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Fig. 1. Progress of rendering virtual views of difficult scenes containing foliage, wide baseline occlusions and reflections. View ray and texture mapping ray
visibility is modelled softly according to a distribution of depth probabilities retained from the reconstruction stage. This results in soft edges, soft occlusion
removal, partial uncertainty of depth in textureless areas, and soft transitions between the dominant depths in reflections.

We present a novel algorithm for view synthesis that utilizes a soft 3D
reconstruction to improve quality, continuity and robustness. Our main
contribution is the formulation of a soft 3D representation that preserves
depth uncertainty through each stage of 3D reconstruction and rendering.
We show that this representation is beneficial throughout the view synthesis
pipeline. During view synthesis, it provides a soft model of scene geometry
that provides continuity across synthesized views and robustness to depth
uncertainty. During 3D reconstruction, the same robust estimates of scene
visibility can be applied iteratively to improve depth estimation around
object edges. Our algorithm is based entirely on O(1) filters, making it
conducive to acceleration and it works with structured or unstructured
sets of input views. We compare with recent classical and learning-based
algorithms on plenoptic lightfields, wide baseline captures, and lightfield
videos produced from camera arrays.
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1 INTRODUCTION

With digital cameras continually decreasing in size and cost, and
increasing demand for more immersive content (e.g. for VR/AR
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headsets), many new cameras and camera ‘rigs’ are being developed
to capture images and video from several viewpoints simultane-
ously [Anderson et al. 2016; Cabral 2016]. At the same time, near
ubiquitous digital cameras from cell phones and drones, paired with
automatic camera calibration algorithms [Snavely et al. 2006], can
also quickly create rich collections of photographs of interesting
scenes. With such rich data, a natural goal is to immerse the user in
a 3D environment of real photographed content, allowing them to
see in stereo (separate views for each eye) and even to move around
freely (six degrees of freedom).

Invariably, however, there is a limit to the density of input images
that one can capture, necessitating a trade-off between capture cov-
erage and capture density. View synthesis algorithms can provide
virtual views of photographed content, but in this case we face a
visual Turing test; people are hard wired to notice anomalies in
natural images, and natural images have many properties that are
simply not modelled by naive image-based rendering (IBR) meth-
ods, such as soft edges, view-dependent lighting, and translucency.
The result is that the majority of rendering techniques produce
roughly the correct result, but contain jarring rendering artifacts,
including tearing at object boundaries, aliasing artifacts, temporal
discontinuities, and ghosting.

These difficulties have led to another approach, which is to forgo
explicit modelling of the problem and instead use machine learning
to implicitly model complex 3D interactions using many training
examples. While this direction is very promising and ever evolving,
less constrained networks that try to model everything tend to
produce blurry or low-resolution results, while more customized
networks start to resemble classical algorithms in various respects,
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Fig. 2. Left: Synthesized view (and average rendered depth) where we
force each input to view to select a single depth before rendering (as is
typically done during depth refinement). Because of the wide baseline and
difficult foreground content, there are more votes in the background than
in the foreground, making depth refinement unstable. Right: Our soft view
synthesis algorithm produces plausible results. We also degrade gracefully
to only partial ghosting as certainty drops very low at the rim of the cup.

such as incorporating plane-sweeps [Flynn et al. 2016] or depth
selection [Kalantari et al. 2016]. Furthermore, since current ML
approaches for view synthesis are trained to produce final rendered
images rather than consistent 3D reconstructions, it is not yet clear
how to accelerate these approaches for real-time rendering, or to
produce other effects such as mixing computer generated content
with photographed content.

The key contributions of this paper are as follows. We propose
a new image based rendering framework that retains depth uncer-
tainty from a local 3D reconstruction of the scene to final color
synthesis, and demonstrate how traditional stereo and 3D recon-
struction concepts and operations can fit inside this framework.
Furthermore, we show that by designing a system end-to-end for
view synthesis (rather than using an existing outputs such as a 3D
meshes or point clouds), we can produce improved synthesis results
that challenge existing methods for a wide variety of inputs (such
as views from plenoptic cameras, camera array videos, and wide
baseline image captures).

At the heart of our method is a soft model of scene geometry that
retains uncertainty in the form of a distribution over depth values.
From this we formulate soft visibility functions that can be used
in both 3D reconstruction itself (to refine depth estimates at object
boundaries), as well as throughout view synthesis (for both view
rays and texture mapping rays). We model this uncertainty in both
windowed cost aggregation as well as free-space reasoning from
multiple depth maps. While modelling depth and scene visibility
softly in final rendering may seem counter intuitive (most objects are
opaque, after all), we show that preserving this uncertainty results
in smooth and plausible renderings of difficult content, textureless
regions and soft object edges.

2 RELATED WORK

View synthesis and stereo depth estimation have a long and over-
lapping history in both computer vision and graphics. Image based
rendering (IBR) approaches typically use proxy geometry to syn-
thesize views, while stereo and multi-view stereo (MVS) algorithms
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reconstruct geometry from images. View synthesis algorithms usu-
ally require both to provide virtual views from raw images alone.
Our approach is a new view synthesis algorithm that performs a
local soft 3D reconstruction of the scene. As such we review view
synthesis algorithms which use automatically generated proxy ge-
ometries, and multi-view stereo approaches in the context of view
synthesis.

2.1 View Synthesis

Early work set the foundations of the commonly used IBR frame-
work, which involves supplying or estimating proxy geometry fol-
lowed by reprojection and blending texture between nearby views
[Chen and Williams 1993; Debevec 1996; McMillan and Bishop
1995]. Unstructured lumigraphs [Buehler et al. 2001] specifies the
‘eight desirable properties’ for IBR algorithms, such as continuity,
proxy geometry, and epipole consistency. Many different geometry
representations have been developed to handle and regularize the
geometry estimation problem, such as polyhedral models [Debevec
1996], planar approximations [Sinha et al. 2009], silhouette warps
[Chaurasia et al. 2011], and super pixel meshes [Chaurasia et al.
2013]. More recent work has focused on difficult cases such as pla-
nar reflections [Kopf et al. 2013; Sinha et al. 2012]. Machine learning
models have been also been trained to model a local geometry for
each output view from many training examples. Either a probabil-
ity for each depth [Flynn et al. 2016] or a single depth [Kalantari
et al. 2016] is inferred, along with an inferred color from the depth
corrected input images which resolves texture occlusions.

The contribution of our approach is to provide a robust geometry
and visibility representation that is both consistent and continuous,
providing robustness to artifacts in difficult cases. While [Sinha et al.
2009] regularizes depth by assigning depths to a set of planes, our
approach allows for arbitrary 3D shapes. Unlike human-assisted
approaches such as [Chaurasia et al. 2011], our approach is com-
pletely automatic. Approaches that use hard 3D reconstructions
such as [Chaurasia et al. 2013] require additional steps to fill in miss-
ing depths from the 3D reconstruction, and suffer from hard tears
at depth boundaries and occlusions. Our geometry retains partial
depth ambiguity to plausibly handle difficult cases, and our geome-
try itself can be linearly interpolated smoothly into virtual views,
with occlusions and soft image edges being explicitly modelled.
While methods such as [Hasinoff et al. 2006; Szeliski and Golland
1999] also provide soft edges by solving for mattes on source view
depth maps edges, these methods do not provide a method to transi-
tion smoothly between input views, and do not account for difficult
content where input depth maps may each be erroneous and/or
disagree with each other. Our geometry itself is interpolated across
views to provide continuity, and we utilize many neighboring views
to provide robustness against difficult content.

2.2  Multi-View Stereo and 3D Reconstruction

Since multi-view stereo and 3D reconstruction is such a large field,
we refer the reader to [Furukawa and Hernandez 2015] for a review
of work in this area. We focus here on a brief overview and recent
work which relates to our method.
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Fig. 3. Overview of our soft 3D reconstruction and view synthesis algorithm. We start by computing depth maps using a fast local stereo method. Our soft

3D reconstruction consists of volumetric vote volumes that model uncertainty from stereo and depth refinement (voting) operations. This representation is
refined iteratively by providing a soft visibility estimate for per-pixel view-selection in a subsequent pass of stereo. Finally, we use the same soft representation

directly to model ray visibility and occlusion during view-synthesis.

A minimal stereo setup consists of only two views from pre-
calibrated cameras, while automatic calibration (provided by algo-
rithms like [Snavely et al. 2006]) or calibrated camera ‘rigs’ [Ander-
son et al. 2016; Cabral 2016] can supply many views. Since individual
matching costs are very noisy, a standard method is to aggregate
matching costs to improve depth quality. Global optimization meth-
ods such as [Felzenszwalb and Huttenlocher 2006; Kolmogorov and
Zabih 2001; Sun et al. 2003] seek to minimize a global cost function
that also optimizes for depth smoothness, while ‘local’ methods
attempt to achieve the same more efficiently (or even at real-time
rates) using patch-based O(1) edge-aware filtering kernels such as
[Hosni et al. 2011; Lu et al. 2013; Ma et al. 2013].

A unique problem in MVS is pixel-wise view selection. Using
a larger neighborhood of views can provide better minima in cost
curves, but implies more occlusions, which can corrupt matching
costs on background objects. A very common heuristic is to use
the best half of matching costs [Kang et al. 2001]. These can be
selected as the minimum set, by selecting the best left/right half
[Kang et al. 2001] (when the cameras follow a line), or extending
to the best half-space derived from image edges [Wang et al. 2015]
(when the cameras form a 2D lightfield). Other methods use prob-
abilistic models of the scene visibility combined with smoothness
assumptions such as [Strecha et al. 2004], or jointly model pixel-wise
view-selection along with the depth by estimating local pairwise
photo-consistency between the reference and candidate images
[Zheng et al. 2014].

Our work builds on local methods for two view stereo [Hosni
etal. 2011; Lu et al. 2013; Ma et al. 2013], to build a soft projective
3D reconstruction of the scene in the target view for view synthe-
sis. By adding a second ‘occlusion aware’ refinement stage, and
retaining a soft representation for rendering of difficult cases, we
both improve depth quality and reduce common artifacts caused
by incorrect depth estimation. While iterative methods exist for
estimating visibility masks as part of stereo, such as [Strecha et al.
2004; Zheng et al. 2014], our method is the first we are aware of
that utilizes a soft local model of visibility derived from neighbor-
ing views. We find this provides a surprisingly effective visibility

estimate for pixel-wise view selection during stereo, and can also
be efficiently aggregated using O(1) filtering methods.

3 OVERVIEW

Our full view synthesis algorithm is illustrated in Figure 3. The key
to our algorithm is a soft volumetric reconstruction of the scene ge-
ometry which we perform in projective volumes in each input view.
We estimate depth using a fast local stereo method for each input
view, from which we reconstruct a soft volume that incorporates
uncertainty during stereo and the fusion of many depth maps. The
remainder of the paper is broken into sections which describe each
of the steps in our algorithm:

o Initial depth estimation. We compute depth maps for all
input views using a small set of N neighbors and a fast local
stereo method, which is described in Section 4.

o Soft 3D Reconstruction. For each input view, we recon-
struct the scene geometry using a discretized projective vol-
ume representation. Each voxel encodes a confidence value
that a surface exists at that voxel, and incorporates uncer-
tainty from stereo cost aggregation as well as surface/free-
space confidence from voting. The confidence values are
accumulated from a larger neighborhood of M >N views.
This is described in Section 5.

o Soft View Synthesis. To explicitly model continuity across
virtual views, we smoothly interpolate this soft geometry
from the nearest K source views into the virtual view. To
texture map the geometry as we render, we use soft visi-
bility functions calculated for the input views as texture
mapping weights (in addition to our geometry interpolation
function). We describe this in Section 6.

e Occlusion aware depth estimation. Finally, we show
how our initial stereo depth estimation can also be im-
proved iteratively using the same representation, by using
soft visibility as per-pixel view selection weights in another
pass of stereo depth estimation. This is described last, in
Section 7.
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Throughout this paper, since we deal with many 3D projections
between images (or ‘views’), we use a few simple conventions for
brevity. A function F(x,y, z) or G(x, y) is assumed to take place in
a reference view’s 2D or 3D coordinates. Image coordinates x and y
are assumed to be image pixel coordinates, while z is defined by a
plane sweep which is sampled linearly in 1/z in the reference view.
When referring to the result of such a function for a neighbor view
k, we use Fk(x;(’ yl’c, zl’c) or Gk(xllc’ yl’c) Here the xl’c, yl'(, zl’( denote
that a 3D point has been transformed into camera k’s coordinates
as follows:

-1
(xl’c’ yllc’ Z;c) =Ck (Creference(x’ Y>2)), ey
where Cy. and Cr_elference are the forward and inverse transforms for

view k and the reference view respectively.

We also omit image sampling methods for brevity. In practice,
when sweeping over all 3D coordinates to compute such a function,
we use 2D homography warps and bilinear interpolation for 2D
images, full 3D projections and tri-linear interpolation for volume
sampling, and full 3D projections with percentage-closer-filtering
[Reeves et al. 1987] when interpolating a depth test result is required.

4 INITIAL DEPTH ESTIMATION

Our initial depth estimation method is a ‘local’ method similar to
[Hosni et al. 2011] which filters matching costs using an O(1) edge-
aware filter kernel, followed by winner-takes-all depth selection.
More formally, we compute a depth map D() for a view given several
neighbor views as follows:

Eraw(x,y:2) = ) Ex(x.y.2) (@)
keN
Bx,y,2) = ) wxy,% ) Eaw(,9,2) 3)
(& Dew
D(x,y) = argmin E(x, y, z), (4)
zeZ

where N is a set of neighbor views (up to 4 for 1D captures and 8 for
2D captures), W is an edge-aware filter window which we aggregate
efficiently using the O(1) guided-filter [He et al. 2010], and Z is a set
of fronto-parallel planes defined by a plane sweep in the reference
view. Ej is the raw matching cost between the reference view and
a neighboring view k, which is sum-of absolute-differences (SAD)
based.

One unique aspect to our cost and vote filtering is a pyramidal
variant of the guided-filter. To allow for a larger aggregation window
in textureless areas, we compute costs and votes from an image
pyramid, filter each level, and then blend each lower level into the
next level according to the variance in the higher level (which is
already computed by the guided filter). To blend a lower level into
the next, we perform a linear step blend between std-dev of 3.0 and
10.0 in the higher level. In datasets where minor pose misalignment
is possible (such as datasets solved using structure-from-motion
(SftM)), we blend stereo cost levels using a constant factor of 0.5, as
we find lower levels provide some robustness to minor misalignment.
Since our approach adapts the kernel size to be larger in textureless
areas, we use only an 8x8 guided-filter window.
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5 SOFT 3D RECONSTRUCTION

In this section we discuss how we reconstruct soft projective vol-
umes of scene geometry in each reference view using neighboring
view depth maps, and how we interpret this geometry to formulate
visibility/occlusion functions for use by view synthesis and iterative
stereo refinement. We first make several observations as motivating
goals for our reconstruction approach described below.

(1) Each depth map pixel actually supplies two pieces of in-
formation: An estimate of where a surface exists, and an
estimate that no surface exists in front of it (free space).

(2) Conversely, each depth map pixel supplies no information
about what lies behind its estimated depth. Both 1 and 2
have uncertainty that arises due to the imperfect nature of
passive depth estimation.

(3) One type of uncertainty is between neighboring pixels
within a single image. For example, over textureless re-
gions and near depth discontinuity boundaries, we often
have multiple depth values within a nearby neighborhood
in the image. We can model this local uncertainty in the
depth by considering each pixel’s depth as a distribution
originating from its neighborhood in the depth map (with
weight of each depth proportional to similarity in pixel
color as well as spatial distance), rather than a single depth.

(4) Another type of uncertainty is across different views. Specif-
ically, when we fuse multiple depth maps from different
views, they do not always agree with each other. We can
model this cross-view uncertainty by aggregating the con-
sensus at each point in space, which we call a vote volume
below.

(5) We need to model visibility/occlusion of a ray travelling
through our geometry. Visibility should also be modelled
softly, respecting the uncertainty in depth described above.

To retain depth uncertainty discussed in goals 3 and 4, we use
vote-volumes to aggregate and store an entire depth distribution
for each image pixel. Our vote volumes are formulated very similar
to our stereo cost volumes in section 4, and use the same set of
planes defined by a stereo plane sweep. To initially incorporate
uncertainty arising from disagreement between depth maps (goal
4 above), we define vote-value and vote-confidence functions. A
depth map initially votes that a surface exists at its depth, that no
surface exists in front of it, and abstains from voting at all behind
its depth:

_ 1 z = D(X, y)
VoteValraw(x, y,z) = { 0 otherwise ©)
Voec B! z <= D(x,y)
oteConf (X, Y, 2) = 0 otherwise. ©

To incorporate goal 3, we use a technique similar to constant-
time weighted median filtering [Ma et al. 2013] and filter these votes
using the same kernel used to filter our stereo costs:

VoteVal(x,y,z) = Z
(£, 9)eW(x,y)

w(x,y, x, J) VoteValpaw (%, 9,2) (7)



VoteConf(x,y,z) = Z

(X 9)eW(x,y)

w(x,y, %, §) VoteConf ., (%, 7, 2),

®)
where W(x, y) is the filter window for a pixel and w() is the edge-
aware kernel weight. Again we can compute this efficiently using
the O(1) guided-filter. The result of applying this filter is to spread
each source depth to cover all pixels in the stereo patch, resulting in
a depth distribution for each image pixel with the resulting voting
weight distributed according to the stereo patch edge-aware kernel.
Now to support votes from many views, we can repeat this pro-
cess several times (one for each voting neighbor view), accumulate
the results, and normalize total votes by total number of voters
(accumulated confidence) to form a surface consensus volume:

Zkem VoteValy(x;,y;.,2;)
Zkem VoteConf i (x;,y;.2;)

where M is our voting neighborhood (up to 10 for 1D captures and
25 for 2D captures). We note that while this achieves our goals
and filters each vote with the same weights as its stereo patch, this
requires caching all filtered volumes (or redundantly filtering many
volumes if we do this from scratch each time). In practice, to reduce
memory consumption we use a slightly modified filtering approach:

©

Consensus’(x,y, z) =

Ykem VoteValraw, (x;., Yy, 2)

(10)
ZkEM VOteconfrawk (x]/ca y;'c» Zl/c)

Consensusyqw =

Consensus(x, y,z) = Z
(*,9)eW(x,y)

w(x,y, X, §)Consensusraw (X, J, z).

(11)
The subtle difference here is that we use only one guide image and
filter only one volume rather than one for every contributing depth
map, which means that we do not filter each depth estimate with
its exact stereo patch weights. For foreground objects these values
should logically be very similar, so the main difference with this
approximation is that the background surfaces (with respect to the
single guide image) are filtered with the wrong edge-aware kernel.
Finally, we observe that vote confidence trends toward zero in
the background due to more views becoming occluded. To prevent
this from amplifying noise, we normalize equation 10 only when
there is sufficient confidence (in practice we use a threshold of half
the number of voting depth maps), and we allow Consensus to fade
to zero below this threshold.

5.1 Visibility/Compositing Functions.

The consensus volume is what we use as our geometry represen-
tation in sections 6 and 7. However, before we can make use of
the geometry we need to texture-map it and measure the visibil-
ity/occlusion of rays traveling through it. We start by defining ray
visibility simply as the clamped summation of all prior consensus
along a ray:

SoftVis(x,y, z) = max(0,1 — Z Consensus(x,y,2)). (12)

z€Z,2<z
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We note that this is identical to ‘coverage’ visibility functions dis-
cussed in deep shadow maps [Lokovic and Veach 2000]. We find
this is more appropriate than ‘standard’ alpha compositing in our
case (which would result in an exponential decay), as we would like
our ray visibility to approach zero as the probability that the ray is
occluded approaches one (i.e. all depth estimates agree that ray has
hit something).

Modifying this function can tune the effect of weakly recon-
structed geometry on our output images. For example, we can apply
a multiplier to terminate view rays and/or occlude textures faster.
While we have not experimented with modifying this function, we
note that our consistency step below has the effect of multiplying
consensus by a small factor (since each depth map votes in a small
interval).

5.2 Consistency

We find enforcing full consistency between all depth maps is quite
difficult and unstable in practice. For example, the weighted median
filter [Ma et al. 2013] is unstable when the number of foreground
votes are close to the number of background votes. On the other
hand, a simple vote threshold is also unstable when foreground votes
hover around that threshold, and a low threshold risks emphasizing
noise. This is exacerbated by different depth maps using different
ray directions, resulting in the same 3D point having very different
vote histograms in different views.

For this reason, as described above, we try to respect all depth
estimates from many surrounding depth maps. However, we do
wish to remove obvious depth outliers which do not agree with any
other view. To achieve this, we simply add a small interval around
our votes (to allow for one-off votes to still be consistent) and then
subtract one from the total votes accumulated.

6 SOFT VIEW SYNTHESIS

Our soft view synthesis algorithm resembles volume rendering with
projectively texture mapped volumetric geometry, and is illustrated
in Figure 4. We use a small set K of neighbor input images, de-
pending on the type of interpolation (e.g. 2/4 for linear/bilinear
interpolation), and interpolation weights Wy (x, y) for each input
view. W (x, y) is a single value per view in the case of structured
input views (defined by the linear/bilinear interpolation function).
For unstructured input views, we define W (x, y) as a low resolution
image per input view, as follows:

Wk (x’ y) = e—DiSt(RaYk(X»Y), Osynth)z/b2 , (13)

where Ogynyy, is the optical center of the synthesized view, and b is
the average nearest-neighbor baseline (distance between cameras)
for the input dataset. W() can also be used to fade to zero at image
borders (to hide seams), but since all our images are color calibrated,
we did not find this necessary.

We calculate consensus volumes for all input views using equation
(11) and interpolate one for the virtual view using our view weights
Wi (x, y). We then compute soft visibility for each input view using
equation (12) and use input view visibility as an additional texture
mapping weight (to handle occlusion), while the interpolated con-
sensus volume provides smoothly interpolated geometry for the

ACM Transactions on Graphics, Vol. 36, No. 6, Article 235. Publication date: November 2017.



Fig. 4. Progress of rendering a frame using soft view synthesis. First column:
Input images warped to a reference view depth, with occlusions masked.
Second column: Votes for the current depth, that incorporates depth and
free-space estimates from all neighbor images. Third column: First column
modulated by the second column to create a color slice. Fourth column:
Accumulation of all color slices up to this depth.

current frame. We then traverse through the virtual-view’s consen-
sus volume in slices, computing and accumulating color for each
non-zero consensus along our view rays. A ray terminates when its
visibility reaches zero (summed prior consensus equals one). Colors
are in turn interpolated from neighbor views using the interpolation
function modulated by per-view visibility.

More formally, the color at a 3D point is computed from the input
images It.():

Sk SoftVisy (e . 2 Wi (s y Ik (. y))
Sk SoftVisy (<] y7. 2, Wi (. )

Colorgynth(x, y, 2) =

(14)
The geometry for the synthesized view is smoothly interpolated
from our input views using our weights Wy ():

Consensussynh (x, y, z) = Z Wie(xp., yj. )Consensusi (xp., Y., 2;.)-
k

(15)
The color slices are then weighted by consensus and accumulated
until ray visibility reaches zero:
CC(x,y, z) = min(Consensussynih (%, Y, 2), SoftVisSynth(x, Y, 2)).
(16)

ZzeZ COlorsynth(x, Y, Z)CC(X, Y, Z)

2zez CC(x,y,2)
where Igyn,() is our synthesized output image. CC() is consensus
clamped to the remaining ray visibility and Consensus() and SoftVis()

Isynth (x, y) = ’ (17)
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are defined in equations (11) and (12), respectively. We normalize
by the total amount of votes accumulated along the ray in the event
the ray’s visibility does not reach zero before it exits the volume.

6.1 Real-Time Rendering

Since our algorithm produces a 3D representation with a simple
interpretation of ray visibility, it is conducive to real-time rendering,
even on very limited hardware such as mobile devices. To support
real-time rendering we modified our algorithm to pre-compute one
or multiple Color() volumes in set locations (depending on the user
exploration allowed), followed by GPU accelerated rendering of this
alpha blended content. In this case we invoke the Color() function
with a higher number of input views. As we accumulate more views
we accumulate colors in occluded areas, allowing for a larger range
of movement from the volume’s optical center. We then render con-
tent in front-to-back order using GL-SRC-ALPHA-SATURATE blend
mode to replicated our visibility function described above (note this
works only for integer render targets where alpha saturates).
These color volumes are typically quite sparse and can be much
more compactly stored as meshes with textures. As a simple initial
approach, we simply tiled the volume and dropped empty tiles,
which increased performance by 5-10x over brute force volume
rendering and can render at solid 60Hz on the Google Pixel smart
phone using 128 layers. A color volume only provides content
within a single projective volume, so to provide a larger range
of 3D movement we expand the projective volume where color
is accumulated, effectively ‘uncropping’ the volume. Even larger
movement in space can be handled by blending in screen space.

7 OCCLUSION AWARE DEPTH ESTIMATION

We have also found soft visibility useful in refining the quality of our
rendered depth edges, by providing approximate occlusion aware-
ness even in wide baseline settings. A difficult problem in MVS depth
estimation is handling occlusions. Including more neighbor images
from wider baselines helps to disambiguate the correct surface in
cost curves, but wider baselines introduce occlusions which cor-
rupts costs around depth edges. A typical result is ‘edge fattening’,
where alow texture background next to a foreground object assumes
the foreground depth. This occurs because the correct background
depth has an invalid high matching cost, while the foreground depth
is still low due to the low texture of the background.

It is challenging to solve this problem in two view stereo using
matching costs alone, as only one view can see the occluded surface.
In MVS however, we can still find the correct surface using only
matching costs so long as we can correctly identify and use the
correct subset of views for each pixel (those that lack occlusions).
We define this idealistic matching cost energy function as:

2k Ex(x,y, d)HardVisy (x; .y}, d})

2k HardVisg (x;, yp.. dy.)

Eideal(x’ Y, d) = ’ (18)
where Ej. is the matching cost for neighbor view k and HardVis()
is a hard visibility function corresponding to the correct surface.
The problem of course is that supplying HardVis() is a chicken-egg
problem, since visibility is dependent on the depth map D(), which
is in turn dependent on the ideal cost itself:
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Fig. 5. Occlusion awareness. Top row: a plane sweep shows the posts coming clearly into focus, but not the wall behind them (due to occlusions). This results
in corrupted depths around the posts. Consistent votes filtered as in [Ma et al. 2013] still show some corruption (because it occurs consistently in most views).
Middle row: each view is weighted by per pixel soft visibility from the first pass. The posts fade out and the background comes into focus with the unoccluded
views. The depth corruption is gone in both depths and the vote volume slice. Bottom Left: The first pass (blue) matching cost never makes it below an
incorrect foreground depth. On the second pass (black), occluded costs are weighted by visibility and the cost curve makes it to a new absolute minimum.
Bottom Right: Vote curves for the same pixel show that votes are now more consistent (more area under the black curve) and the foreground peak has been

eliminated.

YRR EY

Fig. 6. Synthesized view and average depth without/with occlusion aware
stereo on ‘Leaves’ dataset from [Kalantari et al. 2016]. We are able to find
the correct depth on the second pass.

D(x,y) = argnlzinEideal(xs Y, 2). (19)

Typical methods of handling this problem also have some draw-
backs. The most common approach of using the best half of costs
to approximate the non-occluded costs [Kang et al. 2001; Wang
et al. 2015] introduces new ambiguities even for foreground objects.
Repetitive texture, for example, might be clear when costs are aver-
aged from two neighbors but becomes ambiguous again when the
best of the two is taken. An even more simple ambiguous case is
shown in Figure 7.

Our solution to the visibility problem is an iterative algorithm that
uses soft visibility estimated in the first pass to provide occlusion
awareness in the next pass. Since we have developed a robust
estimate to visibility which enforces a certain level of consistency
and incorporates uncertainty between views, we simply replace
HardVis() in the ideal matching cost function, with our soft visibility
function SoftVis():

Sk B, g, d)SoftVisy (<L 7, )
2k SoftVisy (xp. ;. d;)

Eours(x7 Y, d) = (20)

CENE —

Esl) A /
Eave@ \/
Emin@

Fig. 7. Above: E1(z) and Ej(z) are toy matching cost curves for top/bottom
views of an image edge. The average cost E 44 ¢() has an ideal matching cost
curve, while taking the best half E,;,;,() is ambiguous in this case. Below:
The top synthesized view shows ghosting on the wall around foreground
objects due to incorrect depth estimation. In the middle, taking the best
half of costs as in [Kang et al. 2001] makes the ghosting worse rather than
better in this case because the edge becomes ambiguous. On the bottom, a
second pass of occlusion aware stereo improves the result.

In practice, we find that this converges surprisingly quickly, only
requiring one extra iteration of stereo to converge. Intuitively, many
invalid depths are removed by consistency, while remaining fattened
edges are attenuated heavily by edge-aware vote filtering, which
improves the visibility functions further for the next pass. Further-
more, since these artifacts tend to be caused by large occluders, the
first stereo pass can be computed at a lower resolution (in x, y and
z) and still provide almost all the benefit.
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Input Views Our Novel Synthesized View Kalantari et al. Ours Ground Truth  Average Depth

SSIM: 0.9282 0.9525

oS
ROCk SSIM: 0.9555 0.9596

SSIM: 0.9480 0.9581

Flowers

Fig. 8. Comparison of our approach with the method of [Kalantari et al. 2016] on the most difficult Lytro lightfield datasets from their paper. We also include a
visualization of the soft depth used to render our result as the average depth of contributing colors. Since [Kalantari et al. 2016] compares favorably to [Zhang
et al. 2016] and [Wanner and Goldluecke 2014] (using depth estimation of [Tao et al. 2013], [Wang et al. 2015] and [Jeon et al. 2015]) we refer to the reader to
[Kalantari et al. 2016] for further comparisons with these methods. Our method is also temporally continuous, which we show in the supplementary video.
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Flynn et al. Chaurasia et al. Ours Ground Truth

0.7566 0.7945 0.8753

Fig. 9. Comparison of our approach with the methods of [Chaurasia et al. 2013] and [Flynn et al. 2016] on wide baseline images from [Chaurasia et al. 2013].
We note that our method is also temporally continuous across frames, which we show in the supplementary video.

Kalantari et al. ‘ Ours ‘ Ours (2 Pass)

Flowers1 0.9480 0.9562 | 0.9581
Flowers2 0.9507 0.9591 |  0.9616
Cars 0.9700 0.9702 | 0.9705
Rocks 0.9555 0.9584 | 0.9595
Leaves 0.9282 0.9488 | 0.9525
Average | 0.9505 [ 0.9585 |  0.9604

Table 1. SSIM [Wang et al. 2004] scores for the 5 Lytro datasets shown in
[Kalantari et al. 2016]. We note that the original images are quite dark, so
we tone adjust all images as shown in Figure 8 which lowers scores slightly
for both methods. Note that our method is only slightly better on datasets
with low depth complexity, but significantly better on datasets cited as
being the most difficult (lots of occluders closer to the camera).

8 RESULTS

Our method works across a wide variety of inputs, including struc-
tured and unstructured input images, as well as narrow and wide-
baseline captures. Since methods intended for plenoptic cameras do
not typically apply to unstructured wide-baseline captures (and vice
versa), we report our comparisons based on camera configuration.

8.1 Plenoptic Cameras

We first compare our results on interpolation of Lytro images from
[Kalantari et al. 2016] in Figure 8 and show our SSIM scores in Table
1. Since [Kalantari et al. 2016] compares favorably [Zhang et al.
2016] and [Wanner and Goldluecke 2014] (using depth estimation
of [Tao et al. 2013], [Wang et al. 2015] and [Jeon et al. 2015]), we
refer the reader to [Kalantari et al. 2016] to see further comparisons
with these methods.

As shown, while the two methods are comparable in areas with
low parallax, our method produces consistently better results for

thin objects and around occlusions. In the first (red) inset for each
dataset, we show thin background objects being occluded by ‘float-
ing’ background pixels. In the second (green) inset, we show thin
foreground objects ghosting or disappearing. In the last (blue) inset,
we show color bleeding from the foreground onto the background.
In all of these cases our result closely matches the ground truth.

We suspect that some of these problems are caused by performing
plane sweeps in a virtual view, which is more ambiguous for thin
objects since both the foreground and background can be visible
in the source views. Color bleeding may be caused by the CNN
making mistakes while resolving occlusions using only the warped
source views (with no knowledge of the occluding geometry itself).
In contrast, our approach models occlusion explicitly during texture
mapping, robustness is improved by requiring consistency, and our
soft depth edge alignment is improved by our second occlusion-
aware stereo pass.

In terms of performance, we use our CPU implementation for
evaluation, which takes 91 seconds to perform both reconstruction
(10 seconds) and rendering (80 seconds for 64 frames) on a 6 core
hyperthreaded CPU. This is almost an order of magnitude faster
than [Kalantari et al. 2016] despite their approach using a powerful
GPU to invoke their neural network.

8.2 Camera Arrays

We also show how our method handles wider baseline camera arrays
with difficult content in Figure 2 and 10 as well as in the supple-
mentary video. This camera array is a 5x5 array of cameras spaced
approximately 6.5cm apart and synchronized with a shared global
shutter. The camera poses are not perfectly regular, so they are
solved using a method similar to [Snavely et al. 2006]. We also
align colors as a preprocess using a method similar to [HaCohen
et al. 2011]. As seen in Figure 10, increasing the number of stereo
neighbors improves quality to a point, but a combination of both
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1/25 Input Images

R

1 Voting 4 Voting
Neighbors Neighbors

8 Voting
Neighbors

16 Voting
Neighbors

1 Stereo
Neighbors

2 Stereo
Neighbors

4 Stereo
Neighbors

8 Stereo
Neighbors

Fig. 10. Quality improvement from our soft reconstruction approach on a
dataset with difficult content. Top Left: One input image of a 5x5 dataset
containing many difficult aspects such as foliage, thin objects, and strong
lens flares. Top right: Our average depth from a nearby synthesized frame
showing high quality soft depth. Bottom: Close-ups on our reconstruction
of the chair as we increase both stereo and voting neighbors. While stereo
alone improves the result, only voting from many neighbors overcomes
corruption from the lens flares that obscure the chair and leaves.

stereo neighbors and voting neighbors produces a strong improve-
ment over stereo alone. The soft depth edges in the Figure actually
represent a weighted combination of multiple depths, hence there
is no depth edges or warping visible in the synthesized views. As
seen in Figure 2, our method also produces much better results than
a simple depth map refinement using the same number of voting
views.

8.3 Unstructured Cameras

Next, we compare our method with the methods of [Chaurasia
et al. 2013] and [Flynn et al. 2016] on an unstructured wide baseline
dataset in Figure 9. As shown in the insets and SSIM scores, our
method produces higher quality results with less artifacts.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 235. Publication date: November 2017.

Since [Chaurasia et al. 2013] solve a small linear system to regu-
larize the transform of each super-pixel, cracks sometimes appear
as neighboring super pixels are assigned to different or incorrect
depths. In addition, since each image uses different geometry, these
differences must be reconciled with a combination of depth based
as well as view-based weighting, which in results in temporal dis-
continuities.

Our rendering model is similar to [Flynn et al. 2016] in that their
neural network architecture implicitly models a probability over all
depths. However, because colors from the input images are merged
by a neural network without knowledge of the scene geometry,
occlusions and difficult cases (such as the shrubs) become blurry to
due excessive uncertainty. In contrast, our scene depth distribution
comes from stereo estimation, depths need to be consistent in at
least two views, and occlusions are removed softly using the same
geometry used for rendering.

8.4 Lightfield Video

We also demonstrate how our method performs at producing light-
field videos. In this case we use a synchronized camera array in a
5x4 configuration. Since our method utilizes depth maps from many
views (all 20 in this case), it is robust to temporal discontinuities in
any given depth map, with the final result being temporarily smooth
despite our algorithm operating on individual frames. This is in
contrast to global depth regularization methods that may fluctuate
heavily across frames. Since temporal smoothness is difficult to
illustrate on paper, we refer to reader to the supplementary video
to see these results.

9 LIMITATIONS

We have demonstrated our method on a diverse set of challenging
use cases, however, as with any approach our method does have
limitations. As our method is view based, we reconstruct geometry
directly in projective view volumes, with memory increasing lin-
early with depth precision. This depth precision limits the amount
of free view-point movement away from the source views, after
which depth quantization artifacts will appear. Our method also
does not perform ‘spill suppression’ on our soft foreground edges,
which can result in narrow color bleeding of the background color
onto foreground edges. An important take away from our work
is that even fast, local stereo methods can produce high quality
view synthesis results. However, we assume a relative large num-
ber of input views to perform voting, and as less input views are
used, depth regularization using a global optimization may improve
results further relative to our local stereo method.

10 DISCUSSION AND FUTURE WORK

We have presented a novel algorithm for soft 3D reconstruction and
view synthesis which uses the same vote-based representation at
every stage. In depth estimation, it provides visibility estimates to
perform per-pixel view selection and improve depth edges, while
in synthesis we interpolate this local geometry into output frames
and use it to provide soft visibility weights for texture mapping.
Our approach improves on the state of the art on synthesis for
narrow baseline light-field cameras, while improving further with
access to more views in unstructured camera arrays, for both stills



and temporally smooth video. Moreover our algorithm is suitable
for real-time rendering applications by pre-computing color+alpha
meshes.

In the future we would like perform better ‘spill suppression’ on
our soft foreground edges. We hope to utilize our 3D reconstruction
here as well, since this provides us with a good idea of the back-
ground color (reducing the number of unknowns in the classical
alpha matting problem). We would also like to GPU accelerate our
reconstruction algorithm, which is embarrassingly parallel but cur-
rently implemented on the CPU. This could enable more mobile
applications, as well as potentially real-time reconstruction from
live source videos. Finally, we would like to investigate combining
our algorithm with neural network architectures. By providing
geometrical knowledge wherever possible (such as consistency and
visibility), but still allowing a neural network to solve difficult prob-
lems (e.g. matching and filling occluded areas), we hope to combine
the best of both classical and machine learning methods.
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