outperforms the baselines. For example,
for Variable Misuse and Function Docstring, CuBERT at 2
epochs and 33% of training data substantially outperforms
the BiLSTM with Word2Vec and the Transformer baselines.

4.6. The Effects of Context

Context size is especially useful in code tasks, given that
some relevant information may lie many “sentences” away
from its locus of interest. Here we study how reducing
the context length (i.e., the length of the examples used to
pre-train and fine-tune) affects performance. We produce
data with shorter example lengths, by first pre-training a
model on a given example length, and then fine-tuning that
model on the corresponding task with examples of that same
example length.5 Table 4 shows the results.

Although context seems to be important to most tasks, the
Function Docstring task paradoxically improves with less
context. This may be because the task primarily depends on

5Note that we did not attempt to, say, pre-train on length 1,024
and then fine-tune that model on length 256-examples, which may
also be a practical scenario.

comparison between the docstring and the function signa-
ture, and including more context dilutes the model’s focus.

For comparison, we also evaluated the BiLSTM model on
varying example lengths for the Variable-Misuse task with
CBOW and negative sampling (last column of Table 4).
More context does seem to benefit the BiLSTM Variable-
Misuse classifier as well. However, the improvement offered
by CuBERT with increasing context is significantly greater.

4.7. Evaluation on a Multi-Headed Pointer Task

We now discuss the results of fine-tuning CuBERT to predict
the localization and repair pointers for the variable-misuse
task. For this task, we implement the multi-headed pointer
model from Vasic et al. (2019) on top of CuBERT. The
baseline consists of the same pointer model on a unidirec-
tional LSTM as used by Vasic et al. (2019). We refer to
these models as CuBERT+pointer and LSTM+pointer, re-
spectively. Due to limitations of space, we omit the details
of the pointer model and refer the reader to the above pa-
per. However, the two implementations are identical above
the sequence encoding layer; the difference is the BERT
encoder versus an LSTM encoder. As reported in Section 4
of that work, to enable comparison with an enumerative
approach, the evaluation was performed only on 12K test
examples. Instead, here we report the numbers on all 378K
of our test examples for both models.

We trained the baseline model for 100 epochs and fine-tuned

Learning and Evaluating Contextual Embedding of Source Code

Model Test Data Setting True Classification Localization Loc+Repair
Positive Accuracy Accuracy Accuracy

LSTM C 100 epochs 82.41% 79.30% 64.39% 56.89%

CuBERT C
2 epochs 96.90% 94.87% 91.14% 89.41%
10 epochs 97.23% 95.49% 92.33% 90.84%
20 epochs 97.27% 95.40% 92.12% 90.61%

CuBERT H
2 epochs 95.63% 90.71% 83.50% 80.77%
10 epochs 96.07% 91.71% 85.37% 82.91%
20 epochs 96.14% 91.49% 84.85% 82.30%

Hellendoorn et al. (2020) H 81.90% 73.80%

Table 5. Variable-misuse localization and repair task. Comparison of the LSTM+pointer model (Vasic et al., 2019) to our fine-tuned
CuBERT+pointer model. We also show results on the test data by Hellendoorn et al. (2020) computed by us and reported by the authors in
their Table 1. In the Test Data column, C means our CuBERT test dataset, and H means the test dataset used by Hellendoorn et al. (2020).

CuBERT for 2, 10, and 20 epochs. Table 5 gives the results
along the same metrics as Vasic et al. (2019). The metrics
are defined as follows: 1) True Positive is the percentage of
bug-free functions classified as bug-free. 2) Classification
Accuracy is the percentage of correctly classified examples
(between bug-free and buggy). 3) Localization Accuracy is
the percentage of buggy examples for which the localization
pointer correctly identifies the bug location. 4) Localiza-
tion+Repair Accuracy is the percentage of buggy examples
for which both the localization and repair pointers make
correct predictions. As seen from Table 5 (top 4 rows),
CuBERT+pointer outperforms LSTM+pointer consistently
across all the metrics, and even within 2 and 10 epochs.

More recently, Hellendoorn et al. (2020) evaluated hybrid
models for the same task, combining graph neural networks,
Transformers, and RNNs, and greatly improving prior re-
sults. To compare, we obtained the same test dataset from
the authors, and evaluated our CuBERT fine-tuned model
on it. The last four rows of Table 5 show our results and
the results reported in that work. Interestingly, the models
by Hellendoorn et al. (2020) make use of richer input rep-
resentations, including syntax, data flow, and control flow.
Nevertheless, CuBERT outperforms them while using only
a lexical representation of the input program.

5. Conclusions and Future Work
We present the first attempt at pre-trained contextual em-
bedding of source code by training a BERT model, called
CuBERT, which we fine-tuned on five classification tasks,
and compared against BiLSTM with Word2Vec embeddings
and Transformer models. As a more challenging task, we
also evaluated CuBERT on a multi-headed pointer predic-
tion task. CuBERT outperformed the baseline models con-
sistently. We evaluated CuBERT with less data and fewer
epochs, highlighting the benefits of pre-training on a mas-

sive code corpus.

We use only source-code tokens and leave it to the underly-
ing Transformer model to infer any structural interactions
between them through self-attention. Prior work (Allamanis
et al., 2018; Hellendoorn et al., 2020) has argued for ex-
plicitly using structural program information (e.g., control
flow and data flow). It is an interesting avenue of future
work to incorporate such information in pre-training using
relation-aware Transformers (Shaw et al., 2018). However,
our improved results in comparison to Hellendoorn et al.
(2020) show that CuBERT is a simple yet powerful tech-
nique and provides a strong baseline for future work on
source-code representations.

While surpassing the accuracies achieved by CuBERT with
newer models and pre-training/fine-tuning methods would
be a natural extension to this work, we also envision other
follow-up work. There is increasing interest in develop-
ing pre-training methods that can produce smaller models
more efficiently and that trade-off accuracy for reduced
model size. Further, our benchmark could be valuable to
techniques that explore other program representations (e.g.,
trees and graphs), in multi-task learning, and to develop
related tasks such as program synthesis.

Acknowledgements
We are indebted to Daniel Tarlow for his guidance and gen-
erous advice throughout the development of this work. Our
work has also improved thanks to feedback, use cases, help-
ful libraries, and proofs of concept offered by David Bieber,
Vincent Hellendoorn, Ben Lerner, Hyeontaek Lim, Rishabh
Singh, Charles Sutton, and Manushree Vijayvergiya. Fi-
nally, we are grateful to the anonymous reviewers, who gave
useful, constructive comments and helped us improve our
presentation and results.

Learning and Evaluating Contextual Embedding of Source Code

References
Allamanis, M. The adverse effects of code duplica-

tion in machine learning models of code. CoRR,
abs/1812.06469, 2018. URL http://arxiv.org/
abs/1812.06469.

Allamanis, M., Barr, E. T., Bird, C., and Sutton, C. Sug-
gesting accurate method and class names. In Proceed-
ings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2015, pp. 38–49,
New York, NY, USA, 2015. ACM. ISBN 978-1-4503-
3675-8. doi: 10.1145/2786805.2786849. URL http:
//doi.acm.org/10.1145/2786805.2786849.

Allamanis, M., Brockschmidt, M., and Khademi, M. Learn-
ing to represent programs with graphs. In International
Conference on Learning Representations, 2018.

Alon, U., Zilberstein, M., Levy, O., and Yahav, E. Code2vec:
Learning distributed representations of code. Proc. ACM
Program. Lang., 3(POPL):40:1–40:29, January 2019.
ISSN 2475-1421. doi: 10.1145/3290353. URL http:
//doi.acm.org/10.1145/3290353.

Barone, A. V. M. and Sennrich, R. A parallel corpus of
python functions and documentation strings for auto-
mated code documentation and code generation. arXiv
preprint arXiv:1707.02275, 2017.

Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. En-
riching word vectors with subword information. Transac-
tions of the Association for Computational Linguistics, 5:
135–146, 2017.

Cambronero, J., Li, H., Kim, S., Sen, K., and Chandra, S.
When deep learning met code search. arXiv preprint
arXiv:1905.03813, 2019.

Chen, Z. and Monperrus, M. A literature study of embed-
dings on source code. arXiv preprint arXiv:1904.03061,
2019.

Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas,
F., and Wattenberg, M. Visualizing and Measuring the
Geometry of BERT. ArXiv, abs/1906.02715, 2019.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp.
4171–4186, Minneapolis, Minnesota, June 2019. Asso-
ciation for Computational Linguistics. doi: 10.18653/
v1/N19-1423. URL https://www.aclweb.org/
anthology/N19-1423.

Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong,
M., Shou, L., Qin, B., Liu, T., Jiang, D., et al. Code-
bert: A pre-trained model for programming and natural
languages. arXiv preprint arXiv:2002.08155, 2020.

Glorot, X. and Bengio, Y. Understanding the difficulty
of training deep feedforward neural networks. In Pro-
ceedings of the thirteenth international conference on
artificial intelligence and statistics, pp. 249–256, 2010.

Gu, X., Zhang, H., Zhang, D., and Kim, S. Deep api
learning. In Proceedings of the 2016 24th ACM SIG-
SOFT International Symposium on Foundations of Soft-
ware Engineering, FSE 2016, pp. 631–642, New York,
NY, USA, 2016. ACM. ISBN 978-1-4503-4218-6. doi:
10.1145/2950290.2950334. URL http://doi.acm.
org/10.1145/2950290.2950334.

Gupta, R., Pal, S., Kanade, A., and Shevade, S. Deep-
fix: Fixing common c language errors by deep learn-
ing. In Proceedings of the Thirty-First AAAI Confer-
ence on Artificial Intelligence, AAAI’17, pp. 1345–1351.
AAAI Press, 2017. URL http://dl.acm.org/
citation.cfm?id=3298239.3298436.

Hellendoorn, V. J., Sutton, C., Singh, R., Maniatis, P., and
Bieber, D. Global relational models of source code. In
International Conference on Learning Representations,
2020. URL https://openreview.net/forum?
id=B1lnbRNtwr.

Hindle, A., Barr, E. T., Su, Z., Gabel, M., and Devanbu, P.
On the naturalness of software. In 2012 34th International
Conference on Software Engineering (ICSE), pp. 837–
847, June 2012. doi: 10.1109/ICSE.2012.6227135.

Hochreiter, S. and Schmidhuber, J. Long short-term
memory. Neural Comput., 9(8):1735–1780, Novem-
ber 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.
9.8.1735. URL http://dx.doi.org/10.1162/
neco.1997.9.8.1735.

Iyer, S., Konstas, I., Cheung, A., and Zettlemoyer, L.
Mapping language to code in programmatic context.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, Brussels,
Belgium, October 31 - November 4, 2018, pp. 1643–
1652, 2018. URL https://www.aclweb.org/
anthology/D18-1192/.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Li, Y., Tarlow, D., Brockschmidt, M., and Zemel, R. S.
Gated graph sequence neural networks. In 4th Interna-
tional Conference on Learning Representations, ICLR
2016, San Juan, Puerto Rico, May 2-4, 2016, Conference

http://arxiv.org/abs/1812.06469
http://arxiv.org/abs/1812.06469
http://doi.acm.org/10.1145/2786805.2786849
http://doi.acm.org/10.1145/2786805.2786849
http://doi.acm.org/10.1145/3290353
http://doi.acm.org/10.1145/3290353
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
http://doi.acm.org/10.1145/2950290.2950334
http://doi.acm.org/10.1145/2950290.2950334
http://dl.acm.org/citation.cfm?id=3298239.3298436
http://dl.acm.org/citation.cfm?id=3298239.3298436
https://openreview.net/forum?id=B1lnbRNtwr
https://openreview.net/forum?id=B1lnbRNtwr
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
https://www.aclweb.org/anthology/D18-1192/
https://www.aclweb.org/anthology/D18-1192/

Learning and Evaluating Contextual Embedding of Source Code

Track Proceedings, 2016. URL http://arxiv.org/
abs/1511.05493.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy,
O., Lewis, M., Zettlemoyer, L., and Stoyanov, V. Roberta:
A robustly optimized BERT pretraining approach. CoRR,
abs/1907.11692, 2019. URL http://arxiv.org/
abs/1907.11692.

Louis, A., Dash, S. K., Barr, E. T., and Sutton, C. Deep
learning to detect redundant method comments. arXiv
preprint arXiv:1806.04616, 2018.

Martin, R. C. Clean Code: A Handbook of Agile Soft-
ware Craftsmanship. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 1 edition, 2008. ISBN 0132350882,
9780132350884.

McCann, B., Bradbury, J., Xiong, C., and Socher, R.
Learned in translation: Contextualized word vectors. In
Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fer-
gus, R., Vishwanathan, S., and Garnett, R. (eds.), Ad-
vances in Neural Information Processing Systems 30, pp.
6294–6305. Curran Associates, Inc., 2017.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. Efficient
estimation of word representations in vector space. In 1st
International Conference on Learning Representations,
ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013,
Workshop Track Proceedings, 2013a. URL http://
arxiv.org/abs/1301.3781.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and
Dean, J. Distributed representations of words and phrases
and their compositionality. In Burges, C. J. C., Bottou,
L., Welling, M., Ghahramani, Z., and Weinberger, K. Q.
(eds.), Advances in Neural Information Processing Sys-
tems 26, pp. 3111–3119. Curran Associates, Inc., 2013b.

Mou, L., Li, G., Zhang, L., Wang, T., and Jin, Z.
Convolutional neural networks over tree structures
for programming language processing. In Proceed-
ings of the Thirtieth AAAI Conference on Artificial
Intelligence, AAAI’16, pp. 1287–1293. AAAI Press,
2016. URL http://dl.acm.org/citation.
cfm?id=3015812.3016002.

Oda, Y., Fudaba, H., Neubig, G., Hata, H., Sakti, S., Toda,
T., and Nakamura, S. Learning to generate pseudo-code
from source code using statistical machine translation
(t). In 2015 30th IEEE/ACM International Conference
on Automated Software Engineering (ASE), pp. 574–584.
IEEE, 2015.

Pennington, J., Socher, R., and Manning, C. D. Glove:
Global vectors for word representation. In In EMNLP,
2014.

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark,
C., Lee, K., and Zettlemoyer, L. Deep contextualized
word representations. In Proceedings of NAACL-HLT, pp.
2227–2237, 2018.

Pradel, M. and Sen, K. Deepbugs: A learning approach to
name-based bug detection. Proc. ACM Program. Lang.,
2(OOPSLA):147:1–147:25, October 2018. ISSN 2475-
1421. doi: 10.1145/3276517. URL http://doi.acm.
org/10.1145/3276517.

Pu, Y., Narasimhan, K., Solar-Lezama, A., and Barzilay, R.
Sk p: A neural program corrector for moocs. In Com-
panion Proceedings of the 2016 ACM SIGPLAN Interna-
tional Conference on Systems, Programming, Languages
and Applications: Software for Humanity, SPLASH Com-
panion 2016, pp. 39–40, New York, NY, USA, 2016.
ACM. ISBN 978-1-4503-4437-1. doi: 10.1145/2984043.
2989222. URL http://doi.acm.org/10.1145/
2984043.2989222.

Radford, A., Narasimhan, K., Salimans, T.,
and Sutskever, I. Improving language un-
derstanding by generative pre-training. URL
https://s3-us-west-2. amazonaws. com/openai-
assets/researchcovers/languageunsupervised/language
understanding paper. pdf, 2018.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. Language models are unsupervised multitask
learners. OpenAI Blog, 1(8), 2019.

Raychev, V., Vechev, M., and Yahav, E. Code com-
pletion with statistical language models. In Proceed-
ings of the 35th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI
’14, pp. 419–428, New York, NY, USA, 2014. ACM.
ISBN 978-1-4503-2784-8. doi: 10.1145/2594291.
2594321. URL http://doi.acm.org/10.1145/
2594291.2594321.

Raychev, V., Bielik, P., and Vechev, M. T. Probabilistic
model for code with decision trees. In Proceedings of
the 2016 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2016, part of SPLASH 2016, Ams-
terdam, The Netherlands, October 30 - November 4, 2016,
pp. 731–747, 2016.

Řehůřek, R. and Sojka, P. Software Framework for Topic
Modelling with Large Corpora. In Proceedings of the
LREC 2010 Workshop on New Challenges for NLP
Frameworks, pp. 45–50, Valletta, Malta, May 2010.
ELRA. http://is.muni.cz/publication/
884893/en.

http://arxiv.org/abs/1511.05493
http://arxiv.org/abs/1511.05493
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
http://dl.acm.org/citation.cfm?id=3015812.3016002
http://dl.acm.org/citation.cfm?id=3015812.3016002
http://doi.acm.org/10.1145/3276517
http://doi.acm.org/10.1145/3276517
http://doi.acm.org/10.1145/2984043.2989222
http://doi.acm.org/10.1145/2984043.2989222
http://doi.acm.org/10.1145/2594291.2594321
http://doi.acm.org/10.1145/2594291.2594321
http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en

Learning and Evaluating Contextual Embedding of Source Code

Schuster, M. and Nakajima, K. Japanese and korean voice
search. In International Conference on Acoustics, Speech
and Signal Processing, pp. 5149–5152, 2012.

Shaw, P., Uszkoreit, J., and Vaswani, A. Self-attention
with relative position representations. arXiv preprint
arXiv:1803.02155, 2018.

Vasic, M., Kanade, A., Maniatis, P., Bieber, D., and Singh,
R. Neural program repair by jointly learning to localize
and repair. CoRR, abs/1904.01720, 2019. URL http:
//arxiv.org/abs/1904.01720.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L. u., and Polosukhin, I. Atten-
tion is all you need. In Guyon, I., Luxburg, U. V., Bengio,
S., Wallach, H., Fergus, R., Vishwanathan, S., and Gar-
nett, R. (eds.), Advances in Neural Information Process-
ing Systems 30, pp. 5998–6008. Curran Associates, Inc.,
2017. URL http://papers.nips.cc/paper/
7181-attention-is-all-you-need.pdf.

Vaswani, A., Bengio, S., Brevdo, E., Chollet, F., Gomez,
A. N., Gouws, S., Jones, L., Kaiser, L., Kalchbrenner,
N., Parmar, N., Sepassi, R., Shazeer, N., and Uszko-
reit, J. Tensor2tensor for neural machine translation.
In Proceedings of the 13th Conference of the Associa-
tion for Machine Translation in the Americas, AMTA
2018, Boston, MA, USA, March 17-21, 2018 - Volume
1: Research Papers, pp. 193–199, 2018. URL https:
//www.aclweb.org/anthology/W18-1819/.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J. G., Salakhut-
dinov, R., and Le, Q. V. Xlnet: Generalized autore-
gressive pretraining for language understanding. CoRR,
abs/1906.08237, 2019. URL http://arxiv.org/
abs/1906.08237.

Zhang, J., Wang, X., Zhang, H., Sun, H., Wang, K., and
Liu, X. A novel neural source code representation based
on abstract syntax tree. In 2019 IEEE/ACM 41st Interna-
tional Conference on Software Engineering (ICSE), pp.
783–794. IEEE, 2019.

http://arxiv.org/abs/1904.01720
http://arxiv.org/abs/1904.01720
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://www.aclweb.org/anthology/W18-1819/
https://www.aclweb.org/anthology/W18-1819/
http://arxiv.org/abs/1906.08237
http://arxiv.org/abs/1906.08237

Learning and Evaluating Contextual Embedding of Source Code

A. Open-Sourced Artifacts
We release data and some source-code utilities at
https://github.com/google-research/
google-research/tree/master/cubert. The
repository contains the following:

GitHub Manifest A list of all the file versions we included
into our pre-training corpus, after removing files simi-
lar to the fine-tuning corpus6, and after deduplication.
The manifest can be used to retrieve the file contents
from GitHub or Google’s BigQuery. This dataset was
retrieved from Google’s BigQuery on June 21, 2020.

Vocabulary Our subword vocabulary, computed from the
pre-training corpus.

Pre-trained Models Pre-trained models on the pre-
training corpus, after 1 and 2 epochs, for examples
of length 512, and the BERT Large architecture.

Task Datasets Datasets containing training, validation, and
testing examples for each of the 6 tasks. For the clas-
sification tasks, we provide original source code and
classification labels. For the localization and repair
task, we provide subtokenized code, and masks speci-
fying the targets.

Fine-tuned Models Fine-tuned models for the 6 tasks.
Fine-tuning was done on the 1-epoch pre-trained model.
For each classification task, we provide the checkpoint
with highest validation accuracy; for the localization
and repair task, we provide the checkpoint with highest
localization and repair accuracy. These are the check-
points we used to evaluate on our test datasets, and to
compute the numbers in the main paper.

Code-encoding Library We provide code for tokenizing
Python code, and for producing inputs to CuBERT’s
pre-training and fine-tuning models.

Localization-and-repair Fine-tuning Model We provide
a library for constructing the localization-and-repair
model, on top of CuBERT’s encoder layers. For the
classification tasks, the model is identical to that of
BERT’s classification fine-tuning model.

Please see the README for details, file encoding and
schema, and terms of use.

B. Data Preparation for Fine-Tuning Tasks
B.1. Label Frequencies

All four of our binary-classification fine-tuning tasks had
an equal number of buggy and bug-free examples. The

6https://github.com/
google-research-datasets/eth_py150_open

Exception task, which is a multi-class classification task,
had a different number of examples per class (i.e., exception
types). For the Exception task, we show the breakdown of
example counts per label for our fine-tuning dataset splits in
Table 6.

B.2. Fine-Tuning Task Datasets

In this section, we describe in detail how we produced our
fine-tuning datasets (Section 3.4 of the main paper).

A common primitive in all our data generation is splitting
a Python module into functions. We do this by parsing
the Python file and identifying function definitions in the
Abstract Syntax Tree that have no other function definition
between themselves and the root of the tree. The resulting
functions include functions defined at module scope, but
also methods of classes and subclasses. Not included are
functions defined within other function and method bodies,
or methods of classes that are, themselves, defined within
other function or method bodies.

We do not filter functions by length, although task-specific
data generation may filter out some functions (see below).
When generating examples for a fixed-length pre-training or
fine-tuning model, we prune all examples to the maximum
target sequence length (in this paper we consider 128, 256,
512, and 1,024 subtokenized sequence lengths). Note that
if a synthetically generated buggy/bug-free example pair
differs only at a location beyond the target length (say on
the 2,000-th subtoken), we still retain both examples. For
instance, for the Variable-Misuse Localization and Repair
task, we retain both buggy and bug-free examples, even if
the error and/or repair locations lie beyond the end of the
maximum target length. During evaluation, if the error or
repair locations fall beyond the length limit of the example,
we count the example as a model failure.

B.2.1. REPRODUCIBLE DATA GENERATION

We make pseudorandom choices at various stages in fine-
tuning data generation. It was important to design a pseu-
dorandomness mechanism that gave (a) reproducible data
generation, (b) non-deterministic choices drawn from the
uniform distribution, and (c) order independence. Order
independence is important because our data generation is
done in a distributed fashion (using Apache Beam), so dif-
ferent pseudorandom number generator state machines are
used by each distributed worker.

Pseudorandomness is computed based on an experiment-
wide seed, but is independent of the order in which exam-
ples are generated. Specifically, to make a pseudorandom
choice about a function, we hash (using MD5) the seed and
the function data (its source code and metadata about its
provenance), and use the resulting hash as a uniform pseudo-

https://github.com/google-research/google-research/tree/master/cubert
https://github.com/google-research/google-research/tree/master/cubert
https://github.com/google-research-datasets/eth_py150_open
https://github.com/google-research-datasets/eth_py150_open

Learning and Evaluating Contextual Embedding of Source Code

Exception Type Test Validation Train
100% 66% 33%

ASSERTION_ERROR 155 29 323 189 86
ATTRIBUTE_ERROR 1,372 274 2,444 1,599 834
DOES_NOT_EXIST 7 2 3 3 2
HTTP_ERROR 55 9 104 78 38
IMPORT_ERROR 690 170 1,180 750 363
INDEX_ERROR 586 139 1,035 684 346
IO_ERROR 721 136 1,318 881 427
KEY_ERROR 1,926 362 3,384 2,272 1,112
KEYBOARD_INTERRUPT 232 58 509 336 166
NAME_ERROR 78 19 166 117 60
NOT_IMPLEMENTED_ERROR 119 24 206 127 72
OBJECT_DOES_NOT_EXIST 95 16 197 142 71
OS_ERROR 779 131 1,396 901 459
RUNTIME_ERROR 107 34 247 159 80
STOP_ITERATION 270 61 432 284 131
SYSTEM_EXIT 105 16 200 120 52
TYPE_ERROR 809 156 1,564 1,038 531
UNICODE_DECODE_ERROR 134 21 196 135 63
VALIDATION_ERROR 92 16 159 96 39
VALUE_ERROR 2,016 415 3,417 2,232 1,117

Table 6. Example counts per class for the Exception Type task, broken down into the dataset splits. We show separately the 100% train
dataset, as well as its 33% and 66% subsamples used in the ablations.

random value from the function, for whatever needs the data
generator has (e.g., in choosing one of multiple choices). In
that way, the same function will always result in the same
choices given a seed, regardless of the order in which each
function is processed, thereby ensuring reproducible dataset
generation.

To select among multiple choices, we hash the function’s
pseudorandom value along with all choices (sorted in a
canonical order) and use the digest to compute an index
within the list of choices. Note that given two choices
over different candidates but for the same function, inde-
pendent decisions will be drawn. We also use such order-
independent pseudorandomness when subsampling datasets
(e.g., to generate the validation datasets). In those cases, we
hash a sample with the seed, as above, and turn the resulting
digest into a pseudorandom number in [0, 1], which can be
used to decide given a target sampling rate.

B.2.2. VARIABLE-MISUSE CLASSIFICATION

A variable use is any mention of a variable in a load scope.
This includes a variable that appears in the right-hand side of
an assignment, or a field dereference. We regard as defined
all variables mentioned either in the formal arguments of a
function definition, or on the left-hand side of an assignment.
We do not include in our defined variables those declared in
module scope (i.e., globals).

To decide whether to generate examples from a function, we
parse it, and collect all variable-use locations, and all defined
variables, as described above. We discard the function if it
has no variable uses, or if it defines fewer than two variables;
this is necessary, since if there is only one variable defined,
the model has no choice to make but the default one. We also
discard the function if it has more than 50 defined variables;
such functions are few, and tend to be auto-generated. For
any function that we do not discard, i.e., an eligible function,
we generate a buggy and a bug-free example, as described
next.

To generate a buggy example from an eligible function, we
choose one variable use pseudorandomly (see above how
multiple-choice decisions are done), and replace its current
occupant with a different pseudorandomly-chosen variable
defined in the function (with a separate multiple-choice
decision).

Note that in the work by Vasic et al. (2019), a buggy and
bug-free example pair was generated for every variable use
in an eligible function. In the work by Hellendoorn et al.
(2020), a buggy and bug-free example pair was generated for
up to three variable uses in an eligible function, i.e., some
functions with one use would result in one example pair,
whereas functions with many variable uses would result in
three example pairs. In contrast, our work produces exactly
one example pair for every eligible function. Eligibility was
defined identically in all three projects.

Learning and Evaluating Contextual Embedding of Source Code

Commutative Non-Commutative
Arithmetic +, * -, /, %

Comparison ==, !=, is, is not <, <=, >, >=
Membership in, not in

Boolean and, or

Table 7. Binary operators.

B.2.3. WRONG BINARY OPERATOR

This task considers both commutative and non-commutative
binary operators (unlike the Swapped-Argument Classifica-
tion task). See Table 7 for the full list, and note that we have
excluded relatively infrequent operators, e.g., the Python
integer division operator //.

If a function has no binary operators, it is discarded. Other-
wise, it is used to generate a bug-free example, and a single
buggy example as follows: one of the operators is chosen
pseudorandomly (as described above), and a different oper-
ator chosen to replace it from the same row of Table 7. So,
for instance, a buggy example would only swap == with
is, but not with not in, which would not type-check if
we performed static type inference on Python.

We take appropriate care to ensure the code parses after a
bug is introduced. For instance, if we swap the operator in
the expression 1==2 with is, we ensure that there is space
between the tokens (i.e., 1 is 2 rather than the incorrect
1is2), even though the space was not needed before.

B.2.4. SWAPPED OPERAND

Since this task targets swapping the arguments of binary
operators, we only consider non-commutative operators
from Table 7.

Functions without eligible operators are discarded, and the
choice of the operator to mutate in a function, as well as
the choice of buggy operator to use, are done as above, but
limiting choices only to non-commutative operators.

To avoid complications due to format changes, we only
consider expressions that fit in a single line (in contrast to
the Wrong Binary Operator Classification task). We also do
not consider expressions that look the same after swapping
(e.g., a - a).

B.2.5. FUNCTION-DOCSTRING MISMATCH

In Python, a function docstring is a string literal that di-
rectly follows the function signature and precedes the main
function body. Whereas in other common programming
languages, the function documentation is a comment, in
Python it is an actual, semantically meaningful string literal.

We discard functions that have no docstring from this

dataset, or functions that have an empty docstring. We
split the rest into the function definition without the doc-
string, and the docstring summary (i.e., the first line of text
from its docstring), discarding the rest of the docstring.

We create bug-free examples by pairing a function with its
own docstring summary.

To create buggy examples, we pair every function with an-
other function’s docstring summary, according to a global
pseudorandom permutation of all functions: for all i, we
combine the i-th function (without its docstring) with the
Pi-th function’s docstring summary, where P is a pseudoran-
dom permutation, under a given seed. We discard pairings
in which i == P [i], but for the seeds we chose, no such
pathological permuted pairings occurred.

B.2.6. EXCEPTION TYPE

Note that, unlike all other tasks, this task has no notion of
buggy or bug-free examples.

We discard functions that do not have any except clauses
in them.

For the rest, we collect all locations holding exception types
within except clauses, and choose one of those locations
to query the model for classification. Note that a single
except clause may hold a comma-separated list of ex-
ception types, and the same type may appear in multiple
locations within a function. Once a location is chosen, we
replace it with a special HOLE token, and create a clas-
sification example that pairs the function (with the masked
exception location) with the true label (the removed excep-
tion type).

The count of examples per exception type can be found in
Table 6.

B.2.7. VARIABLE MISUSE LOCALIZATION AND REPAIR

The dataset for this task is identical to that for the Variable-
Misuse Classification task (Section B.2.2). However, unlike
the classification task, examples contain more features rele-
vant to localization and repair. Specifically, in addition to
the token sequence describing the program, we also extract
a number of boolean input masks:

• A candidates mask, which marks as True all tokens
holding a variable, which can therefore be either the
location of a bug, or the location of a repair. The first
position is always a candidate, since it may be used to
indicate a bug-free program.

• A targets mask, which marks as True all tokens holding
the correct variable, for buggy examples. Note that the
correct variable may appear in multiple locations in a
function, therefore this mask may have multiple True

Learning and Evaluating Contextual Embedding of Source Code

positions. Bug-free examples have an all-False targets
mask.

• An error-location mask, which marks as True the loca-
tion where the bug occurs (for buggy examples) or the
first location (for bug-free examples).

All the masks mark as True some of the locations that hold
variables. Because many variables are subtokenized into
multiple tokens, if a variable is to be marked as True in the
corresponding mask, we only mark as True its first subtoken,
keeping trailing subtokens as False.

C. Attention Visualizations
In this section, we provide sample code snippets used to test
the different classification tasks. Further, Figures 1–5 show
visualizations of the attention matrix of the last layer of the
fine-tuned CuBERT model (Coenen et al., 2019) for the code
snippets. In the visualization, the Y-axis shows the query
tokens and X-axis shows the tokens being attended to. The
attention weight between a pair of tokens is the maximum of
the weights assigned by the multi-head attention mechanism.
The color changes from dark to light as weight changes from
0 to 1.

Learning and Evaluating Contextual Embedding of Source Code

def on_resize(self, event):
event.apply_zoom()

Figure 1. Variable Misuse Example. In the code snippet, ‘event.apply zoom’ should actually be ‘self.apply zoom’. The
CuBERT variable-misuse model correctly predicts that the code has an error. As seen from the attention map, the query tokens are
attending to the second occurrence of the ‘event’ token in the snippet, which corresponds to the incorrect variable usage.

Learning and Evaluating Contextual Embedding of Source Code

def__gt__(self,other):
if isinstance(other,int)and other==0:
return self.get_value()>0

return other is not self

Figure 2. Wrong Operator Example. In this code snippet, ‘other is not self’ should actually be ‘other < self’. The
CuBERT wrong-binary-operator model correctly predicts that the code snippet has an error. As seen from the attention map, the query
tokens are all attending to the incorrect operator ‘is’.

Learning and Evaluating Contextual Embedding of Source Code

def__contains__(cls,model):
return cls._registry in model

Figure 3. Swapped Operand Example. In this code snippet, the return statement should be ‘model in cls. registry’. The
swapped-operand model correctly predicts that the code snippet has an error. The query tokens are paying substantial attention to ‘in’
and the second occurrence of ‘model’ in the snippet.

Learning and Evaluating Contextual Embedding of Source Code

Docstring: ’Get form initial data.’
Function:
def__add__(self,cov):
return SumOfKernel(self,cov)

Figure 4. Function Docstring Example. The CuBERT function-docstring model correctly predicts that the docstring is wrong for this code
snippet. Note that most of the query tokens are attending to the tokens in the docstring.

Learning and Evaluating Contextual Embedding of Source Code

try:
subprocess.call(hook_value)
return jsonify(success=True), 200

except __HOLE__ as e:
return jsonify(success=False,
error=str(e)), 400

Figure 5. Exception Classification Example. For this code snippet, the CuBERT exception-classification model correctly predicts
‘ HOLE ’ as ‘OSError’. The model’s attention matrix also shows that ‘ HOLE ’ is attending to ‘subprocess’, which is indicative
of an OS-related error.

