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ABSTRACT
Google’s Dremel was one of the first systems that combined a set of
architectural principles that have become a common practice in to-
day’s cloud-native analytics tools, including disaggregated storage
and compute, in situ analysis, and columnar storage for semistruc-
tured data. In this paper, we discuss how these ideas evolved in the
past decade and became the foundation for Google BigQuery.
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1. INTRODUCTION
Dremel is a distributed system for interactive data analysis that
was first presented at VLDB 2010 [32]. That same year, Google
launched BigQuery, a publicly available analytics service backed
by Dremel. Today, BigQuery is a fully-managed, serverless data
warehouse that enables scalable analytics over petabytes of data.1

It is one of the fastest growing services on the Google Cloud Plat-
form.

A major contribution of papers originating from the industry in
the past decade, including the Dremel paper, is to demonstrate what
kind of systems can be built using state-of-the-art private clouds.
This body of work both reduced the risk of exploring similar routes
and identified viable directions for future research. Introducing the
journal version of the paper [33], Mike Franklin pointed out that it
was “eye-opening” to learn that Google engineers routinely anal-
ysed massive data sets with processing throughputs in the range
of 100 billion records per second [20]. His main take-away was
that simply throwing hardware at the problem was not sufficient.
Rather, it was critical to deeply understand the structure of the data
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and how it would be used. Franklin made an on-the-mark predic-
tion that the data volumes described in the paper would soon be-
come relevant to more organizations, given how quickly the “bleed-
ing edge” becomes commonplace in our field. He also called out
various opportunities for optimizations and improvements.

This paper focuses on Dremel’s key ideas and architectural prin-
ciples. Much of the overall system design stood the test of time;
some of these principles turned into major industry trends and are
now considered best practices. Stated in terms of the technol-
ogy trends highlighted in the recently published Seattle Report on
Database Research [1], the main ideas we highlight in this paper
are:

• SQL: [1] reports that all data platforms have embraced SQL-
style APIs as the predominant way to query and retrieve data.
Dremel’s initial SQL-style dialect got generalized as ANSI-
compliant SQL backed by an open-source library and shared
with other Google products, notably Cloud Spanner.2

• Disaggregated compute and storage: The industry has con-
verged on an architecture that uses elastic compute services
to analyze data in cloud storage. This architecture decouples
compute from storage, so each can scale independently.

• In situ analysis: Data lake repositories have become popu-
lar, in which a variety of compute engines can operate on the
data, to curate it or execute complex SQL queries, and store
the results back in the data lake or send results to other oper-
ational systems. Dremel’s use of a distributed file system and
shared data access utilities allowed MapReduce and other
data processing systems at Google to interoperate seamlessly
with SQL-based analysis.

• Serverless computing: As an alternative to provisioned re-
sources, the industry now offers on-demand resources that
provide extreme elasticity. Dremel was built as a fully-
managed internal service with no upfront provisioning and
pay-per-use economics. This concept was successfully
ported to BigQuery.

• Columnar storage: While use of columnar storage in com-
mercial data analytic platforms predates the Dremel paper,
Dremel introduced a novel encoding for nested data that gen-
eralized the applicability of column stores to nested rela-
tional and semistructured data.

This paper is structured around the above trends. For each,
we explain the original motivation and examine the evolution of
2https://cloud.google.com/spanner
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the idea within Google and in public clouds. Orthogonal to these
trends, the Seattle Report emphasizes that providing interactive re-
sponse times over Big Data remains an open challenge, since high
latency reduces the rate at which users make observations, draw
generalizations, and generate hypotheses. We discuss how Dremel
tackled latency while pushing forward the trends listed above.

Several leading engineers from today’s BigQuery team were in-
vited to co-author this retrospective paper, allowing us to shed more
light onto the technical advances made in the intervening years.

2. EMBRACING SQL
Google was an early pioneer of the Big Data era. In the early
2000s, the company developed a new ethos around distributed in-
frastructure built on massive fleets of cheap, unreliable, commod-
ity servers. GFS [21] and MapReduce [19] became the standard
ways to store and process huge datasets. MapReduce made it easy
to process data in parallel on thousands of machines, hiding most
concerns about communications, coordination, and reliability. A
custom language, Sawzall [36], was developed to make MapRe-
duces somewhat easier to write than using C++ directly. NoSQL
storage systems such as BigTable [13] also became the default for
managing transactional data at scale.

The conventional wisdom at Google was “SQL doesn’t scale”,
and with a few exceptions, Google had moved away from SQL
almost completely. In solving for scalability, we had given up ease
of use and ability to iterate quickly.

Dremel was one of the first systems to reintroduce SQL for Big
Data analysis. Dremel made it possible for the first time to write
a simple SQL query to analyze web-scale datasets. Analysis jobs
that took hours to write, build, debug, and execute could now be
written in minutes and executed in seconds, end-to-end, allowing
users to interactively write, refine and iterate on queries. This was
a paradigm shift for data analysis. The ability to interactively and
declaratively analyze huge datasets, ad hoc, in dashboards, and
in other tools, unlocked the insights buried inside huge datasets,
which was a key enabler for many successful products over the
next decade.

Dremel’s SQL dialect was quirky but included some critical
innovations—notably, first-class support for structured data. Pro-
tocol Buffers [37] were used pervasively at Google. Nearly all
data passed between applications or stored on disk was in Proto-
col Buffers. Typical log records encoded details across thousands
of nested and repeated fields. Dremel made it easy to query that
hierarchical data with SQL.

Hierarchical schemas were a big departure from typical SQL
schema design. Textbook normal forms would use many tables, and
query-time joins. Avoiding joins was a key enabler for Dremel’s
scalable and fast execution. (Dremel initially had no join sup-
port, and was successful for years with only limited join support.)
Denormalizing related data into one nested record was common
in Google’s datasets; hierarchical schemas made it unnecessary to
flatten or duplicate any data, which would have increased storage
and processing cost.

The F1 [41] project started in 2009, driving a parallel re-
emergence of SQL in transactional Big Data systems at Google.
The Ads team was tired of trying to scale core data in sharded
MySQL, while moving larger datasets out to scalable systems such
as Mesa [23] and BigTable. F1 was built as a hybrid of a tradi-
tional SQL database and a massively distributed storage system like
BigTable. By 2013, Ads had moved completely to F1, and other
OLTP-focused applications followed, also seeing the advantage of
returning from NoSQL to SQL. Most transactional database func-
tionality from F1 was later adopted by Spanner, which now backs

most transactional applications at Google. F1 continues to focus on
new SQL query use cases and optimizations, including HTAP with
F1 Lightning [46], and federating across dozens of other special-
ized storage systems.

SQL finally became pervasive at Google, across widely used sys-
tems such as Dremel, F1, and Spanner, and other niche systems
such as PowerDrill [24], Procella [15], and Tenzing [16]. Google
was also beginning to enter the cloud business with an early ver-
sion of BigQuery based on Dremel. All of these systems had their
own SQL implementations and dialects. Users often utilized sev-
eral of these systems and had to learn multiple idiosyncratic and
non-standard dialects.

To address this complexity and improve on inevitable mistakes
we made while designing SQL dialects ad hoc, we started the
GoogleSQL [8] project, unifying on one new SQL implementa-
tion we could share across all SQL-like systems. This framework
included:

• A new SQL dialect, complying with the ANSI standard with
extensions for critical features such as querying structured
data.

• A common parser, compiler front-end, and resolved algebra.

• A shared library of SQL functions.

• A simple reference implementation, demonstrating correct
behavior.

• Shared test libraries, including compliance tests ensuring en-
gine behavior matches our language specification.

• Other essential tools like a random query generator and a
SQL formatter.

All SQL systems at Google, including BigQuery, Cloud Spanner,
and Cloud DataFlow, have now adopted this common dialect and
framework. Users benefit from having a single, standard-compliant
and complete dialect they can use across many systems. These
common SQL libraries are now available in open source as Ze-
taSQL.3

Sadly, while there is an ANSI standard for SQL, this standard
is of limited use in practice. Since the standard is underspecified
and lacks key functionality, every engine must make its own deci-
sions on how to extend the standard, and which of several existing
and mutually contradictory precedents from other engines to fol-
low. For engines, this adds tremendous complexity and ambiguity
when implementing SQL, with many tradeoffs to consider. For
users, this means SQL is never truly portable across engines, and
there is high risk of lock-in. We have solved this across Google en-
gines with our shared and open-source dialect implementation, but
lack of portability continues to be an industry-wide challenge.

In more recent years, the SQL functionality of Dremel has ex-
panded greatly. The new shuffle architecture enabled support for
joins, analytic functions and other complex queries. This has been
driven both by Google’s increasing need for more advanced anal-
ysis and by the demands from cloud users of BigQuery for feature
parity with other familiar data warehouse products.

A similar journey away from SQL and back has happened in
the open source world. Users outside Google had similar scale
and cost challenges with increasing data sizes. Distributed file sys-
tems and MapReduce became popular with Hadoop, and a suite of
other NoSQL systems followed. These users faced the same chal-
lenges with complexity and slow iteration. A similar pivot back
3https://github.com/google/zetasql
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Figure 1: Disaggregated storage, memory, and compute

to SQL has happened, witnessed by the popularity of systems like
HiveSQL4, SparkSQL5 and Presto.6

3. DISAGGREGATION

3.1 Disaggregated storage
Dremel was conceived at Google in 2006 as a “20 percent”7 project
by Andrey Gubarev. Initially, Dremel ran on a few hundred shared-
nothing servers.8 Each server kept a disjoint subset of the data on
local disks. At the time, it seemed the best way to squeeze out
maximal performance from an analytical system was by using ded-
icated hardware and direct-attached disks. As Dremel’s workload
grew, it became increasingly difficult to manage it on a small fleet
of dedicated servers.

A major shift happened in early 2009. Dremel was migrated to
a cluster management system called Borg [45]. (Borg was the first
unified container-management system developed at Google, and a
precursor to the open-source platform Kubernetes [11].) Moving to
managed clusters was essential to accommodate the growing query
workload and improve the utilization of the service. Yet, it exposed
one of the challenges of using shared resources: the spindles used
for Dremel’s data were shared with other jobs. Consequently, we
switched to a replicated storage organization, where a portion of
each table was kept on three different local disks and managed by
independent servers.

In combination, managed clusters and replicated storage con-
tributed to a significant increase in Dremel’s scalability and speed,
and pushed its datasets into the range of petabyte-sized and trillion-
row tables. Storing replicated data on local disks meant that storage
and processing were coupled in an intimate way. This had a num-
ber of disadvantages: adding new features was hard because all al-
gorithms needed to be replication-aware, the serving system could
not be resized without shifting data around, scaling storage required
adding servers and scaling CPU as well, and not least, the data was
“locked up”, i.e., it could not be accessed in any other way but via
Dremel. All of these problems were solvable but the prospective
solution we were heading toward was starting to look awkwardly
similar to an existing core piece of infrastructure: Google’s dis-
tributed file system, GFS [21].

4https://hive.apache.org
5https://spark.apache.org/sql
6https://prestodb.io
7https://en.wikipedia.org/wiki/20%25 Project
8Shared-nothing was pioneered in the mid-1980s in the Tera-
data and Gamma projects as an architectural paradigm for parallel
database systems based on a cluster of commodity computers with
separate CPU, memory, and disks connected through a high-speed
interconnect.

Given the dramatic improvements in Google’s storage and net-
working fabric, it was time to revisit the shared-nothing archi-
tecture. The obvious blocking issue was data access latency. In
our first experiment with a GFS-based Dremel system, we saw an
order-of-magnitude performance degradation. One issue was that
scanning a table consisting of hundreds of thousands of tablets re-
quired opening as many files in GFS, which took multiple seconds,
counting towards the query response time. Furthermore, the meta-
data format used by Dremel originally was designed for disk seeks
as opposed to network roundtrips.

Harnessing query latency became an enduring challenge for
Dremel engineers, which we cover in more detail in Section 7.
It took a lot of fine-tuning of the storage format, metadata rep-
resentation, query affinity, and prefetching to migrate Dremel to
GFS. Eventually, Dremel on disaggregated storage outperformed
the local-disk based system both in terms of latency and through-
put for typical workloads.

In addition to liberating the data and reducing complexity, dis-
aggregated storage had several other significant advantages. First,
GFS was a fully-managed internal service, which improved the
SLOs and robustness of Dremel. Second, the initial step of loading
sharded tables from GFS onto Dremel server’s local disks was elim-
inated. Third, it became easier to onboard other teams to the service
since we did not need to resize our clusters in order to load their
data. Another notch of scalability and robustness was gained once
Google’s file system was migrated from the single-master model in
GFS to the distributed multi-master model in its successor, Colos-
sus [31, 34].

3.2 Disaggregated memory
Shortly after the publication of the original paper, Dremel added
support for distributed joins through a shuffle primitive. Inspired
by the MapReduce shuffle implementation [19], Dremel’s shuffle
utilized local RAM and disk to store sorted intermediate results.
However, the tight coupling between the compute nodes and the
intermediate shuffle storage proved to be a scalability bottleneck:

1. With such colocation, it is not possible to efficiently mitigate
the quadratic scaling characteristics of shuffle operations as
the number of data producers and consumers grew.

2. The coupling inherently led to resource fragmentation and
stranding and provides poor isolation. This became a ma-
jor bottleneck in scalability and multi-tenancy as the service
usage increased.

Continuing on the disaggregation path, we built a new disag-
gregated shuffle infrastructure using the Colossus distributed file
system in 2012. This implementation encountered all of the chal-
lenges described in [38, 47]. After exploring alternatives, including
a dedicated shuffle service, in 2014 we finally settled on the shuffle
infrastructure which supported completely in-memory query exe-
cution [4]. In the new shuffle implementation, RAM and disk re-
sources needed to store intermediate shuffle data were managed
separately in a distributed transient storage system (see Figure 2).

Upon deployment, the in-memory shuffle implementation im-
proved the Dremel query execution engine in several ways:

• Reduced the shuffle latency by an order of magnitude.

• Enabled an order of magnitude larger shuffles.

• Reduced the resource cost of the service by more than 20%.

The memory disaggregation in general, and the in-memory shuf-
fle primitive in particular, significantly impacted the architecture
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Figure 2: Disaggregated in-memory shuffle

of data analytics platforms such as Flume [12] and Google Cloud
Dataflow.9 Today, BigQuery continues to use the same disaggre-
gated memory shuffle system where the disaggregated memory ac-
counts for 80% of the total memory footprint of the service (see
Figure 1). The same shuffle layer implementation and infrastruc-
ture also powers Google Cloud Dataflow [30].

3.3 Observations
Disaggregation proved to be a major trend in data management, as
it decouples provisioning of different types of resources and en-
ables better cost-performance and elasticity. Several aspects of dis-
aggregation stand out:

• Economies of scale: The path of storage disaggregation went
from RAID, SAN, distributed file systems to warehouse-
scale computing [9].

• Universality: Storage disaggregation has been embraced by
analytical and transactional systems alike, including Span-
ner [17], AWS Aurora [44], Snowflake [18], and Azure SQL
Hyperscale [7]. Disaggregated flash is discussed in [10, 28].

• Higher-level APIs: Disaggregated resources are accessed via
APIs at ever higher levels of abstraction. Storage access
is far removed from the early block I/O APIs and includes
access control, encryption at rest,10 customer-managed en-
cryption keys, load balancing, and metadata services (e.g.,
see [39]). Some data access APIs have built-in support for
filtering and aggregation (see Section 6.1), which may be
pushed all the way down into hardware (e.g., as done in Or-
acle SPARC M7 [5]).

• Value-added repackaging: Raw resources are packaged as
services providing enhanced capabilities. Even if it is not
practical to disaggregate a raw resource such as RAM for
general-purpose use in a data management system, it may
be cost-effective to factor it out as a value-added service, as
exemplified by Dremel’s shuffle.

4. IN SITU DATA ANALYSIS
9https://cloud.google.com/dataflow

10https://cloud.google.com/bigquery/docs/encryption-at-rest

In situ data processing refers to accessing data in its original place,
without upfront data loading and transformation steps. In their pre-
scient 2005 paper [22], Jim Gray et al. outlined a vision for sci-
entific data management where a synthesis of databases and file
systems enables searching petabyte-scale datasets within seconds.
They saw a harbinger of this idea in the MapReduce approach pio-
neered by Google, and suggested that it would be generalized in the
next decade. An explicit and standard data access layer with precise
metadata was deemed a crucial ingredient for data independence.

Indeed, the data management community finds itself today in
the middle of a transition from classical data warehouses to a data-
lake-oriented architecture for analytics [1]. Three ingredients were
called out as central to this transition: (a) consuming data from a
variety of data sources, (b) eliminating traditional ETL-based data
ingestion from an OLTP system to a data warehouse, and (c) en-
abling a variety of compute engines to operate on the data. We
have observed each part of this transition in Dremel’s decade-long
history.

4.1 Dremel’s evolution to in situ analysis
Dremel’s initial design in 2006 was reminiscent of traditional
DBMSs: explicit data loading was required, and the data was
stored in a proprietary format, inaccessible to other tools. At the
time, many tools at Google, including MapReduce, adopted a com-
mon record-oriented format, which consisted of sharded files in a
distributed file system and a “schema” definition (Protocol Buffer
record descriptor [37]) stored in the source code repository.

As part of migrating Dremel to GFS, we “open-sourced” our
storage format within Google via a shared internal library. This
format had two distinguishing properties: it was columnar and self-
describing. Each file storing a data partition of a table also embed-
ded precise metadata, which included the schema and derived in-
formation, such as the value ranges of columns. A self-describing
storage format in GFS enabled interoperation between custom data
transformation tools and SQL-based analytics. MapReduce jobs
could run on columnar data, write out columnar results, and those
results could be immediately queried via Dremel. Users no longer
had to load data into their data warehouse. Any file they had in the
distributed file system could effectively be part of their queryable
data repository. The paradigms of MapReduce and parallel DBMSs
turned out to be friends, not foes [43].

Having all of Dremel’s data available in a shared distributed file
system and encoded using a standard, open-sourced format created
an environment in which many tools could develop and flourish.
Over the past decade, the details of a number of these systems have
been published, including Tenzing [16], PowerDrill [24], F1 [41,
40], and Procella [15]. All of these share data with Dremel in some
way, which could be seen as redundant and self-competitive be-
havior on Google’s part. However, the advances we have observed
from this friendly competition as well as from collaboration and
code sharing between the teams have far outweighed the costs of
redundant engineering work. We believe a similar environment for
innovation would have been impossible in the traditional world of
proprietary data formats and siloed storage.

Over time we evolved our in situ approach in two complementary
directions. First, we began adding file formats beyond our origi-
nal columnar format. These included record-based formats such as
Avro, CSV, and JSON. This expanded the range of data users could
query using Dremel at the cost of increased I/O latency due to the
need to read full records for most of these formats and the need
to convert data on the fly for processing. We discovered that users
were often willing to endure additional query latency to avoid the
cost of re-encoding their data.

https://cloud.google.com/dataflow
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The second direction was expanding in situ analysis through
federation. In some cases, including remote file systems such as
Google Cloud Storage11 and Google Drive,12 we read the files di-
rectly. In other cases, including F1, MySQL, and BigTable, we
read data through another engine’s query API. In addition to ex-
panding the universe of joinable data, federation allows Dremel to
take advantage of the unique strengths of these other systems. For
example, a lookup join which uses the row key in BigTable can
be executed much more efficiently by reading only a subset of the
rows rather than reading the entire table.

4.2 Drawbacks of in situ analysis
There were, however, important drawbacks to Dremel’s in situ ap-
proach. First, users do not always want to or have the capability to
manage their own data safely and securely. While this extra com-
plexity in data governance was acceptable to some degree inside
Google, it was not tolerable for many external customers. Second,
in situ analysis means there is no opportunity to either optimize
storage layout or compute statistics in the general case. In fact, a
large percentage of Dremel queries are run over data seen for the
first time. This makes many standard optimizations impossible. It
is also impractical to run DML updates and deletes or DDL schema
changes on standalone files.

These issues led to the creation of BigQuery Managed Storage13

for cloud users as well as other managed solutions inside Google.
We have observed that both managed and in situ data are expected
in a successful big-data analytical solution. Users will have some
data they self-manage in file systems, for various reasons, but that
burden of self-management should not be forced on users when un-
necessary or counter-productive. Complementary managed storage
systems can provide the best of both worlds, mitigating the draw-
backs encountered with in situ analysis.

Hybrid models that blend the features of in situ and managed
storage were explored in NoDB [6] and Delta Lake.14

5. SERVERLESS COMPUTING
Dremel is one of the pioneers in providing an elastic, multi-tenant,
and on-demand service, now widely referred to in the industry as
serverless. In this section, we discuss how Dremel took a different
approach from the industry, the core ideas that enabled the server-
less architecture, and eventually how the industry adopted those
ideas.

5.1 Serverless roots
Mostly following the pattern of database management systems,
data warehouses such as IBM Netezza, Teradata, and Oracle prod-
ucts were deployed on dedicated servers at the time when Dremel
was conceived. Big Data frameworks such as MapReduce and
Hadoop used a more flexible deployment pattern, taking advantage
of virtual machines and containers but still requiring single-tenant
resource provisioning, i.e., a job per user.

It was evident that supporting interactive, low-latency queries
and in situ analytics while scaling to thousands of internal users
at Google at a low cost would only be possible if the service was
multi-tenant and provided on-demand resource provisioning.

Initially, we took advantage of three core ideas to enable server-
less analytics:

11https://cloud.google.com/bigquery/external-data-cloud-storage
12https://cloud.google.com/bigquery/external-data-drive
13https://cloud.google.com/bigquery/docs/reference/storage
14https://github.com/delta-io/delta

1. Disaggregation: The disaggregation of compute, storage,
and memory allows on-demand scaling and sharing of com-
pute independently from storage. Consequently, it allows the
system to adapt to usage at a lower cost. As described in
Section 3, Dremel started by decoupling disk storage from
compute resources in 2009 and eventually added disaggre-
gated memory in 2014.

2. Fault Tolerance and Restartability: Dremel’s query execu-
tion was built based on the assumption that the underlying
compute resources may be slow or unavailable, making the
workers inherently unreliable. This assumption had strong
implications for the query runtime and dispatching logic:

• Each subtask within a query had to be deterministic
and repeatable such that in case of failure, only a small
fraction of the work needed to be restarted on another
worker.

• The query task dispatcher had to support dispatching
multiple copies of the same task to alleviate unrespon-
sive workers.

Consequently, these mechanisms enabled the scheduling
logic to easily adjust the amount of resources allocated to
a query by cancelling and rescheduling subtasks.

3. Virtual Scheduling Units: Instead of relying on specific ma-
chine types and shapes, Dremel scheduling logic was de-
signed to work with abstract units of compute and memory
called slots. This was a well-suited model for the container-
oriented Borg compute environment, which supported flex-
ible resource allocation shapes. These virtual schedul-
ing units allowed decoupling the scheduling and customer-
visible resource allocation from the container and machine
shapes and service deployment. Slots continue to be the core
customer-visible concept of resource management in Big-
Query.

These three ideas leveraged in the original Dremel paper became
building blocks in many serverless data analytics systems. Disag-
gregation has been broadly adopted by industry and academia. Vir-
tual resource units have been adopted by other providers such as
Snowflake [18]. In many domains, the industry has converged on
a data lake architecture, which uses elastic compute services to an-
alyze data in cloud storage “on-demand”. Additionally, many data
warehouse services such as Presto, AWS Athena, and Snowflake
have also adopted either on-demand analytics or automatic scaling
as a key enabler for serverless analytics, leading many enterprises
to adopt the cloud over on-premises systems.

5.2 Evolution of serverless architecture
Dremel continued to evolve its serverless capabilities, making them
one of the key characteristics of Google BigQuery today. Some
approaches in the original Dremel paper evolved into new ideas,
described below, that took the serverless approach to the next level.

Centralized Scheduling. Dremel switched to centralized
scheduling in 2012 which allowed more fine-grained resource al-
location and opened the possibility for reservations, i.e., allocating
a fraction of Dremel’s processing capacity for specific customers.
Centralized scheduling superseded the “dispatcher” from the
original paper, which was responsible for resource distribution
among queries in the intermediate servers (see Figure 3). The new
scheduler uses the entire cluster state to make scheduling decisions
which enables better utilization and isolation.

https://cloud.google.com/bigquery/external-data-cloud-storage
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Figure 3: System architecture and execution inside a server
node (Figure 7 in [32])

Shuffle Persistence Layer. Shuffle and distributed join func-
tionality were introduced after the publication of the 2010 paper, as
described in Section 3.2. After the initial shuffle implementation,
the architecture evolved to allow decoupling scheduling and exe-
cution of different stages of the query. Using the result of shuffle
as a checkpoint of the query execution state, the scheduler has the
flexibility to dynamically preempt workers, reducing resource allo-
cation to accommodate other workloads when compute resources
are constrained.

Flexible Execution DAGs. The original paper described the
system architecture shown in Figure 3. The fixed execution tree
worked well for aggregations, but as Dremel evolved, the fixed tree
was not ideal for more complex query plans. By migrating to the
centralized scheduling and the shuffle persistence layer, the archi-
tecture changed in the following ways:

• The query coordinator is the first node receiving the query.
It builds the query plan which could be a DAG of query exe-
cution trees (also known as stages), and then orchestrates the
query execution with workers given to it by the scheduler.

• Workers are allocated as a pool without predefined structure.
Once the coordinator decides on the shape of the execution
DAG, it sends a ready-to-execute local query execution plan
(tree) to the workers. Workers from the leaf stage read from
the storage layer and write to the shuffle persistence layer,
while workers from other stages read and write from/to the
shuffle persistence layer. Once the entire query is finished,
the final result is stored in the shuffle persistence layer, and
the query coordinator then sends it to the client.

Consider the example in Figure 4, which illustrates the execution
of a top-k query over a Wikipedia table. The query proceeds as
follows:

• Workers from stage 1 (leaf) read the data from distributed
storage, apply the filter, partially pre-aggregate data locally
and then shuffle the data by hash partitioning on the language
field.

• Since the data is shuffled by the aggregation key, the workers
from stage 2 can do the final GROUP BY aggregation, then
sort by a different key, truncate by the limit, and send the
result to the next stage.

• In stage 3 there is just one worker; it reads the input from the
shuffle persistence layer, does the final ordering and trunca-
tion, and writes results to the shuffle layer.

Stage 3: SORT, LIMITWorker

SELECT language, MAX(views) as views
FROM `wikipedia_benchmark.Wiki1B`
WHERE title LIKE "G%o%"
GROUP BY language
ORDER BY views DESC LIMIT 100

Shuffle

Stage 2: GROUP BY, SORT, LIMITWorker WorkerWorker Worker

Stage 1: Filter, partial GROUP BY
Worker Worker WorkerWorker

Distributed storage

Coordinator

Figure 4: Shuffle-based execution plan

• The query coordinator reads the final 100 records from the
shuffle persistence layer and sends them to the client.

Any Dremel query, such as the example presented above, can be
executed on any number of workers, ranging from one to tens of
thousands of workers. The shuffle persistence layer provides this
flexibility.

Dynamic Query Execution. There are multiple optimizations
that query engines can apply based on the shape of the data. For ex-
ample, consider choosing the join strategy, e.g., broadcast vs hash
join. Broadcast join does not need to shuffle data on the probe side
of the join so it can be considerably faster, but broadcast only works
if the build side is small enough to fit in memory.

Generally, it is difficult to obtain accurate cardinality estimates
during query planning; it is well-known that errors propagate ex-
ponentially through joins [27]. Dremel has chosen a path where
the query execution plan can dynamically change during runtime
based on the statistics collected during query execution. This ap-
proach became possible with the shuffle persistence layer and cen-
tralized query orchestration by the query coordinator. In the case
of broadcast-vs-hash join, Dremel will start with the hash join by
shuffling data on both sides, but if one side finishes fast and is be-
low a broadcast data size threshold, Dremel will cancel the second
shuffle and execute a broadcast join instead.

6. COLUMNAR STORAGE FOR NESTED
DATA

In the early 2000s, new application and data models emerged (of-
ten associated with the rise of Web 2.0), where instead of writing
data into normalized relational storage, applications would write
semistructured data with flexible schemas (e.g., logs). Many pro-
gramming frameworks facilitated the use of semistructured data.
XML was traditionally used for this purpose; JSON became pop-
ular due to its simplicity compared to XML. Google introduced
Protocol Buffers [37], Facebook came up with Thrift [42], and the
Hadoop community developed Avro.15

While the idea of columnar storage was well known, the Dremel
paper spearheaded the use of columnar storage for semistruc-
tured data. Google used protocol buffers extensively in all of its
applications—Search, GMail, Maps, YouTube, etc. Development
of many open source columnar formats for nested data has fol-
lowed: in 2013, Twitter and Cloudera announced the Parquet file
format16 citing the influence of the Dremel paper, Facebook and

15https://avro.apache.org
16https://parquet.apache.org

https://avro.apache.org
https://parquet.apache.org


DocId: 10
Name 
  Language 
    Code: 'en-us'
    Country: 'us'
  Language
    Code: 'en'
  Url: 'http://A'
Name
  Url: 'http://B'
Name
  Language
    Code: 'en-gb'
    Country: 'gb'

r1
message Document {
  required int64 DocId;
  repeated group Name {
    repeated group Language {
      required string Code;
      optional string Country;
    }
    optional string Url;
  }
}

DocId: 20
Name
  Url: 'http://C'

r2

Figure 5: Two sample nested records and their schema (based
on Figure 2 in [32])

value r d

10 0 0

20 0 0

DocId

value r d

http://A 0 2

http://B 1 2
NULL 1 1
http://C 0 2

Name.Url

Name.Language.Code

value r d

us 0 3

NULL 2 2

NULL 1 1

gb 1 3

NULL 0 1

Name.Language.Country

value r d

en-us 0 2

en 2 2

NULL 1 1

en-gb 1 2

NULL 0 1

Figure 6: Columnar representation of the data in Figure 5
showing repetition levels (r) and definition levels (d)

Hortonworks came up with ORC17, and in 2016 Apache Founda-
tion announced Apache Arrow.18

All these formats support nested and repeated data, but they do it
differently. The Dremel paper proposed the notion of repetition and
definition levels to track repeated and optional fields, respectively.
A detailed explanation of this encoding can be found in [33] but
briefly, repetition level specifies for repeated values whether each
ancestor record is appended into or starts a new value, and defi-
nition level specifies which ancestor records are absent when an
optional field is absent. Parquet adopted this encoding.

ORC took a different approach tracking the lengths of repeated
fields (i.e., number of occurrences within parent) and boolean at-
tributes indicating the presence of optional fields. Arrow uses a
similar approach to ORC but tracks repeated fields by their offsets
(i.e., cumulative lengths). Using offsets facilitates direct access to
array elements and makes sense for an in-memory format like Ar-
row, while storing lengths makes sense for an on-disk file format,
as it compresses better.

To compare these approaches, consider the example in Figure 5.
Encoding with repetition and definition levels is shown in Figure 6.
Name.Language.Country is encoded as follows: its maximum repe-
tition level is 2 because there are 2 repeated fields in its path, Name
and Language. Its maximum definition level is 3 because there

17https://orc.apache.org
18https://arrow.apache.org

value p

10 true

20 true

DocId

len

3

1

Name

value p

http://A true

http://B true
false

http://C true

Name.Url

len

2

0

1
0

Name.Language

value p

en-us true

en true

en-gb true

Name.Language.Code

value p

us true

false

gb true

Name.Language.Country

Figure 7: Columnar representation of the data in Figure 5
showing length (len) and presence (p)

Figure 8: Percentage difference between repetition/definition
and length/presence encodings. Higher bars correspond to
smaller files with length/presence encoding.

are 3 repeated or optional fields in its path, Name, Language, and
Country. Let us start with record r1. Repetition level is always 0 at
the beginning of the record. Definition level is 3, because all 3 parts
of the path are present in the first value ‘us’. As we move to the next
value, Country is now missing (depicted as NULL), but both Name
and Language are still defined (containing Code ‘en’), therefore
definition level becomes 2. Repetition level tells us which repeated
field in the path changed. It was Language (since Name remained
the same), the 2nd repeated field, therefore repetition level is 2.

The length and presence encoding is shown in Figure 7.
Name.Language lists how many times Language occurs in each
successive Name record, i.e., 2, 0, 1, and 0 times, respectively, with
a total of 3. Name.Language.Country contains the corresponding
Country values from these 3 records.

There are tradeoffs between these approaches. The main design
decision behind repetition and definition levels encoding was to en-
code all structure information within the column itself, so it can
be accessed without reading ancestor fields. Indeed, the non-leaf
nodes are not even explicitly stored. However, this scheme leads
to redundant data storage, since each child repeats the same infor-
mation about the structure of common ancestors. The deeper and
wider the structure of the message, the more redundancy is intro-
duced. Analyzing both encodings over 65 internal Google datasets
which featured deep and wide messages, the length/presence en-
coding consistently resulted in smaller file sizes, being on average
13% smaller than the repetition/definition level encoding (see Fig-
ure 8).

https://orc.apache.org
https://arrow.apache.org


Algorithms for processing analytical queries on top of these en-
codings are different. With repetition/definition levels it is suffi-
cient to only read the column being queried, as it has all required
information. In 2014, we published efficient algorithms [3] for
Compute, Filter and Aggregate that work with this encoding. With
length/presence encoding, it is also necessary to read all ances-
tors of the column. This incurs additional I/O, and while ancestor
columns usually are very small, they could require extra disk seeks.
Also, algorithms for detecting array boundaries require looking at
counts at multiple levels. Quantifying the tradeoffs between these
encodings is an area of future research.

In 2014, we began migration of the storage to an improved
columnar format, Capacitor [35]. It was built on the foundation
described in the original Dremel paper, and added many new fea-
tures. Some of those enhancements are described below.

6.1 Embedded evaluation
To make filtering as efficient as possible, we embedded it directly
into the Capacitor data access library. The library includes a mini
query processor which evaluates SQL predicates. This design
choice allowed us to have efficient filter support in all data man-
agement applications using Capacitor—not just Dremel but also
F1, Procella, Flume, MapReduce, and BigQuery’s Storage API.19

For example, the Storage API allows specifying SQL predicates as
strings as part of read options.

Capacitor uses a number of techniques to make filtering efficient:

• Partition and predicate pruning: Various statistics are main-
tained about the values in each column. They are used both
to eliminate partitions that are guaranteed to not contain any
matching rows, and to simplify the filter by removing tau-
tologies. For example, the predicate EXTRACT(YEAR FROM
date) = 2020 is first rewritten as date BETWEEN ‘2020-01-
01’ AND ‘2020-12-31’ and is used to eliminate all partitions
outside of this date range. A more complex example is ST

DISTANCE(geo, constant geo) < 100, returning only val-
ues which are within 100 meters of a given constant object.
In this case, more advanced statistics are used to compare S2
covering20 of constant geo and union of S2 coverings of all
values in the file.

• Vectorization: Columnar storage lends itself to columnar
block-oriented vectorized processing. Capacitor’s embedded
query evaluator uses most of the techniques described in [2].

• Skip-indexes: Filter predicates used in internal and exter-
nal BigQuery workloads tend to be very selective. Figure 9
shows that about 15% of queries return no data (have selec-
tivity 0), about 25% of queries return less than 0.01% of
the data, and about 50% of queries return less than 1% of
the data. High selectivity requires a fast implementation of
skipping to jump over the records where the predicate evalu-
ated to false. To do that, at write time Capacitor combines
column values into segments, which are compressed indi-
vidually. The column header contains an index with offsets
pointing to the beginning of each segment. When the filter
is very selective, Capacitor uses this index to skip segments
that have no hits, avoiding their decompression.

• Predicate reordering: While the optimal algorithm for pred-
icate reordering in a filter is known [25], it relies on the a pri-
ori knowledge of each predicate’s selectivity and cost, which

19https://cloud.google.com/bigquery/docs/reference/storage
20https://s2geometry.io/devguide/s2cell hierarchy.html

Figure 9: Distribution of filter selectivities in queries

are hard to estimate. Capacitor uses a number of heuristics to
make filter reordering decisions, which take into account dic-
tionary usage, unique value cardinality, NULL density, and
expression complexity. For example, consider a filter p(x)
AND q(y), where x has no dictionary encoding and many
unique values, while y has a dictionary and only few unique
values. In this case, it is better to evaluate predicate q(y) fol-
lowed by p(x), even if q(y) is a more complex expression
than p(x), since q(y) will only be evaluated over a small
number of dictionary values.

6.2 Row reordering
Capacitor uses several standard techniques to encode values, in-
cluding dictionary and run-length encodings (RLE). RLE in partic-
ular is very sensitive to row ordering. Usually, row order in the table
does not have significance, so Capacitor is free to permute rows to
improve RLE effectiveness. Let us illustrate using an example of
three columns in Figure 10. Encoding this data with RLE using the
existing order would be suboptimal since all run lengths would be
1, resulting in 21 runs. However, if the input rows are reshuffled
as shown in Figure 10, we obtain a total of 9 runs. This permuta-
tion is optimal for the given input and produces better results than
lexicographical sort by any combination of columns.

Unfortunately, finding the optimal solution is an NP-complete
problem [29], i.e., impractical even for a modest number of input
rows, let alone for billions of rows. To further complicate matters,
not all columns are born equal: short RLE runs give more benefit
for long strings than longer runs on small integer columns. Finally,
we must take into account actual usage: some columns are more
likely to be selected in queries than others, and some columns are
more likely to be used as filters in WHERE clauses. Capacitor’s
row reordering algorithm uses sampling and heuristics to build an
approximate model. Its details are beyond the scope of this paper.

Row reordering works surprisingly well in practice. Figure 11
shows size differences when enabling reordering on 40 internal
Google datasets. Overall saving was 17%, with some datasets
reaching up to 40% and one up to 75%.

6.3 More complex schemas
Protocol buffers allow defining recursive message schemas. This
is useful to model many common data structures. For example, a
tree can be defined as

https://cloud.google.com/bigquery/docs/reference/storage
https://s2geometry.io/devguide/s2cell_hierarchy.html


State Quarter Item

WA Q2 Bread

OR Q1 Eggs

WA Q2 Milk

OR Q1 Bread

CA Q2 Eggs

WA Q1 Bread

CA Q2 Milk

State Quarter Item

OR Q1 Eggs

OR Q1 Bread

WA Q1 Bread

WA Q2 Bread

WA Q2 Milk

CA Q2 Milk

CA Q2 Eggs

Quarter

3, Q1

4, Q2

State

2, OR

3, WA

2, CA

Item

1, Eggs

3, Bread

2, Milk

1, Eggs

Original, no RLE runs Reordered Reordered, RLE encoded

Figure 10: Example of row reordering

Figure 11: Impact of row reordering for diverse datasets

message Node {
optional Payload value;
repeated Node nodes;

}

One challenge is that the maximal recursion depth used in a given
dataset is not known ahead of time. Dremel did not originally sup-
port recursive messages of arbitrary depth. Capacitor added such
support.

Another new challenge is supporting messages without a strict
schema. This is typical with JSON messages or with XML with-
out XSD. Protocol Buffers allow it through extensions21 and using
proto3 with ‘Any’ message type.22 The main challenge is not just
that new columns can appear in any row, but also that a column with
the same name can have a varying type from message to message.

Capacitor has only partially solved the problems outlined in this
section. Efficient storage and access to heterogeneous columnar
data remains an area of active research.

7. INTERACTIVE QUERY LATENCY
OVER BIG DATA

The design principles introduced earlier (disaggregation, in situ
processing, and serverless) tend to be counterproductive to building
a system for interactive query latency. Conventional wisdom has it
that colocating processing with data reduces data access latency,
which goes counter to disaggregation. Optimizing the storage lay-
out of the data runs counter to in situ processing. Dedicated ma-
chines should be more performant than shared serverless machine
resources.

21https://developers.google.com/protocol-buffers/docs/proto#
extensions

22https://developers.google.com/protocol-buffers/docs/proto3#any

In this section, we discuss some of the latency-reducing tech-
niques implemented in Dremel to achieve interactive query pro-
cessing speeds, beyond using columnar storage.

Stand-by server pool. With a distributed SQL execution en-
gine, it is possible to bring up a system and have it ready to process
queries as soon as they are submitted. This eliminates the machine
allocation, binary copying, and binary startup latencies that existed
when users wrote their own MapReduce or Sawzall jobs.

Speculative execution. When a query is processed by hun-
dreds of machines, the slowest worker can be an order of magnitude
slower than the average. Without any remediation, the end effect
is that the user’s end-to-end query latency is an order of magni-
tude higher. To address that problem, Dremel breaks the query into
thousands of small tasks, where each worker can pick up tasks as
they are completed. In this way, slow machines process fewer tasks
and fast machines process more tasks. Moreover, to fight long tail
latency at the end of query execution, Dremel can issue duplicate
tasks for stragglers, bringing the total latency down. Thus perfor-
mance becomes a function of total available resources and not of
the slowest component.

Multi-level execution trees. Being able to use hundreds of
machines to process a single query in a few seconds requires coor-
dination. Dremel solved this using a tree architecture with a root
server on top of intermediate servers on top of leaf servers. Execu-
tion flows from the root to the leaves and back (see Figure 3). This
model was originally borrowed from Google’s Search. It worked
well for parallelizing both the dispatching of requests and the as-
sembly of query results.

Column-oriented schema representation. Dremel’s stor-
age format was designed to be self-describing, i.e., data partitions
store embedded schemas. The schemas used at Google often con-
tain thousands of fields. Parsing a complete schema might take
longer than reading and processing the data columns from a parti-
tion. To address that, Dremel’s internal schema representation was
itself stored in a columnar format.

Balancing CPU and IO with lightweight compression.
Using a columnar format makes compression more effective be-
cause similar values (all values of a single column) are stored se-
quentially. This means fewer bytes have to be read from the storage
layer, which in turn reduces query latency. On the other hand, de-
compressing data requires CPU cycles, so the more involved the
compression, the higher the CPU cost. The key is to pick a com-
pression scheme that balances data size reduction with CPU de-
compression cost so that neither CPU nor IO becomes the bottle-
neck.

Approximate results. Many analyses do not require 100% ac-
curacy, so providing approximation algorithms for handling top-k
and count-distinct can reduce latency. Dremel uses one-pass algo-
rithms that work well with the multi-level execution tree architec-
ture (e.g., [14, 26]). In addition Dremel allows users to specify what
percentage of data to process before returning the result. Due to the
straggler effect, returning after 98% of the data has been processed
has been shown to improve latency by 2-3× (see Figure 12).

Query latency tiers. To achieve high utilization in a shared
server pool, Dremel had to natively support multiple users issu-
ing multiple queries simultaneously. With a wide range of data
sizes, some queries can be sub-second while others take tens of
seconds. To ensure that “small” queries remain fast and do not get
blocked by users with “large” queries, Dremel used a dispatcher

https://developers.google.com/protocol-buffers/docs/proto#extensions
https://developers.google.com/protocol-buffers/docs/proto#extensions
https://developers.google.com/protocol-buffers/docs/proto3#any
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Figure 12: Stragglers (Figure 14 in [32])

on the intermediate servers to schedule resources fairly. The dis-
patcher needed to be able to preempt the processing of parts of a
query to allow a new user’s query to be processed to avoid the situ-
ation where previous users are monopolizing resources by running
hundreds of concurrent queries. Even queries from a single user
may require different priorities, such as queries backing interactive
dashboards versus queries performing daily ETL pipeline jobs.

Reuse of file operations. Processing hundreds of thousands of
files for a query in a few seconds places an enormous load on the
distributed file system. This can actually become the bottleneck
for achieving low latency as thousands of Dremel workers send
requests to the file system master(s) for metadata and to the chunk
servers for open and read operations. Dremel solved this with a
few techniques. The most important one was to reuse metadata
obtained from the file system by fetching it in a batch at the root
server and passing it through the execution tree to the leaf servers
for data reads. Another technique was to create larger files so the
same table can be represented by fewer files, resulting in reduced
file metadata operations.

Guaranteed capacity. The concept of reservations introduced
with the centralized scheduler in Section 5 also helped with latency.
For example, a customer could reserve some capacity and use that
capacity only for latency-sensitive workloads. When guaranteed
capacity is underutilized, these resources are available for others to
use, but when requested those resources are immediately granted to
the customer. Dremel workers use a custom thread scheduler which
instantly reallocates CPUs to reserved workloads and pauses non-
reserved workloads.

Adaptive query scaling. Flexible execution DAGs described
in Section 5 were an important part of improving latency given
growing, diverse workloads. The execution DAG can be built indi-
vidually for each query based on the query plan. Consider a global
aggregation, e.g., COUNT or SUM: with a fixed aggregation tree,
such a query had to do multiple hops through intermediate levels,
but with flexible DAGs there is no need to have more than two ag-
gregation levels—the leaf level aggregates the input and produces
one record per file and the top level does the final aggregation. In
contrast, consider a top-k query, i.e., ORDER BY ... LIMIT. Each
worker in the leaf stage produces many records. Doing the final ag-
gregation on the single node with a large number of inputs is going
to be a bottleneck. Therefore, to process this query Dremel dynam-
ically builds an aggregation tree whose depth depends on the size
of the input.

8. CONCLUSIONS
Looking back over the last decade, we are proud of how much the

original Dremel paper got right and humbled by the things we got
wrong.

Among the things the original paper got right, architectural
choices including disaggregated compute and storage, on-demand
serverless execution, and columnar storage for nested, repeated and
semistructured data have all become standard industry best prac-
tices. In situ data analysis has been recognized as essential by the
Data Lakes movement, and the wisdom of analyzing data in place
whenever possible is now taken for granted. There has been a resur-
gence in the use of SQL for Big Data applications, reversing the
trend toward exclusively NoSQL tools. And, of course, the pos-
sibility of achieving interactive speeds over very large datasets is
now not only accepted, it is expected.

Things we got wrong or missed in the original paper include the
need for a reliable and fast shuffle layer rather than a static aggrega-
tion tree, the importance of providing a managed storage option in
addition to in situ analysis, and the need for rigorous SQL language
design that honors existing standards and expected patterns.

On balance, we feel the Dremel paper has been an important
contribution to our industry. We are pleased that it has stood the
test of time.
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