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Abstract
Language Models (LMs) for Automatic Speech Recognition
(ASR) are typically trained on large text corpora from news ar-
ticles, books and web documents. These types of corpora, how-
ever, are unlikely to match the test distribution of ASR systems,
which expect spoken utterances. Therefore, the LM is typically
adapted to a smaller held-out in-domain dataset that is drawn
from the test distribution. We propose three LM adaptation ap-
proaches for Deep NN and Long Short-Term Memory (LSTM):
(1) Adapting the softmax layer in the Neural Network (NN);
(2) Adding a non-linear adaptation layer before the softmax
layer that is trained only in the adaptation phase; (3) Training
the extra non-linear adaptation layer in pre-training and adapta-
tion phases. Aiming to improve upon a hierarchical Maximum
Entropy (MaxEnt) second-pass LM baseline, which factors the
model into word-cluster and word models, we build an NN LM
that predicts only word clusters. Adapting the LSTM LM by
training the adaptation layer in both training and adaptation
phases (Approach 3), we reduce the cluster perplexity by 30%
on a held-out dataset compared to an unadapted LSTM LM.
Initial experiments using a state-of-the-art ASR system show a
2.3% relative reduction in WER on top of an adapted MaxEnt
LM.
Index Terms: neural network based language models, language
model adaptation, automatic speech recognition

1. Introduction
Language models (LMs) play an important role in Automatic
Speech Recognition (ASR). In a two-pass ASR system, two
language models are typically used. The first is a heavily
pruned n-gram model which is used to build the decoder graph.
Another larger or more complex LM is employed to rescore
hypotheses generated in the initial pass. In this paper, we
focus on improving the second-pass LM. Recently, Neural
Network Language Models (NNLMs) have become a popu-
lar choice for large vocabulary continuous speech recognition
(LVCSR) [1, 2, 3, 4, 5, 6].

A LM assigns a probability to a word w given the history
of preceding words, h. Unlike an n-gram LM, a neural net-
work LM maps the word and the history to a continuous vector
space using an embedding matrix and then computes the proba-
bility P (w|h) making use of a similarity function in this space.
This continuous representation has been shown to result in bet-
ter generalization relative to n-gram LMs [2]. Furthermore, it
can be exploited when adapting to a target domain with limited
supervision [7]. In this paper, we explore a variety of NNLM
adaptation strategies for rescoring hypotheses generated by an
ASR system.

LMs used in ASR systems are typically trained on writ-
ten text (e.g. web documents, news articles, books or typed

∗This work was done while Min Ma was an intern at Google.

queries). Since written and spoken language may differ in terms
of syntactic structure, word choice and morphology [8], a lan-
guage model of an ASR system is likely to benefit from training
on spoken, in-domain training data, to alleviate the mismatch
between training and testing distributions. Since there are lim-
ited quantities of manually transcribed data available to train the
LM, one might train it on unsupervised transcriptions generated
by ASR systems in the domain of interest. However, by doing
so, we would potentially reinforce the errors made by the ASR
system.

The solution we propose in this paper to address this mis-
match is to pre-train an LM on large written textual corpora,
and then adapt it on the given manually transcribed speech data
of the domain of interest. This will enable the model to learn
co-occurrence patterns from text with broad coverage of the lan-
guage, likely leading to good generalization, while focusing on
features specific to the spoken domain.

In this paper, we first train a background model on a large
corpus of primarily typed text with a small fraction of unsu-
pervised spoken hypotheses, then update part of its parameters
on a relatively small set of speech transcripts using our three
adaptation strategies. Compared to feed-forward Deep Neural
Network (DNN) LMs, the adaptation of Recurrent Neural Net-
work (RNN) LMs is an active research area [9]. In this paper,
both DNN and recurrent neural network (LSTM) architectures
were explored. We investigate a number of training techniques
for enhancing model performance of large-scale NNLMs, and
illustrate how to accelerate pre-training as well as adaptation.

2. Previous Work
Mikolov and Zweig [10] extended the basic RNN LM with an
additional contextual layer which is connected to both the hid-
den layer and the output layer. By providing topic vectors as-
sociated with each word as inputs to the contextual layer, the
authors obtained a 18% relative reduction in Word Error Rate
(WER) on the Wall Street Journal ASR task. Chen et al. [11]
performed multi-genre RNN LM adaptation by incorporating
various topic representations as additional input features, which
outperformed the RNN LMs that were fine-tuned on genre spe-
cific data. Experiments showed an 8% relative gain in perplex-
ity and a small WER reduction compared to an unadapted RNN
LMs on broadcast news. Deena et al. [9] extended this work by
incorporating a linear adaptation layer between the hidden layer
and output layer, and only fine-tuning its weight matrix when
adapting. Combining the model-based adaptation with Chen et
al’s [11] feature based adaptation, Deena et al. reported a 10%
relative reduction in perplexity and a 2% relative reduction in
WER, also on broadcast news.

Techniques from acoustic model adaptation such as learn-
ing hidden unit contribution [12], linear input network [13] and
linear hidden network [14], have been borrowed for adaptation
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of LMs. For example, Gangireddy et al. [15] obtained moder-
ate WER reductions by re-weighting the hidden units based on
their contributions in modeling the word distributions for multi-
genre broadcast news. Park et al. [7] inserted a linear adapta-
tion layer between the embedding and the first hidden layer in
an DNN LM. During adaptation, only the adaptation layer was
updated using 1-best hypotheses for supervision. When com-
bined with a 4-gram LM, the adapted DNN LM decreased the
perplexity by up to 25.4% relative, and yielded a small WER
reduction in an Arabic speech recognition system where it was
used as a second-pass LM.

3. Data
We conduct all experiments on an Italian speech recognition
task. We use a large corpus of typed texts consisting of ag-
gregated and anonymized typed queries from Google Search,
Google Maps and crawled web documents, which make up a
total of more than 29 billion sentences (about 114 billion word
tokens). We add a small amount (< 0.5%) of unsupervised spo-
ken hypotheses and use the entire corpus as the training set of
the background LM. The spoken texts consist of speech tran-
scripts collected from a mixture of voice queries and dictation,
and are split into two independent sets by time period: adapta-
tion set (i.e. the training data in adaptation phase), which in-
cludes approximately 2.6 million sentences (about 16 million
word tokens); development set, which is composed of about
1.2 × 105sentences (about 6 × 105 word tokens). We eval-
uate perplexities on the development set and report the WER
results for the top performing adapted LMs using a state-of-
the-art ASR system on a dedicated ASR test set. All the ag-
gregated voice queries (which contain short and long queries) 1

are anonymized. The modelled vocabulary contains 1 million
words, which were grouped into 1003 clusters using an adapta-
tion of the Brown algorithm [16, 17].

4. Language Models
4.1. Maximum Entropy based Language Model

The baseline is a LM trained under the maximum entropy cri-
terion. Since our word vocabulary is very large, estimating a
probability distribution over the entire vocabulary becomes ex-
pensive. To reduce computational cost, we employ a hierar-
chical approach proposed in [18] that first predicts a cluster
of words and then predicts a word from the chosen cluster.
We focus on the task of improving cluster prediction because
the smaller cluster vocabulary makes training easier and allows
for adaptation while minimizing the risk of overfitting on the
smaller adaptation dataset. The baseline MaxEnt LM consists
of 5 billion parameters, adapted on the same adaptation set, the
details of the baseline LM and the adaptation methodology can
be found in Biadsy et al. [19].

4.2. Neural Network based Language Models

In this paper, the input to the NNLM consists of both words
and the corresponding clusters, which are encoded by separate
embedding layers. Each word (cluster) is first represented by
a 1-of-k encoding (all the out-of-vocabulary words are mapped
to an <unk> token) and then mapped to the embedding space
(2048 dimension for words, 40 for clusters). The dense rep-
resentations of the word and cluster contexts are concatenated

1The average number of words per sentence/utterance is 3.9 for the
training set, 6 for the adaptation set and 5 for the development set.
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Figure 1: Architecture of LSTM LM.

and fed to the hidden layers which consist of two layers for
DNN and one layer for LSTM, followed by two independent
softmax layers (i.e. word and cluster softmax layers). LSTM
LM is shown in Figure 1, DNN LM is similar except for the
non-recurrent hidden layer. Although the NNLM is trained for
the cluster prediction task, we have seen that adding the word
level softmax layer for training improves the accuracy on clus-
ter prediction. We employ a sampled softmax loss with 8192
negative samples to accelerate the training of the word softmax
layer [20]. We borrow the formulations for DNN LM from [3]
and for LSTM LM from [21]. Our DNN LM is a 5-gram, 2-
layer model with 8192 nodes in each layer. Our LSTM LM
consists of one LSTM layer with 8192 nodes and a 1024 di-
mensional internal projection layer. We implement LSTM LM
using an augmented setting proposed in [21]. A peephole con-
nection from its internal cells to the gates in the same cell is
used. We couple the input gate to 1.0 minus forget-gate to re-
strict the internal state of the LSTM cell to the unit interval.
An internal projection is applied both in the recurrent loop and
before passing the features to softmax layers. The projection
strategy helps minimize computational cost while maintains the
memory capacity of the model.

4.3. Model Training

We train the models for cluster prediction, whose smaller soft-
max vocabulary makes training more efficient and less prone to
overfitting on our adaptation dataset. In the context of ASR,
we interpolate the NNLM and MaxEnt cluster costs and use the
MaxEnt word cost to assign the final score of second-pass, i.e.

logP (W |h)2nd−pass = logPME(W |C, h)+

(1− wNN )× logPME(C|h) + wNN × logPNN (C|h)
(1)

where wNN is the weight of the NNLM. The log probability as-
signed by the second-pass LM logP (W |h)2nd−pass is linearly
interpolated with the log probability from the first-pass LM us-
ing an interpolation weight of 0.5.

We use regular back-propagation to train the DNN LM. We
train the LSTM LM with truncated backpropagation through
time [22] with an unrolling of 20 time steps. Training loss is
defined as the cross entropy between predicted cluster labels
and reference cluster labels. Mini-batch stochastic gradient de-
scent (SGD) [23] is used with an Adagrad [24] optimizer and a
batch size of 128 sequences. We use a learning rate of 0.01 for
the DNN LM, and 0.2 for the LSTM LM. We found it crucial to
use gradient clipping on the LSTM gradients (clipping L2-norm
≤ 1.0). In order to prevent models from overfitting, we employ
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dropout [25] regularization (with dropout probability 0.2) to the
input and output of the hidden layers for all NNLMs. We also
utilize zoneout [26] for regularizing the DNN adaptation layer
as explained in Section 5.

5. Adaptation Approaches
We adopt a “pre-train and fine-tune” methodology in all our
adaptation schemes. In the first phase, we train a background
LM on the entire training set and test it on the development set.
We use the converged model to initialize the adaptation stage.
In the second phase, fine-tuning (a.k.a. adaptation), we freeze
some layers of the model, i.e. we do not update the weight
matrices of the frozen layers when back-propagating. Only the
weights of unfrozen layers get fine-tuned (shown as red bold
arrows in Figure 1 and 2). All the adaptation strategies investi-
gated only take up to an additional 13% time to achieve optimal
performance.

5.1. Scheme I - Fine-tune Softmax Layer

We fine-tune only the cluster softmax layer. This is motivated
by the observation that transfer learning becomes easier and
more effective with high-level abstract features [27]. We do
not fine-tune the entire model as the amount of adaptation data
is considerably smaller than the number of parameters ( ≈ 109

for word embeddings).
Training the DNN background LM is about 3 times slower

than the LSTM background LM but converges to the same test
cluster perplexity of 46 (Table 1). All perplexity numbers re-
fer to the cluster prediction task. The DNN LM using Scheme
I successfully reduces cluster perplexity on development data
by 23.9% relative while the LSTM LM reduces cluster per-
plexity by 26.1% relative. Since the word softmax was help-
ful while training the background model, we add a word soft-
max (wordSF) layer to the adaptation procedure (denoted as “+
wordSF”). As shown in Table 1, including word softmax does
not make a difference for DNN LM, but slightly hurts the per-
formance of LSTM LM (only 23.9% for + wordSF). This indi-
cates that the benefits from word softmax do not extend to the
adapted model.

More experiments are conducted to ascertain the necessity
of freezing the hidden layers. We exploit various freezing set-
tings and find: 1) adapting hidden layers of DNN LM only re-
duced cluster perplexity by 6.5% relative; adapting hidden lay-
ers of LSTM LM overfits; 2) Adapting all layers makes both
DNN and LSTM LMs overfit.

Table 1: Cluster perplexity on development set of pre-trained
model (“pre”), adapted model (“post”) and relative changes.

Model and Adaptation Strategy pre post ∆ PPL
MaxEnt Baseline LM 40 29 -27.5%
DNN LM using Scheme I 46 35 -23.9%

+ wordSF 35 -23.9%
+ wordSF, + DNN 43 -6.5%

LSTM LM using Scheme I 46 34 -26.1%
+ wordSF 35 -23.9%

5.2. Scheme II - Add Adaptation Layer when Fine-tuning

We add an adaptation layer to the NNLMs with a limited
amount of parameters to avoid overfitting. To allow the net-

ci�n+1 ci�1

shared parameters 
 across words

shared parameters 
   across clusters

LSTM Layer
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Embeddings

(training only)

ReLu
Adaptation Layer

recurrent connection
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i-th output = i-th output =P (ct = cm|context) P (wt = wn|context)

Figure 2: Add adaptation layer in LSTM LM.

work to use already learnt features in lower layers better, we
add the adaptation layer between the hidden layer and softmax
layers. This approach is conceptually similar to the linear hid-
den layer for acoustic model adaptation [14], but we specify
the adaptation layer as a single-layer neural network adaptation
layer (NNadapt) with 1024 nodes and ReLU activation. We use
a non-linearity to learn a function that is potentially more com-
plex than the linear transformation in the softmax layer. We note
that the NNadapt layer does not exist in pre-training phase in
Scheme II. In fine-tuning phase, we update cluster softmax and
NNadapt layers and keep the parameters of other layers fixed.
As shown in Table 2, Scheme II helps the DNN LM reduce clus-
ter perplexity to 34, slightly better than Scheme I. This indicates
the NNadapt layer learns some information that is specific to the
speech domain in the adaptation phase. Adapted performance
of LSTM LMs stays the same as Scheme I.

Table 2: Cluster perplexity on development set of pre-trained
model (“pre”), adapted model (“post”) and relative changes.

Model and Adaptation Strategy pre post ∆ PPL
DNN LM using Scheme II 46 34 -26.1%

+ wordSF 34 -26.1%
LSTM LM using Scheme II 46 34 -26.1%

+ wordSF 34 -26.1%

5.3. Scheme III - Add DNN layer in Pre-training and Adap-
tation

In Scheme II, the NNadapt layer is randomly initialized and
fine-tuned on limited amounts of adaptation data. To further im-
prove its performance, we add NNadapt in both the pre-training
and fine-tuning phases (shown in Figure 2), attempting to pro-
vide a better initialization to the adaptation layer.

Since the adaptation layer is a feedforward layer, we scale
down its gradients by a factor of 10. We found in our experi-
ments that it is best to apply dropout regularization on the in-
put and output of DNN/LSTM layers and zoneout regulariza-
tion for the NNadapt layer. Standard training schemes based
on random initialization tend to place the parameters in regions
of the parameter space that generalize poorly [28]. Hence if
we initialize the weight matrix of NNadapt layer with an iden-
tity matrix (closer to a reasonable operating point), training will
be substantially accelerated (by a factor of 3X). The LSTM-
NNadapt architecture is the strongest background model as the
pre-trained cluster perplexity reduces to 43 (better than back-

261



ground LMs in Scheme I and II by 6.5% relative). When fine-
tuning, we update cluster softmax and NNadapt layers in the
LSTM-NNadapt model (Scheme III).

Variants which include wordSF in fine-tuning are applica-
ble to both NNLM architectures. Since the DNN-NNadapt ar-
chitecture is equivalent to a 3-layer DNN LM, and no significant
gain was seen in the experiments, we do not discuss it further.
Experimental results of LSTM LM are shown in Table 3. We
found that fine-tuning only the cluster softmax achieved the best
adapted cluster perplexity reduction of 30.2% relative. Fine-
tuning both cluster and word softmax yielded the second best
adapted performance. However, once we included the LSTM
layer in fine-tuning (“+ LSTM”), the model showed overfitting.

Table 3: Cluster perplexity on development set of pre-trained
model (“pre”), adapted model (“post”) and relative changes.

Model and Adaptation Strategy pre post ∆ PPL
LSTM LM using Scheme III 43 30 -30.2%

+ wordSF 31 -27.9%
+ wordSF, + LSTM 198 +360.5%

6. ASR Experiments
Cluster perplexity is used as the first evaluation metric. Based
on perplexity results, we select the top adapted NNLMs to inter-
polate in the second-pass rescoring of a state-of-the-art Italian
LVCSR system. The system employs a multi-pass rescoring
framework: the top 150 hypotheses from the first-pass lattices
are rescored by both the MaxEnt baseline LM and NNLM. We
combine the MaxEnt LM and the NNLM using equation (1).
Since Scheme I and II achieved almost the same performance,
we only run ASR experiments for the adapted NNLMs using
Scheme I. We report performance on a short message dictation
ASR task,with a baseline WER of 6.7%. Relative change of
WER achieved by MaxEnt LM and NNLMs are shown in Ta-
ble 4.

First, most NNLMs fail to reduce WER when we exclu-
sively use the NNLM for calculating cluster cost. The adapted
NNLMs perform better than their unadapted versions(cf. Ta-
ble 4).

Second, we observe the best WER reduction is achieved
when we interpolate the cluster likelihoods from both the
adapted MaxEnt LM and the adapted LSTM LM (using Scheme
III), suggesting that both models are complementary. This is
consistent with the view in [20] that NNLMs and N-gram based
LMs might have different yet complementary strengths.

Third, the 2 systems with the best WER have the same
LSTM-NNadapt architecture (Scheme III). A 2.3% relative
WER reduction is obtained when we only fine-tune the cluster
softmax layer in Scheme III. While including a word softmax
layer in pre-training helped the performance on the cluster pre-
diction task, we found that including it in fine-tuning stage leads
to a slight degradation in performance relative to fine-tuning
only the cluster softmax layer. We speculate that our adaptation
data is not sufficiently large for fine-tuning the word softmax
layer, which has more parameters than the cluster softmax layer.

Table 4: WER results and relative changes of ASR system
based on different non-adapted or adapted language models.

Language Model wNN Rel ∆ (%) WER(%)
non-adapted MaxEnt 0.0 +5.5 7.1

adapted MaxEnt baseline 0.0 0.0 6.7
non-adapted DNN (I) 0.5 +1.2 6.8
non-adapted DNN (I) 1.0 +6.0 7.1

adapted DNN (I) 0.5 0.0 6.7
adapted DNN (I) 1.0 +1.5 6.8

non-adapted LSTM (I) 0.5 +1.4 6.8
non-adapted LSTM (I) 1.0 +7.0 7.2

adapted LSTM (I) 0.5 0.0 6.7
adapted LSTM (I) 1.0 +3.2 6.9

non-adapted LSTM (III) 0.5 0.0 6.7
non-adapted LSTM (III) 1.0 +5.8 7.1

adapted LSTM (III) 0.5 -2.3 6.6
+wordSF 0.5 -2.0 6.6

adapted LSTM (III) 1.0 +1.7 6.8
+wordSF 1.0 0.0 6.7

Table 5: An example ASR output where the adapted LSTM
(III) with an interpolation weight of 0.5 outperforms the base-
line model.

Reference Mamma, se vai alla Lidl comprami il chinesio se c’è. Grazie.
Baseline mamma si vede al Lidl comprami Kinesio se c’è grazie
Adapted mamma se vai al Lidl comprami il Kinesio se c’è grazie

Table 5 shows an example2 where the reference transcript is
likely to be seen only in a spoken domain, and translates to:

“Mom, if you go to Lidl can you buy me a kinesio if they have
it. Thanks”. The baseline hypothesis looks like a factual ac-
count while the hypothesis from the adapted LSTM LM (III,
interpolation coefficient of 0.5) is closer to the spoken domain.

7. Conclusions and Future Work
In this paper, we have explored a range of adaptation strate-
gies for DNN and LSTM LMs. Perplexity results demonstrate
that many of our strategies are effective for training robust neu-
ral network language models given limited amounts of spoken
text. Our experiments show that adapting the softmax layer is
consistently the most reliable adaptation strategy. On a very
strong WER baseline we successfully show gains by combining
adapted MaxEnt and adapted LSTM LM. Although our adap-
tation schemes do not result in large WER gains, we speculate
that this is, in part, due to the nature of the task, which consists
primarily of short utterances from short message dictation. On
the other hand, RNN models such as LSTM have been known
to perform well on long-form content. In future work, we will
apply our adaptation schemes to ASR tasks such as YouTube
and voicemail transcription which consist of much longer utter-
ances. Moreover, we would like to combine our NNLM adap-
tation approaches with those used for acoustic model adapta-
tion [29, 30, 31]. These techniques use low rank matrix approx-
imations or a small number of adaptation parameters, which en-
able robust adaptation using limited amounts of adaptation data,
a scenario that is also applicable to the NNLM adaptation, in
particular when adapting the full word softmax.

2The authors would like to thank Chris Alberti for providing help
with this example.
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