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Abstract
Clos topologies have been widely adopted for large-scale
data center networks (DCNs), but it has been difficult to
support incremental expansions for Clos DCNs. Some prior
work has claimed that the structure of Clos topologies hin-
ders incremental expansion.

We demonstrate that it is indeed possible to design ex-
pandable Clos DCNs, and to expand them while they are
carrying live traffic, without incurring packet loss. We use
a layer of patch panels between blocks of switches in a Clos
DCN, which makes physical rewiring feasible, and we de-
scribe how to use integer linear programming (ILP) to min-
imize the number of patch-panel connections that must be
changed, which makes expansions faster and cheaper. We
also describe a block-aggregation technique that makes our
ILP approach scalable. We tested our “minimal-rewiring”
solver on two kinds of fine-grained expansions using 2250
synthetic DCN topologies, and found that the solver can han-
dle 99% of these cases while changing under 25% of the con-
nections. Compared to prior approaches, this solver (on av-
erage) reduces the average number of “stages” per expansion
from 4 to 1.29, and reduces the number of wires changed by
an order of magnitude or more – a significant improvement
to our operational costs, and to our exposure (during expan-
sions) to capacity-reducing faults.

1 Introduction
Large-scale Cloud and Internet-application providers are
building many data centers, which can contain tens of thou-
sands of machines, consuming tens of MW. These need
large-scale high-speed data-center networks. Historically,
these networks were built all at once, at the time of clus-
ter commissioning. However, these data centers are filled
with servers and storage gradually, often taking 1-2 years to
reach capacity. This mismatch leaves substantial capacity
idle, waiting for workloads to arrive. Idle capacity not only
costs money, but also lengthens the technology-refresh cy-
cle, which can decrease usable compute capacity – the latest
servers are hobbled if they must use old network technol-

ogy that lacks modern congestion-control schemes, speed in-
creases, and latency improvements. Hence, we usually start
by building a moderate-scale network, and then continually
expand the network just ahead of server arrival – while the
network is carrying live traffic. Live incremental expansion
can save millions of dollars in network costs while (more im-
portantly) providing the best possible support for compute
and storage infrastructure. However, a naive approach can
itself create large, unnecessary costs.

Clos topologies are the de-facto standard DCN architec-
ture because they support large-scale DCNs from commod-
ity switches [2, 9, 15, 18]. At Google, our Jupiter DCNs are
Clos topologies. Different variants of Clos DCN structures,
such as Fat Tree [1], VL2 [18], F10 [29], Aspen Tree [35],
Rotation Striping [26], etc. have been proposed. However,
none of these topologies supports fine-grained incremental
expansion. First, some Clos topologies (e.g., Fat Tree) can
only be built at certain sizes, which fundamentally prevents
incremental expansion. Second, even though some of the
Clos topologies (e.g., Rotation Striping) can be constructed
at arbitrary sizes, incremental expansion can be expensive,
because it requires changing a large fraction of the wiring
(see §5.3). In fact, [33] has claimed that the structure of Clos
topologies hinders fine-grained incremental expansion; this
was an explicit motivation for less-structured topologies that
can also exploit commodity switches, such as Jellyfish [33]
and Random Folded Clos [7]. In this paper, we show that
fine-grained incremental expansion of Clos DCNs is, in fact,
feasible, with a novel topology-design methodology.

We want to expand a network live: without taking it out of
service, which would strand compute and storage capacity
because those machines would not be usable during expan-
sion, and which would also require us to stop or migrate the
applications using that network – a disruptive and expensive
process. Live expansion requires maintaining sufficient net-
work throughput during the entire course of a live expansion;
to avoid congestion, we must therefore do each expansion in
multiple automated stages, each of which only disconnects
and adds a limited subset of the network elements. We would



also like to complete each stage as quickly as possible, since
rewiring does reduce our spare capacity, and thus exposes us
to an increased risk of simultaneous failures.

Over the course of a multi-stage expansion, we may need
to rewire many links. If we were to directly connect links be-
tween switches, the resulting manual labor for moving long
wires would be slow, expensive, and error-prone. Instead,
we introduce a patch-panel layer in our Clos DCNs (see
Fig. 1). These DCNs are three-tier Clos topologies, with
tier-1 top-of-rack (ToR) switches connected to tier-2 server
blocks, each of which connects to a set of tier-3 spine blocks.
By connecting all the server blocks and all the spine blocks
through a group of patch-panels, a DCN topology can thus
be created and modified by simply moving fiber jumpers on
the back side of the patch panels. Each series of rewiring
steps can hence be done in proximity to a single patch panel,
although an entire stage may require touching several panels.

Our scale has grown to the point where a simple version
of this patch-panel-based expansion technique is too slow
to support the rate at which we must execute expansions.
Therefore, we needed to minimize the number of rewirings
per expansion, while maintaining bandwidth guarantees.

The primary contribution of this paper is a minimal-
rewiring solver for Clos DCN topology design. In the lit-
erature, most Clos DCN topologies are designed purely to
optimize cost and/or performance at a single chosen size
[1, 18, 26, 29, 35]. In contrast, our solver explicitly consid-
ers the pre-existing topology when designing a larger one.
Our solver uses Integer Linear Programming (ILP) to di-
rectly minimize the total number of rewirings. By enforcing
a number of balance-related constraints, the resulting topol-
ogy is also guaranteed to have high capacity and high failure
resiliency. With minimal rewiring, a DCN expansion can be
done in fewer stages, while still maintaining high residual
bandwidth during expansions.

Because we build each DCN incrementally over a period
of years, we need to incorporate new technologies incremen-
tally via expansions, such as higher-radix switches or faster
links. Our ILP-based formulation incorporates various het-
erogeneities, including different physical structures, switch
radices, port speeds, etc., inside a single DCN.

ILP is NP-hard in general, and does not scale well for
large-scale DCNs. It may take hundreds of thousands of
integer decision variables to formulate a large-scale DCN.
Even the most advanced commercial solver, Gurobi [21],
might run for days without computing a solution. We tested a
simple version of our ILP-based solver on 4500 synthesized
DCN configurations, and found that the solver failed to solve
68% of the configurations within a 3-hour limit. (Longer
timeouts yield little improvement.)

To make our solver scale, we developed a block-
aggregation technique to reduce the number of decision vari-
ables in the ILP formulation. Block aggregation exploits var-
ious homogeneities in a DCN, and aggregates decision vari-

ables whenever possible. We have a proof that the aggre-
gated decision variables can be decomposed in a later step
(see Appendices) . Our block-aggregation technique can use
different aggregation strategies. With the fastest strategy, all
4500 synthesized DCN configurations can be solved within
10 seconds.

We measure the quality of our solutions in terms of a
rewiring ratio, the fraction of wires between server blocks
and spine blocks in the pre-existing topology that must be
disconnected during an expansion. When we use block ag-
gregation, we face a tradeoff: aggregation improves run-
time scalability, but sacrifices rewiring optimality. However,
we cannot predict the aggregation strategy that will produce
the best (lowest) rewiring ratio subject to a chosen dead-
line. Therefore, our parallel solver runs multiple minimal-
rewiring solvers with different aggregation strategies at the
same time, and picks the solution with the lowest rewiring
ratio. This allows us to solve about 99% of the synthe-
sized DCN configurations with a rewiring ratio under 0.25;
the median ratio is under 0.05. In turn, these low rewiring
ratios allow us to significantly accelerate the entire expan-
sion pipeline. For example, under a constraint that preserves
70% of the pre-expansion bandwidth during expansion, our
minimal-rewiring solver reduces the average number of ex-
pansion stages required from 4 to 1.29.

2 Prior Work on Expansions
Prior work has described DCN designs that support incre-
mental expansion, and techniques for conducting expan-
sions. Our work focuses on Clos topologies, the de-facto
standard for large-scale DCNs; most prior work on expan-
sions has used non-Clos designs.

DCell [19] and BCube [8] are built using iterative struc-
tures. As a result, they can only supports expansions at a very
coarse granularity, which could lead to substantial stranded
DCN capacity after expansion. Similar iteratively-designed
DCN structures are also proposed in [20, 27, 28].

JellyFish [33], Space Shuffle [36], Scafida [22], and Ex-
pander [34, 13] were designed to support fine-grained incre-
mental expansion using random-graph-based DCN topolo-
gies. However, these topologies have not been widely
adopted for industrial-scale data centers, possibly due to the
increased complexity of cabling and routing and congestion
control when deploying large-scale DCNs.

Random Folded Clos [7] is a variant of Clos that sup-
ports fine-grained incremental expansion. It maintains a lay-
ered structure, but builds inter-layer links based on random
graphs. However, Random Folded Clos is only designed for
homogeneous DCNs, where all blocks are of the same size
and the same port speed. Further, Random Folded Clos is
not non-blocking, with reduced capacity when compared to
Fat Trees. In contrast, our minimal-rewiring solver can be
applied to heterogeneous DCNs, and its topology solution
preserves the non-blocking property of Clos topologies.
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Figure 1: Clos topology with a patch-panel layer, colored to indicate an example 4-stage expansion

Similar to our minimal-rewiring DCN topology solver,
optimization-based approaches were also adopted in
LEGUP [12] and REWIRE [11]. However, neither paper
looked at the topology-design problem in the presence of a
patch-panel layer, and could have daunting cabling complex-
ity. Further, LEGUP uses a branch-and-bound algorithm [4],
and REWIRE uses simulated annealing [31] to search for the
optimal topology. Both algorithms scale poorly, as their con-
vergence time grows exponentially with the problem size.

Condor [5] allowed designers to express goals for DCN
topologies via a constraint-based language, and used a con-
straint solver to generate topologies. Condor addressed the
challenge of multi-phase expansions, but their approach was
unable to solve expansions for many arbitrary configurations
of Clos networks due to computational complexity.

3 Overview of Clos-Based DCN Topology
The Clos topology was initially designed for telephone net-
works [10]. Years later, it was proposed for DCNs [1]
and subsequently became the de-facto standard for large-
scale DCNs, at Google [2], Facebook [15], Cisco [9], Mi-
crosoft [18], etc.. There are many advantages to Clos net-
works. First, Clos networks are non-blocking, and thus have
high throughput. Second, Clos networks can be built using
identical and inexpensive commodity switches, and thus are
cost-effective. Third, Clos networks have many of redundant
paths for each source-destination pair, and thus are highly
failure-resilient.

Clos-based data centers exhibit a layered architecture (see
Fig. 1). The lower layer contains a number of server
blocks1.The upper layer contains a number of spine blocks,
used to forward traffic between server blocks. A DCN topol-
ogy interconnects each server block to each spine block. Be-
cause we want to support technology evolution within a sin-
gle network, each of the server blocks could have a different
number of spine-facing uplinks, a different uplink rate, etc2.

Connecting server blocks and spine blocks by direct
wires3 is highly inefficient. First,a large-scale data center

1“Server blocks” are also called “pods” [30], or “edge aggregation
blocks” [2].

2Fig. 1 shows three server blocks with different uplink configurations.
3We use the term “wires” to loosely refer to either fiber or copper links.

typically has tens of thousands of DCN links. Second, the
server blocks and the spine blocks of a data center may be
deployed at different locations on a data center floor, due to
space constraints, so some direct links would have to run a
long way across the data center. Third, moving, adding, or
removing a long link during an expansion requires signifi-
cant human labor, creates a risk of error, and because the
new links might have dramatically different lengths requires
a large inventory of cables of various lengths.

To overcome these difficulties, we introduce a patch
panel [23, 32] layer between server blocks and spine blocks
(Fig. 1). Patch panels are much cheaper than other DCN
components (e.g., switches, optical transceivers, long-reach
fibers). All the interconnecting ports of the server and spine
blocks can be connected to the front side of the patch pan-
els via fiber bundles, and all the connecting links can be es-
tablished or changed using fiber jumpers on the back side4.
These patch panels are co-located. As a result, a DCN topol-
ogy can be wired and modified without walking around the
data center floor or requiring the addition or removal of ex-
isting fiber. Also, as discussed in [2], deploying fibers in
bundles greatly reduces cost and complexity; using patch
panels means we can deploy bundles once, without having
to change them during an expansion. This patch-panel layer
makes it much easier for us to support rapid expansions with-
out excessive capacity reduction.

Patch panels allow us to divide a DCN topology into two
layers, physical and logical. As shown in Fig. 1, each server
and spine block is connected to the patch-panel layer; we
call this the physical topology. When a new block is first
deployed, we deploy its corresponding physical topology.
Changing physical links is not easy, as it involves moving
fiber bundles across different patch panels. Hence, in this pa-
per, readers can view physical links as fixed once deployed.

Logical topology defines how server blocks connect to
spine blocks, abstracting out the patch-panel layer. All DCN
topologies discussed in literatures refer to the logical topol-
ogy. Many DCN performance metrics have been defined in

4The inset photo in Fig. 1 depicts how we use these jumpers. The yellow
line on the right-most patch panel corresponds to the yellow jumper in the
inset, which connects one server-block link to one spine-block link.
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terms of logical topologies, including network bandwidth,
failure resiliency, incremental expandability, etc. However,
except for Condor [5], no prior work has studied the logical-
topology design problem in presence of patch panels. As dis-
cussed in §5.2.1, in addition to optimizing the performance
metrics listed above, we also need to enforce additional phys-
ical constraints, so that the resulting logical topology is com-
patible with the underlying physical topology.

3.1 Considerations for Clos expansions
During an expansion, the existing physical topology remains
unchanged, and we only add new bundles of physical links
for the newly added/upgraded server/spine blocks. Note that
adding new physical links does not impact any ongoing traf-
fic. In contrast, some of the links in the existing logical topol-
ogy, which could be carrying significant traffic, will have to
change, so we must ensure there is no traffic loss caused by
changes to the logical topology.

As shown in Fig. 2 (a), we could add a large amount of ca-
pacity to a data center during each expansion, which would
allow us to do expansions infrequently. However, this ex-
pansion strategy would lead to much more stranded network
capacity – capacity installed but not usable – as the traffic
demand could be far less than the capacity provided. By do-
ing fine-grained expansions, we reduce the mean amount of
stranded capacity (see Fig. 2 (b)).
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Figure 2: DCN stranded capacity.

4 Patch-Panel Based Expansion Pipeline
We support two types of expansions, at the granularity of a
server block (Fig. 3). The first type adds a new server block,
to allow more servers to be added to an existing data center.
The second type increases the uplink count (“radix”) of an
existing server block. Typically, the uplinks of a server block
are not initially fully populated with optical transceivers, be-
cause transceivers are expensive and a new server block has
a low bandwidth requirement (as not all of its servers are
connected). As a block’s bandwidth requirement increases,
we need to populate more uplinks. Note that as we ex-
pand the server-block layer, additional spine blocks will also
be needed, so expansions generally involve adding server
blocks and spine blocks at the same time.

Fig. 4 depicts our pipeline for updating a logical topology
during a live expansion. It guarantees that:

Server Block 1 Server Block 2

Patch Panel 1 Patch Panel 2

Server Block 3

Spine Block 1 Spine Block 2 Spine Block 3

(a) Add a third server block

Server Block 1 Server Block 2

Patch Panel 1 Patch Panel 2

Spine Block 1 Spine Block 2 Spine Block 3

(b) Radix upgrade of a server block

Figure 3: Data center expansion types.
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Figure 4: DCN expansion pipeline.

• No traffic loss due to routing packets into “black holes.”
• All wiring changes are made correctly.
• No congestion due to the temporary capacity reduction.

To avoid black holes when changing a set of logical links,
we must redirect traffic on these links to other paths. We
instruct our SDN-based control plane to “drain” these links.
After we verify that there is no longer traffic on the target
drained links, we can proceed to rewire the links.

Rewiring links via patch-panel changes is the most labor-
intensive and error-prone step. Typically, thousands of links
need to be rewired during one expansion, creating the possi-
bility of multiple physical mistakes during the rewiring pro-
cess. To check for errors, we perform a cable audit. In cable
audit, we use the Link Layer Discovery Protocol to construct
a post-wiring topology, and then cross-validate this against
the target logical topology. We also run a bit-error-rate test
(BERT) for all the new links, to detect links with issues. This
audit results in automated tickets to repair faulty links, fol-
lowed by a repeat of the audit.

During DCN expansion, we must drain some fraction of
the logical links. While Clos networks are resilient to some
missing links, draining too many links simultaneously could
result in dropping the network’s available capacity below
traffic demand. We therefore set a residual-capacity thresh-
old, based on measured demand plus some headroom. We
then divide an expansion into stages such that, during each
stage, the residual capacity remains above this threshold. In
our original approach, we partitioned the set of patch pan-
els into C groups (as illustrated by different colors in Fig.
1), and only rewired links in one group of patch panels per
stage. Then, at each stage, we would still have approximately
1−1/C of the pre-expansion capacity available.

Note that the expansion pipeline migrates the network, in
stages, from an existing (old) topology to some new logi-
cal topology that connects the new blocks to the existing
ones, subject to a set of constraints on the logical connec-
tivity (§5.2.1 formalizes those constraints). However, there
are many ways to construct a logical topology that meets
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our constraints, and our original, simple solution to these
constraints typically required a lot of rewiring for an expan-
sion. This, in turn, forced us to divide expansions into C
stages, to ensure that we preserved at least 1− 1/C of the
pre-expansion capacity.

As a result, these expansions took a long time, especially if
the pre-expansion network was highly utilized. In our expe-
rience, each stage takes considerable time, including drain-
ing, rewiring, cable auditing, BERTing, and undraining. If
we were to expand a network with a requirement to preserve
90% residual capacity, at least 10 stages would be needed5.

The root cause of the length of our original expansion
pipeline is that it does not attempt to optimize the differ-
ence (in terms of wiring changes) between pre-expansion
and post-expansion topologies. If we were able to minimize
this difference, we could finish an expansion in fewer stages.
This is related to the “incremental expansibility” property
of a DCN topology. This property is easy to achieve for
random-graph topologies such as Jellyfish [33]. However,
for Clos networks, none of the existing topology solutions
exhibits this property. This motivated us to look for a better
approach, which we describe in the rest of this paper.

5 Minimal Rewiring for DCN Expansion
In this section, we describe a new “minimal rewiring”
topology-design methodology for Clos networks, which not
only achieves high network capacity and failure resiliency,
but also minimizes rewiring for expansions. Our approach
relies on Integer Linear Programming (ILP) to compute a
logical topology. Our results compare well to existing Clos
topology solutions [2, 9, 18, 26].

While we initially considered an ILP formulation at the
granularity of switch and patch-panel ports, the resulting
scale made solving infeasible. Instead, we use multiple
phases, first solving a block-level ILP formulation (§5.2) and
then performing a straightforward mapping onto a port-level
solution (§5.4).

5.1 Definitions and notations
To rigorously formulate the minimal-rewiring topology-
design problem, we introduce the following definitions and
mathematical notations.

Server Block: We use a server block as a unit of deploying
network-switching capacity. On the order of 1000 servers
can be connected to a server block via ToR switches. To
avoid a single point of failure, we further divide a server
block into independent middle blocks, typically four 6 (see
Fig. 1); each middle block is controlled by a different rout-
ing controller. The uplinks of each ToR switch are evenly
spread among the middle blocks in its server block. Even

5In fact, since failed links and inexact load balance can cause topology
imperfections, more than 10 stages would be required to ensure 90% resid-
ual capacity.

6Our results hold for any number of middle blocks.

Table 1: Notations used in this paper

En, Sm, Ok Server block n, spine block m, patch panel k
Et

n Middle block t in server block n
Gk(Et

n) Physical link-count for Et
n via patch panel k

Gk(Sm) Physical link-count for Sm via patch panel k
bk(Et

n,Sm) Reference logical-topology link-count between
Et

n and Sm via patch panel Ok
dk(Et

n,Sm) Desired logical-topology link-count between Et
n

and Sm via patch panel Ok
pn,m Mean number of links between a server block

and a spine block
qt

n,m Mean number of links between a middle block
and a spine block

ng Server block group index; or a set containing all
the server block indices in the ng-th group

mg Spine block group index; or a set containing all
the spine block indices in the mg-th group

kg Patch panel group index; or a set containing all
the patch panel indices in the kg-th group

Eng , Smg , Okg Server block group ng, spine block group mg,
patch panel group kg

Et
ng

All the t-th middle blocks in Eng

bkg(E
t
ng
,Smg) Reference logical-topology link-count between

Et
ng

and Smg via patch panel group Okg

dkg(E
t
ng
,Smg) Desired logical-topology link-count between

Et
ng

and Smg via patch panel group Okg

x+ max{0,x}
if one middle block is down, servers in the server block are
still accessible via its other middle blocks. We assume that
a DCN has N server blocks, each of which is represented by
En,n= 1,2, ...,N. We denote the middle blocks within server
block En by Et

n, t = 1,2,3,4.

Spine Block: Spine blocks forward traffic among different
server blocks. We use Sm,m = 1,2, ...,M to represent a spine
block, where M is the total number of spine blocks.

Physical Topology: Assume there are K patch panels, each
of which is represented by Ok,k = 1,2, ...,K. We use Gk(Et

n)
to represent the total number of physical links between the
middle block Et

n and the patch panel Ok. Then, the phys-
ical topology of server block En can be characterized by
{Gk(Et

n),k = 1, ...,K, t = 1,2,3,4}7.
Similarly, we use Gk(Sm) to represent the total number

of physical links between spine block Sm and patch panel
Ok. Then, the physical topology of spine block Sm can be
characterized by {Gk(Sm),k = 1, ...,K}.

Note that our networks are heterogeneous: different server
blocks and spine blocks could have different physical topolo-
gies (see Table 2 for details).

Reference Topology: Our goal is to minimize rewiring
with respect to the old logical topology, called the reference

7Here we use the term “topology” somewhat loosely to describe the
cardinality of the connectivity between a block and a set of patch panels,
rather than to describe either the detailed inter-block topology, or the inter-
nal topology within a block composed of multiple commodity switches.
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topology. We let bk(Et
n,Sm) be the total number of reference-

topology links between middle block Et
n and spine block Sm

that connect via patch panel Ok. Since the new server and
spine blocks do not exist in the reference topology, for these
blocks we simply set bk(Et

n,Sm) = 0.
Logical Topology: Our objective is to compute a new
logical topology for the given physical topology. We use
dk(Et

n,Sm) to represent the total number of logical links be-
tween middle block Et

n and spine block Sm that connect
via patch panel Ok. As we will show shortly, as long as
{dk(Et

n,Sm)}k,m,n,t satisfies a set of physical topology con-
straints, a polynomial-time algorithm can be used to map
{dk(Et

n,Sm)}k,m,n,t to point-to-point configurations in the
patch panels. Hence, the objective of the block-level ILP
formulation is to compute {dk(Et

n,Sm)}k,m,n,t .

5.2 ILP Formulation of Minimal Rewiring
Our ILP formulation consists of a set of constraints (§5.2.1)
and an objective (§5.2.2).

5.2.1 Constraints for Logical Topology

Recall that our objective is to compute {dk(Et
n,Sm)}k,m,n,t .

We must impose a set of constraints on the solution, not only
to ensure the compatibility of the logical topology with the
underlying physical topology, but also to guarantee both high
throughput and high failure resiliency.
Physical Topology Constraints: Recall that dk(Et

n,Sm) is
the total number of logical links between middle block Et

n
and spine block Sm connected via patch panel Ok. Clearly,
it must be no larger than the total number of physical links
Gk(Et

n) between Ok and Et
n, and the total number of physical

links Gk(Sm) between Ok and Sm, i.e.,
0≤ dk(Et

n,Sm)≤min{Gk(Et
n),Gk(Sm)}. (1)

To ensure high uplink bandwidth for all the server blocks,
we require that each “populated” server block port8 must
connect to a spine block port. This is guaranteed by

M

∑
m=1

dk(Et
n,Sm) = Gk(Et

n). (2)

Note that constraint (2) requires that the total number of
spine block ports must be no smaller than the total number
of server block ports on each patch panel. Hence, it is pos-
sible that a physically-connected spine block port might not
connect to any server block port, which can be expressed as:

N

∑
n=1

4

∑
t=1

dk(Et
n,Sm)≤ Gk(Sm). (3)

Capacity Constraints: In order to achieve high DCN ca-
pacity, which depends on load balance, we require the up-
links of each server block to be evenly distributed among all
spine blocks. Specifically,

bpn,mc ≤
K

∑
k=1

4

∑
t=1

dk(Et
n,Sm)≤ dpn,me, (4)

8Recall that, for cost reasons, we do not initially populate all the ports.

where pn,m is the mean number of links between a server
block and a spine block. pn,m = |En||Sm|/(|S1|+ · · ·+ |SM|)9,
where |En| (or |Sm|) is the total number of ports in En (or Sm),
bpn,mc is the largest integer that is no larger than pn,m, and
dpn,me is the smallest integer that is no smaller than pn,m.

Constraint (4) ensures high DCN capacity. In the ideal
case where all pn,m’s are integers, constraint (4) ensures
that traffic between any two server blocks En1 and En2
can burst at full rate (min{|En1 |, |En2 |}). Specifically, En1
and En2 can communicate at rate min{pn1,m, pn2,m} through
the m-th spine block, and thus the total rate would be
∑

M
m=1 min{pn1,m, pn2,m}= min{|En1 |, |En2 |}.
In the general case where some pn,m’s are not integers,

there must be some imbalance in the logical topology. Con-
straint (4) minimizes this imbalance.
Failure-Resiliency Constraints: While commodity
switches are highly reliable, an entire middle block can
fail as a unit due to software bugs in its routing controller.
We also bring down an entire middle block occasionally to
upgrade the switch stack softwares. In order for our DCN to
be failure-resilient, we need to make sure that throughput re-
mains as high as possible even under middle-block failures.
This can be achieved by requiring the middle block links to
be evenly distributed among the spine blocks. Specifically,

bqt
n,mc ≤

K

∑
k=1

dk(Et
n,Sm)≤ dqt

n,me, (5)

where qt
n,m is the mean number of links between a middle

block and a spine block10. qt
n,m = |Et

n||Sm|/(|S1|+ · · ·+
|SM|) = pn,m/4 (assuming 4 middle blocks per server block).

Constraint (5) minimizes the capacity impact under mid-
dle block failures. In the ideal case where qt

n,m’s are all in-
tegers, the throughput impact is exactly 25%. In the general
case where some qt

n,m’s are not integers, there must be some
imbalance in the traffic between the middle blocks and the
spine blocks. Constraint (5) minimizes this imbalance. Note
that Constraint (5) cannot subsume (4), because all the deci-
sion variables are integers.

5.2.2 Minimal-Rewiring ILP Objective

In our ILP-based formulation, it is easy to add a minimal-
rewiring objective function. Specifically, our block-level
minimal-rewiring solver can be formulated as:

min
K

∑
k=1

N

∑
n=1

4

∑
t=1

M

∑
m=1

(bk(Et
n,Sm)−dk(Et

n,Sm))
+,

subject to (1)− (5), (6)
where x+ = max{0,x}. This objective function computes
the total number of links to be rewired for changing the old
(reference) topology to the new topology.

9We have assumed, when deriving pn,m, that the number of spine block
ports is no less than the number of server block ports. In fact, our formu-
lation and the subsequent optimization techniques also apply to the cases
where there are fewer spine block ports.

10Our formulas for p and q require trivial extensions to support heteroge-
neous link speeds; we omit these for reasons of space.
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5.3 Benefits of Minimal Rewiring
We demonstrate the benefit of minimal rewiring using a
simple example, comparing our minimal-rewiring approach
against the rotation striping approach described in [26].
Rotation striping can be used to design Clos topologies
for homogeneous DCNs of arbitrary size,whereas minimal-
rewiring works with various block sizes.

Consider a DCN configuration with N server blocks and M
spine blocks. Assume that each server block has X ports, and
that there is only one patch panel11. Then, rotation striping
can be expressed as Algorithm 1.

Input: DCN configuration parameters N, M, X
Output: A DCN topology

1 Label all the server block ports with different indices from
1,2, ...,NX . Note that the set of ports
{(n−1)X +1,(n−1)X +2, ...,nX} corresponds to the
n-th server block.

2 Connect port e ∈ {1,2, ...,NX} to the de/Me-th port of the
((e−1)%M+1)-th spine block.

Algorithm 1: Rotation striping algorithm from [26]

We can quantify the rewiring ratio for a solution as the
fraction of wires between server blocks and spine blocks in
the pre-existing topology that must be disconnected during
an expansion procedure.

Consider an expansion in which we add 1 server block and
1 spine block. It is easy to check that with rotation striping,
only the first M server-block ports connect to their original
peers, and thus the rewiring ratio would be (NX−M)/NX .

On the other hand, using minimal-rewiring12, we can
show that only XN/(M+1) links need to be rewired, which
corresponds to a rewiring ratio of 1/(M + 1). This means
that even if our expansion is executed in just a single stage,
the capacity reduction is just 1/(M+1).

To the best of our knowledge, with the exception of Con-
dor [5], none of the prior literature has incorporated patch-
panel layer constraints, and Condor’s constraint-satisfaction
approach was unable to find solutions in most cases. In prac-
tice, we usually need more than one patch panels in order
to connect all the server blocks to all the spine blocks, since
the number of ports on each patch panel is limited. If one
ignores the patch-panel layer, then the resulting DCN topol-
ogy will be very likely not compatible with the underlying
physical topology.

Consider rotation striping in an example with two patch
panels (see Fig. 5). Each server block has six links, with
three links connecting to the first patch panel and the other
three connecting to the second one. There are four spine
blocks, with two of them connecting to the first patch panel

11Rotation striping does not consider the patch-panel layer, which is
equivalent to setting the number of patch panels to be 1.

12Rotation striping can only guarantee the constraints (1)-(4). Hence, for
this example, we also only impose those constraints on our minimal rewiring
solver.

and the other two connecting to the second one. If we ap-
ply rotation striping here, there should be four logical links
between the first server block and the first two spine blocks.
Note that these four links can only be created through the
first patch panel, because the first two spine blocks only con-
nect to the first patch panel. However, this is impossible, as
there are only three physical links between the first server
block and the first patch panel.

Patch Panel 1 Patch Panel 2

Spine Block 1 Spine Block 2 Spine Block 3 Spine Block 4

Server Block 1 Server Block 2 Server Block 3

40Gx4 40Gx4 40Gx4 40Gx4

40Gx3 40Gx340Gx3 40Gx340Gx3 40Gx3

Figure 5: A counterexample for which rotation striping fails.

Our approach incorporates the patch-panel layer via three
physical constraints (1)-(3). These three constraints ensure
that any solution {d∗k (Et

n,Sm)}k,m,n,t of (6) can be mapped to
port-to-port configurations in the patch panels as we describe
below. (Note that (6) may yield multiple solutions.)

5.4 Creating port-to-port mappings
Our ILP formulation tells us the block-level link count be-
tween each middle block Et

n and each spine block Sm in each
patch panel Ok, as in (6), but not how individual ports must
be connected. We thus developed a straightforward algo-
rithm to compute these port-to-port mappings.

The algorithm’s input consists of the block-level link
counts bk(Et

n,Sm) and d∗k (E
t
n,Sm) for the pre-expansion and

post-expansion topologies, respectively. We use two passes,
both of which iterate over all pairs of middle blocks and
spine blocks:

Pass 1: disconnect links as necessary: For each
patch panel Ok, note that an expansion changes the link
count between middle block Et

n and spine block Sm from
bk(Et

n,Sm) to d∗k (E
t
n,Sm). Therefore, if bk(Et

n,Sm) ≤
d∗k (E

t
n,Sm), we simply preserve all pre-existing links; if

bk(Et
n,Sm) > d∗k (E

t
n,Sm), we can disconnect any (bk(Et

n,Sm)
−d∗k (E

t
n,Sm)) of the pre-existing links. This pass disconnects

∑
N
n=1 ∑

4
t=1 ∑

M
m=1(bk(Et

n,Sm)−d∗k (E
t
n,Sm))

+ links.
Pass 2: connect new links: After the first pass,

min{bk(Et
n,Sm),d∗k (E

t
n,Sm)} links remain between Et

n and
Sm. For any block pair Et

n and Sm with less than d∗k (E
t
n,Sm)

links, we can arbitrarily pick d∗k (E
t
n,Sm)− bk(Et

n,Sm) non-
connected ports from Et

n and Sm respectively, and intercon-
nect them. Feasibility is guaranteed by the physical topology
constraints (1)-(3).

5.5 Challenge: Solver Scalability
We use integer linear programming to formulate our
minimal-rewiring solver, because our topology-design prob-
lem is NP-Complete. Specifically, the decision variables
dk(Et

n,Sm) contain three dimensions (middle-block dimen-
sion Et

n, spine-block dimension Sm, and patch-panel di-
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mension k ), and the constraints (2)(3)(5) are essentially
for the 2-marginal sums ∑k dk(Et

n,Sm), ∑Et
n

dk(Et
n,Sm) and

∑Sm dk(Et
n,Sm). In the literature, this is called the Three-

Dimensional Contingency Table (3DCT) problem, and has
been proven to be NP-Complete [25]. Having failed to find
a polynomial-time algorithm for our problem, we decided to
use ILP, as there are many readily-available commercial ILP
solvers, e.g., Gurobi [21], CPLEX [24], Google Optimiza-
tion Tools [17].

However, our problem size is so large that none of the
existing commercial solvers scales well. For example, one
DCN configuration we evaluate (see §9.7.1) contains 77
server blocks of three kinds, 68 spine blocks of two kinds,
and 256 patch panels. Without any optimization, this leads
to about 400000 decision variables, and the ILP solver ran
for a day without generating a solution. As shown in §9.3,
for the 4500 trials we ran without optimization, we could
only solve 32% within a 3-hour deadline. (Longer timeouts
yield little improvement.)

6 Block Aggregation
To improve the scalability of our minimal-rewiring solver,
we developed a block aggregation technique. Block aggre-
gation significantly reduces the total number of decision vari-
ables in (6), and thus greatly improves solver scalability.

6.1 ILP Formulation with Block Aggregation
The idea behind block aggregation is to group patch pan-
els, server blocks, spine blocks, and then aggregate decision
variables within each group.

Patch-Panel Group: Two patch panels k1,k2 belong to
the same group if and only if they have the same number of
physical links to each middle block and each spine block,
i.e., Gk1(E

t
n) = Gk2(E

t
n),Gk1(Sm) = Gk2(Sm) for any n, t,m.

Server-Block Group: Two server blocks n1,n2 belong to
the same group if and only if they have the same physical
topology, i.e., Gk(Et

n1
) = Gk(Et

n2
) for any k, t.

Spine-Block Group: Two spine blocks m1,m2 belong to
the same group if and only if they have the same physical
topology, i.e., Gk(Sm1) = Gk(Sm2) for any k.

Assume that these definitions yield Kg patch-panel groups,
Ng server-block groups, and Mg spine-block groups. Then,
we can define an aggregated decision variable dkg(E

t
ng ,Smg)

for the kg-th patch-panel group, the ng-th server block group,
and the mg-th spine block group as follows:

dkg(E
t
ng ,Smg) = ∑

k∈kg

∑
n∈ng

∑
m∈mg

dk(Et
n,Sm). (7)

Here, we have abused the notation, and used kg,ng, and mg
to represent both the indices and the actual groups.

With the aggregated decision variables dkg(E
t
ng ,Smg), the

original constraints (1)-(5) also need to be aggregated:
0≤ dkg(E

t
ng ,Smg)≤ |kg||ng||mg|min{Gk(Et

n),Gk(Sm)}, (8)
Mg

∑
mg=1

dkg(E
t
ng ,Smg) = |kg||ng|Gk(Et

n), (9)

Ng

∑
ng=1

4

∑
t=1

dkg(E
t
ng ,Smg)≤ |kg||mg|Gk(Sm), (10)

|ng||mg|bpn,mc ≤
Kg

∑
kg=1

4

∑
t=1

dkg(E
t
ng ,Smg)≤ |ng||mg|dpn,me,

(11)

|ng||mg|bqt
n,mc ≤

Kg

∑
kg=1

dkg(E
t
ng ,Smg)≤ |ng||mg|dqt

n,me. (12)

In the aggregated constraints, k,n,m are arbitrary patch
panel, server block, and spine block indices, drawn from the
kg-th patch-panel group, the ng-th server-block group, and
the Mg-th spine-block group, respectively. In fact, the values
Gk(Et

n), Gk(Sm), pn,m,qt
n,m are all the same, as long as k,n,m

are chosen in the same group, respectively. Here, we also
view kg,ng, and mg as groups, and have used |kg|, |ng|, |mg|
to represent the sizes of these groups.

With block aggregation, we can thus rewrite the optimiza-
tion problem (6) as follows:

min
Kg

∑
kg=1

Ng

∑
ng=1

4

∑
t=1

Mg

∑
mg=1

(bkg(E
t
ng ,Smg)−dkg(E

t
ng ,Smg))

+,

subject to (8)− (12), (13)

where bkg(E
t
ng ,Smg) = ∑k∈kg ∑n∈ng ∑m∈mg bk(Et

n,Sm).
Compared to (6), the total number of decision variables in

(13) is significantly reduced, from Θ(NKM) to Θ(NgKgMg).
Thus, the complexity of solving (13) is significantly lower
than that of (6).

6.2 Variable Deaggregation
After obtaining a solution d∗kg

(Et
ng ,Smg) for (13), we still

need to decompose the solution to d∗k (E
t
n,Sm). Specifically,

we need to solve the following problem.

min
K

∑
k=1

N

∑
n=1

4

∑
t=1

M

∑
m=1

(bk(Et
n,Sm)−dk(Et

n,Sm))
+,

subject to ∑
k∈kg

∑
n∈ng

∑
m∈mg

dk(Et
n,Sm) = d∗kg

(Et
ng ,Smg)

and (1)− (5). (14)

If there were no constraints (1)-(5) in (14), we could eas-
ily compute a solution d∗k (E

t
n,Sm) in polynomial time us-

ing an algorithm similar to the one in §5.4. Because of
these constraints, solving (14) becomes much more chal-
lenging. In fact, it is not trivial to prove that (14) always
has a solution. In the literature, (14) is closely related
to the Integer-Decomposition property [3]. In general, the
Integer-Decomposition property does not always hold (see
Appendix A.1). Fortunately, thanks to our problem structure,
we are able to rigorously prove that (14) indeed has a solu-
tion. Specifically, we build an integer decomposition theory
specifically for our problem, and prove that a decomposi-
tion satisfying (1)-(5) can be found iteratively in polynomial
time. (See the Appendices for details.)

8



Given that (14) has solutions, the next question is to find
one that minimizes the objective function. The simplest ap-
proach is to directly solve it using integer programming.
However, this will destroy the complexity-reduction of block
aggregation, as (14) is of exactly the same size as (6).

Our approach is to decompose (14) into Kg + Ng + Mg
smaller ILP problems. Specifically, we can decompose
patch-panel groups, spine-block groups, and server-block
groups by solving three ILPs in separate steps. In each
step, different block groups can be completely decoupled,
and thus the three ILPs can be further decomposed into Kg,
Ng, and Mg ILPs, respectively. These smaller ILP problems
are much easier to solve compared to (14). However, as
shown in §9.3, computing these smaller ILP problems se-
quentially can still be slow. To further improve scalability,
we map these smaller problems to polynomial-complexity
min-cost-flow problems. This min-cost-flow-based decom-
position can guarantee a solution that satisfies all constraints,
but not rewiring optimality. For details, please refer to the
Appendices .

6.3 Impact on Scalability & Optimality
Theoretically, and as confirmed in §9.4, the total number of
rewires would be higher with block aggregation. We are
essentially breaking one optimization problem (6) into two
problems (13) and (14). Solving (13) and (14) will generate a
solution satisfying all constraints in (6), but which might not
be optimal wrt. the minimal-rewiring objective (6). When-
ever the solver without block aggregation succeeds, it always
achieve the smallest (best) rewiring ratio. However, scalabil-
ity without block aggregation is poor. For a total of 4500
synthesized DCN expansion configurations, only 32% can
be solved within a 3-hour limit. (Longer timeouts yield little
improvement.)

Breaking (6) into smaller ILPs does not completely
solve the solver scalability issue. We may still en-
counter some intractable ILPs while solving (14) (see
§9.3). Our polynomial-time min-cost-flow based variable-
deaggregation algorithm solves the scalability issue. How-
ever, it may also introduce some sub-optimality in the
rewiring ratio (see §9.4 for the detailed comparison). Thus,
we face a tradeoff between solver scalability and rewiring
optimality, which we address in the next section.

7 Parallel Solving Architecture
While block aggregation makes it feasible to solve most
DCN expansion configurations, it creates a tradeoff be-
tween solver scalability and rewiring optimality, depending
on how one chooses a strategy for block aggregation. Block-
aggregation strategies define choices for each of several ag-
gregation layers (patch-panel, server-block, or spine-block),
and for the decomposition technology (ILP or a min-cost-
flow approximate algorithm) applied at each layer.

How can we choose the best strategy among all the op-

tions, given that the tradeoff between optimality and solver
run-time is unknown when we start a solver? We observe
that since we care more about finding a solution within an
elapsed time limit, and less about the total computational re-
sources we use, our best approach is to run, in parallel, a
solver instance for each of the options, and then choose the
best result, based on a scoring function, among the solvers
that complete within a set deadline. We can define scores
based simply on rewiring ratio, or on residual bandwidth
during expansion, or some combination. Fig. 6 shows the
parallel-solver architecture.

Solver 1

DCN 

Configuration

Topology 

Solution

Parallel 

Solver

Solver 2

Solver 3

Solver N

Run Solvers Deadline

S

F

S

F

Solution 

Selector

S: Succeed F: Fail

Figure 6: Software architecture of the parallel solver.

8 Changes to the Expansion Pipeline
The introduction of minimal rewiring requires several
changes to the DCN expansion pipeline shown in Fig. 4.

Without minimal rewiring, it is fairly easy for an experi-
enced network engineer to determine the number of stages
required for an expansion; because almost all logical links
need to be rewired, we must use C stages to maintain a resid-
ual capacity of 1− 1/C. With minimal rewiring, however,
one cannot know the number of rewired links before running
the solver; based on results in §9.4, the fraction could range
from 0 to 30%.

Therefore, we add an automated expansion planner step
to the front of the pipeline in Fig. 4. The planner first uses the
minimal-rewiring solver to generate a post-expansion topol-
ogy, then iteratively finds the lowest C, starting at C = 1,
which preserves the desired residual capacity threshold dur-
ing the expansion (recall from §4 that this threshold is a func-
tion of forecasted demand, existing failures, and some head-
room). For each C, the planner divides the patch panels into
C groups, tentatively generates the C intermediate topologies
that would result from draining the affected links within a
group, and evaluates those topologies against the threshold.
If capacity cannot be preserved for all intermediate topolo-
gies, the planner increments C and tries again. Once a suit-
able C is found, the rest of the pipeline is safe to execute.

Without minimal rewiring, we simply drain all links for
the patch panels covered by a stage. Minimal rewiring al-
lows us to preserve more capacity because we only have to
drain a subset of the links, rather than an entire patch panel.
However, an operator can accidentally rewire the wrong link,
or dislodge one inadvertently, a problem that does not occur
when we drain entire panels. Therefore, we built a link-status
monitor that alerts the operator if an active (undrained) link is
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disconnected. Since Clos networks by design tolerate some
link failures, this allows the operator enough time to repair
the problem without affecting users.

9 Experimental Results
We have been successfully using this minimal-rewiring ap-
proach for our own DCNs since early 201713. In order to
demonstrate its benefits over a wide range of scales, we eval-
uated our approach using a set of synthetic DCN topologies
(including some similar to our real DCNs), and show the ef-
fect of block aggregation on solver run-time and rewiring
ratio. We also show that our approach preserves most of the
capacity of the original network during expansions, based on
several workloads and under some failure scenarios.

9.1 Synthesizing DCN Configurations
To evaluate our approach over a wide range of initial topolo-
gies, we synthesized thousands of configurations that were
consistent with our past deployment experience. In par-
ticular, since we must support heterogeneity among server
blocks and spine blocks, we synthesized configurations using
three types of server blocks and two types of spine block, in
various combinations. Every configuration includes exactly
one border block, analogous to a server block but used for
external connectivity.

Our synthesized DCN configurations always have 256
patch panels, located in 4 sets, each with 64 patch panels.
We use patch panels with 128 server-block-facing ports and
128 spine-block-facing ports, so the entire patch-panel layer
supports up to 64 512-port server blocks.

Table 2 lists the physical-topology parameters for the dif-
ferent block types. For example, a Type-1 server block has
512 up links, evenly distributed among all 256 patch pan-
els. Type-2 & Type-3 server blocks are “light” versions of
the Type-1 server block, with fewer uplinks; they can be up-
graded to Type-1 server blocks. Note that a Type-3 server
block only connects to 128 patch panels. We divide the
256 patch panels into two partitions, and connect the Type-
3 server blocks to the two partitions by rotation. We also
connect the Type-1 & Type-2 spine blocks by rotation.

Table 2: Server Block and Spine Block Types.

Block Type Uplinks Connected Patch Panels
Type-1 Server Block 512 64 Per Set×4 Sets
Type-2 Server Block 256 64 Per Set×4 Sets
Type-3 Server Block 256 32 Per Set×4 Sets

Border Block 1024 64 Per Set×4 Sets
Type-1 Spine Block 128 64 Per Set×1 Set
Type-2 Spine Block 512 64 Per Set×1 Set

We generate a total of 2250 initial configurations (pre-
expansion “reference topologies” as defined in §5.1) from
all possible combinations of {3,6, ...,30} Type-1 server

13Even though we have a formal proof that deaggregation always works,
it does not guarantee optimality; our experience shows that our approach
does work in practice.

blocks, {2,4, ...,20} Type-2 server blocks, {3,6, ...,30}
Type-3 server blocks, and {8,16} Type-1 spine blocks, with
the remainder of the necessary spine-block ports as Type-
2 spine blocks (the total number of server-block and spine-
block ports must match). We omit any configuration that
would require more patch-panel ports than we have avail-
able.

These pre-expansion topologies can be generated using
our minimal rewiring solver, by simply ignoring the objec-
tive function. We run all the configurations in parallel, and
allocate 4 CPUs and 16G RAM for each configuration. With
block aggregation enabled, all 2250 topologies can be com-
puted within 10 seconds.

9.2 Expansion Benchmarks
As shown in Fig. 3, we support two types of DCN expan-
sions. We construct two benchmarks for each of our 2250
reference topologies:

Benchmark Suite 1: We upgrade two Type-2 server
blocks in the reference topology to Type-1 server blocks.

Benchmark Suite 2: We expand the reference topology
by one Type-3 server block.

We end up with 2250× 2 = 4500 total target topologies.
For each of these, we ran the minimal-rewiring solver with
three aggregation strategies:

1. No aggregation.
2. Block aggregation, decomposing the spine-block and

server-block layers using ILP (§A.3.1), while decom-
posing the patch-panel layer using MIN COST FLOW
(§A.3.2) .

3. Block aggregation, decomposing all three layers using
MIN COST FLOW.

9.3 Solver scalability
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Figure 7: Minimal-rewiring solver success rate.

Fig. 7 plots success rate for our minimal-rewiring solver
with different aggregation strategies, grouped by the to-
tal number of server blocks; the bars show the fraction of
topologies solved for each group. With the third aggrega-
tion strategy, we can solve all test cases within 10 seconds;
this strategy only needs to solve one ILP for the aggregated
problem, while using polynomial algorithms for all decom-
positions. The first strategy scales poorly, and can only solve
32% of the test cases even if we increase the deadline to 3
hours; even for small DCNs (11–20 server blocks), it some-
times times out. The second strategy can solve 67% of the
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test cases, but we start seeing timeouts for DCNs with 31–
40 server blocks. For all strategies, setting timeouts above 3
hours yields little improvement.

The differences between the second and third strategies
shows that variable deaggregation using ILP could take sig-
nificant run time. (If we also use ILP to deaggregate the
patch-panel layer with the second strategy, only 3% of the
test cases can be solved.) However, deaggregation via ILP
is still useful, because as we discuss next, it can generate
more-optimal rewiring solutions.

9.4 Rewiring Ratio
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Figure 8: Mean rewiring ratio vs. aggregation strategy.

For the same set of test cases, Fig. 8 plots the rewiring
ratios, again grouped by the number of server blocks; here,
the bars show the mean value for each group. The third ag-
gregation strategy, while it has the best run time, also leads
to the highest (worst) rewiring ratio, often close to 20%; this
motivates our use of ILP for decomposition whenever we can
tolerate the run time.

9.5 Effectiveness of the parallel solver
§7 described how we use a parallel solver to strike a bal-
ance between scalability and rewiring optimality. For each
of our benchmarks, we ran, in parallel, solvers with the three
different aggregation strategies, with a 3-hour timeout. Be-
cause the third strategy works quickly for all instances, this
parallel approach always succeeds. It also achieves the best
rewiring ratio available within a 3-hour budget. Fig. 9 plots
the CDF of the parallel solvers rewiring ratio. For about 82%
of the DCN configurations in the first benchmark suite, and
about 93% in the second suite, we get solutions with ratios
under 20%. (The first suite tends to yield a higher ratio, be-
cause the total number of newly added server-block physical
links in the first suite is twice that in the second suite.)

Note that the rewiring ratio for our prior approach was
always 1.0 – we always replaced all patch-panel jumpers.
Fig. 9 shows that minimal rewiring saves us a lot of cost and
time; the median rewiring ratio is about 22× better for the
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Figure 9: CDFs of rewiring ratios for the parallel solver.

first suite and about 38× better for the second suite.

9.6 Topology Capacity Analysis
In addition to solver scalability and rewiring optimality, we
also must preserve sufficient capacity of the intermediate
topologies during expansion. This requires us to quantify
“capacity.” While our DCNs experience a variety of traffic
patterns, we specifically evaluate the maximum achievable
capacity under one-to-all and one-to-one traffic, which we
rigorously define as:

One-to-all capacity: T1-all. Assume that a source server
block En is sending traffic to all other server blocks, with its
demand proportional to the ingress bandwidth of the destina-
tion blocks. We increase the traffic until some DCN links are
fully utilized. Let T n

1-all be the ratio between the egress traf-
fic under these assumptions and the best-case egress DCN
bandwidth of the server block En. T n

1-all characterizes the
one-to-all DCN capacity for server block En. We can then
define T1-all = minN

n=1 T n
1-all as the one-to-all capacity of the

entire DCN.
One-to-one capacity: T1-1. Assume that a server block

En1 is sending traffic to another server block En2 . We in-
crease the traffic until some DCN links are fully utilized.
Let T n1,n2

1-1 be the ratio between the traffic sent and the mini-
mum, over the two server blocks En1 and En2 , of their ingress
capacity. T n1,n2

1-1 characterizes the one-to-one DCN capac-
ity for the server blocks En1 and En2 . We can then define
T1-1 = minn1 6=n2 T n1,n2

1-1 as the one-to-one capacity of the en-
tire DCN.

We evaluate T1-all and T1-1 under two different scenarios:
Steady-state no-failures capacity: Recall that we im-

posed constraint (4) when computing a topology, which en-
sures high capacity in the non-expansion steady state, with-
out any failures. Ideally, if the pn,m’s in (4) were all inte-
gers, we would have T1-all = 1 and T1-1 = 1. (Neither T1-all or
T1-1 can be larger than 1). Fig. 10 plots CDFs of T1-all and
T1-1 based on the 4500 post-expansion topologies (bench-
mark suite 1 + benchmark suite 2). Note that both T1-all and
T1-1 are fairly close to 1.

Steady-state capacity under middle block failure: Re-
call that we imposed constraint (5), to ensure the highest pos-
sible capacity if one middle block fails. Ideally, for our typi-
cal case of 4 middle blocks, if the qt

n,m’s in (5) were all inte-
gers, we would have T1-all = 0.75 and T1-1 = 0.75, no matter
which middle block fails. (Given one failure, neither T1-all
or T1-1 can be larger than 0.75. Fig. 10 also plots the CDFs
of T1-all and T1-1 under middle block failures. Note that both
T1-all and T1-1 are fairly close to 0.75.

9.6.1 Residual Capacity during Expansion

During an expansion, we must disconnect some links, which
reduces DCN capacity. We are interested in the residual ca-
pacity of the DCN in this state which clearly depends on the
rewiring ratio. Fig. 11 shows scatter plots of T1-all and T1-1
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Figure 10: CDFs of One-to-All and One-to-One capacity.

for each (rewiring ratio, residual capacity) pair, based on the
two benchmark suites. This figure assumes we do all expan-
sion in a single stage, even if the residual capacity is lower
than we can accept in reality.

The residual capacity decreases approximately linearly
with the rewiring ratio. Note that the residual capacity de-
creases faster than the rewiring ratio increase, because, the
rewired DCN links might not be evenly distributed among
different server blocks. As a result, some server blocks could
suffer more capacity reduction than others.

(a) T1-all. (b) T1-1.

Figure 11: Rewiring ratio vs. residual capacity assuming a 1-stage
expansion.

9.7 Number of expansion stages
In practice, we might not be able to do an expansion in just
one stage while preserving sufficient residual capacity. §8
described an expansion planner that determines the number
of stages required. We evaluated the number of stages saved
by using minimal rewiring.

Prior to minimal rewiring, we typically did 4-stage expan-
sions. If the topologies were perfect, with 4 stages we could
preserve a residual one-to-all capacity of 0.75, but in practice
we cannot achieve perfect balance; we have found it feasible
and sufficient to preserve a residual capacity of 0.7.

Table 3 shows how many stages are needed to preserve
a residual one-to-all capacity of 0.7, with minimal rewiring,
for each of the 4500 benchmarks, based on solver strategy.
With strategies 1 and 2, many test cases require four stages,
because the solvers time out before finding 1- or 2-stage ex-
pansions. With strategy 3, almost all cases require at most
2 stages. The parallel solver finds 1- or 2-stage expansions
for all test cases (because the few cases for which strategy
3 requires four stages are handled better by the other strate-
gies), and usually does better than strategy 3 (because if the
other strategies succeed within the deadline, they yield better
rewiring ratios.) Overall, the parallel solver needs an average
of 1.29 stages, vs. 4 stages for our prior approach.

Table 3: Number of expansion stages required.

Number of expansion stages: 1 2 4
Aggregation Strategy (1) 1598 34 2868
Aggregation Strategy (2) 2668 416 1416
Aggregation Strategy (3) 1582 2914 4

Parallel Solver 3176 1324 0
Cells show # of test cases that need given # of stages.

9.7.1 Concrete example

A concrete (arbitrary, but realistic) example demonstrates the
benefits of minimal rewiring. Assume a pre-expansion DCN
with 30 Type-1, 20 Type-2, 27 Type-3 server blocks, 1 bor-
der block, and 16 Type-1, 52 Type-2 spine blocks, which
we expand by one Type-3 server block. Without minimal
rewiring, we must rewire all the 28056 logical links, in four
stages. With minimal rewiring, we need to rewire only 6063
of 28056 links (ratio = 0.216), in two stages. Due to the scale
of this example, only the third aggregation strategy succeeds.
Table. 4 shows how this maintains mid-expansion capacity
(in italics) higher than our prior approach (in bold), and com-
pletes in two stages rather than four.

Table 4: Example: minimal rewiring vs. prior approach.

Stage during expansion timeline
Pre 1 2 3 4 Post

Prior approach 0.94 0.70 0.70 0.70 0.70 0.94
Min. Rewiring 0.94 0.78 0.78 0.94 0.94 0.94

Cells show one-to-all capacity T1-all during expansion.

10 Conclusion
We have demonstrated that it is, in fact, feasible to do fine-
grained expansions of heterogeneous Clos DCNs, at large
scale, while preserving substantial residual capacity during
an expansion, and with a significant reduction in the amount
of rewiring (compared to prior approaches). We described
how we use a patch-panel layer to reduce the physical com-
plexity of DCN expansions. We then described an ILP for-
mulation that allows us to minimize the amount of rewiring,
a block-aggregation approach that allows scaling to large
networks, and a parallel solver approach that yields the best
tradeoff between elapsed time and rewiring ratio. Our overall
approach flexibly handles heterogenous switch blocks, and
enforces “balance constraints that guarantee both high capac-
ity and high failure resiliency. We evaluated our approach on
a wide range of DCN configurations, and found on average
that it allows us to do expansions in 1.29 stages, vs. 4 stages
as previously required.
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A Matrix Decomposition
We have proposed a block-aggregation technique to improve
the scalability of our minimal-rewiring solver. By aggregat-
ing decision variables within different patch-panel groups,
server-block groups and spine-block groups, the total num-
ber of decision variables is significantly reduced. However,
the challenge here is that we must guarantee that the aggre-
gated decision variables are also decomposable. Otherwise,
no topology solution will be generated even if we can solve
(13).

In this section, we build an integer-matrix decomposition
theory specifically for our block-aggregation technique. We
will answer the following questions:

1. What are the requirements for matrix decomposition?

2. Under what circumstance will an integer matrix be de-
composable?

3. What algorithms can we use for integer-matrix decom-
position?

A.1 A Sufficient Condition for Integer Matrix
Decomposition

We first introduce the following concepts:

Definition 1 Given a set Ω, the “power set” P(Ω) of Ω is
a set containing all the subsets of Ω, including the empty set
and Ω itself.

Definition 2 A subset Q ⊂P(Ω) is called good, if for any
two sets Q1,Q2 ∈Q, either (1) or (2) of the following condi-
tions holds.

(1) Q1∩Q2 = /0; (2) Q1 ⊂ Q2 or Q2 ⊂ Q1.

A good set has a very nice property, i.e., it can be rep-
resented by a set of trees. Specifically, we can construct a
node for every element in the good set, and create a directed
link from Q1 ∈Q to Q2 ∈Q if and only if (1) Q2 ⊂ Q1, and
(2) there does not exist Q3 ∈ Q such that Q2 ⊂ Q3 ⊂ Q1.
An example is given in Fig. 12. The concept of good set is
highly important. As readers will see shortly in Appendix
B, constructing good sets is actually the most critical step in
variable deaggregation.

{1,2,3,4} {5,6,7,8}

{1,2,3}

{1,2}

{4} {5,6} {7} {8}

{3}

Figure 12: An example of good set Q =
{{1,2,3,4},{5,6,7,8},{1,2,3},{1,2},{3},{4},{5,6},{7},
{8}}, and its tree representation.

Now, we are ready to introduce the following theorem on
integer-matrix decomposition.

Theorem 3 Given an I× J non-negative integer matrix x =
{xi, j}, and two sets A ⊂P({1, ..., I}),B ⊂P(1, ...,J), if
both A and B are good, then for any integer H ≥ 1, there
exist H non-negative integer matrices x(1), ...,x(H) satisfying

1. x = x(1)+ · · ·+x(H);

2. for any i = 1, ..., I, j = 1, ...,J and h = 1,2, ...,H,⌊xi, j

H

⌋
≤ x(h)i, j ≤

⌈xi, j

H

⌉
;

3. for any index set A ∈A and any h = 1,2, ...,H,⌊
∑i∈A ∑

J
j=1 xi, j

H

⌋
≤∑

i∈A

J

∑
j=1

x(h)i, j ≤

⌈
∑i∈A ∑

J
j=1 xi, j

H

⌉
;

4. for any index set B ∈B and any h = 1,2, ...,H,⌊
∑

I
i=1 ∑ j∈B xi, j

H

⌋
≤

I

∑
i=1

∑
j∈B

x(h)i, j ≤

⌈
∑

I
i=1 ∑ j∈B xi, j

H

⌉
.

The concept of good set is critical for the correctness of
Theorem 3. In practice, if either A or B is not good, integer-
matrix decomposition may fail. The following is a counter
example.

Counter Example: Consider a 1×3 matrix x = {1,1,1}.
Let A = {{1}}, and B = {{1,2},{1,3},{2,3}}. Clearly,
B is not good. Further, if we let H = 2, we can prove that no
decomposition satisfies Condition (4) in Theorem 3. Specif-
ically, Condition (4) requires that

1 = b(1+1)/2c ≤ x(h)1,1 + x(h)1,2 ≤ d(1+1)/2e= 1,

1 = b(1+1)/2c ≤ x(h)1,1 + x(h)1,3 ≤ d(1+1)/2e= 1,

1 = b(1+1)/2c ≤ x(h)1,2 + x(h)1,3 ≤ d(1+1)/2e= 1.

It is easy to verify that the above three inequalities do not
have an integer solution.

Theorem 3 is the key of variable deaggregation in our
block-aggregation technique. Specifically, by aggregating
decision variables, constraints are also aggregated. Thus,
when we deaggregate the variables, we also need to make
sure that the decomposed decision variables satisfy the orig-
inal constraints. Theorem 3 gives a sufficient condition under
which a matrix can be “evenly” decomposed. As readers will
see in Appendix B, this evenness makes sure that the decom-
posed variables satisfy the initial constraints before aggrega-
tion.

A.2 Proof of Theorem 3
We prove Theorem 3 in this section. Specifically, we first
introduce an algorithm that can compute an integer-matrix
decomposition, and then prove that the decomposed integer
matrices satisfy all the constraints in Theorem 3.
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A.2.1 Algorithm for Integer Matrix Decomposition

The key is to transform the integer matrix decomposition
problem into the following circulation problem.

Definition 4 (Circulation Problem) Given a flow network
with

• l(v,w), lower bound on flow from node v to node w;

• u(v,w), upper bound on flow from node v to node w,

the goal of the circulation problem is to find a flow assign-
ment f (v,w) satisfying the following two constraints:

1. l(v,w)≤ f (v,w)≤ u(v,w);

2. ∑u f (u,v) = ∑w f (v,w) for any node v.

Given the good sets A and B in Theorem 3, we can con-
struct a circulation graph using the following steps (see Fig.
13 for an example):

1. Create a directed bipartite graph. Note that x is an I×J
matrix. We create I nodes on the left hand side of the
bipartite graph, and create J nodes on the right hand
side of the bipartite graph. We add a directed link from
i to j, and use (i, j) to refer to this link.

2. Construct a set of trees based on A on the left hand side
of the bipartite graph. We add all the single-element sets
to A , and obtain A ′ = A ∪{{1}, ...,{I}}. Since A is
good, it is easy to verify that A ′ is also good. Then, we
construct a tree representation for A ′ on the left hand
side of the bipartite graph. We also introduce a dummy
node, and create a directed link from this dummy node
to all the root nodes in the tree representation. Note that
each node A ∈A ′ on the left hand side has exactly one
incoming link. Thus, with a little abuse of notation, we
can use A to refer to this link.

3. Construct a tree representation, with all the links re-
versed, for B′ = B ∪{{1}, ...,{J}} on the right hand
side of the bipartite graph, and create a directed link
from all the root nodes in the tree representation to the
dummy node. Note that each node B ∈B′ on the right
hand side has exactly one outgoing link. Thus, we can
use B to refer to this link.

Given the above circulation graph, we can now introduce
our integer-matrix decomposition algorithm (see Algorithm
2). The idea of Algorithm 2 is to decompose the matrix
x iteratively. In each iteration, we first use the “remaining
part of x” to set bounds for the above circulation graph. We
then compute an integer flow solution to the above circula-
tion problem. Note that, circulation problems can be solved
in polynomial time by the Goldberg-Tarjan algorithm [16].
Finally, we map the integer flow solution to a decomposed
integer matrix.

{3}

{2}

{1}

{4}

{3}

{2}

{1}{1,2}

{3,4}

{1,2,3,4}

{1,2}

Dummy Node

Figure 13: An example of circulation graph. Here, I = 4,J =
3,A = {{1,2,3,4},{1,2},{3,4}},B = {{1,2},{3}}.

Note that, there are two caveats in Algorithm 2. First, how
can we guarantee that the circulation graph generated above
always has a solution? Second, why does the integer matrix
obtained in each iteration satisfy all the constraints in Theo-
rem 3. Next, we will prove them one by one.

A.2.2 Correctness of Algorithm 2

Based on our earlier discussion, the proof consists of two
steps.

Step 1: The circulation problem constructed in Algo-
rithm 2 always has an integer solution.

The proof of Step 1 requires the following lemma.

Lemma 5 (Integral Flow Theorem) Given a feasible circu-
lation problem, if l(v,w)’s and u(v,w)’s are all integers, then
there exists a feasible flow assignment such that all flows are
integers.

In fact, for feasible circulation problems with integer bounds,
most max-flow algorithms, e.g., Edmonds-Karp algorithm
[14] and Goldberg-Tarjan algorithm [16], are guaranteed to
generate integer solutions.

According to Lemma 5, we only need to prove that the
circulation problem constructed in Algorithm 2 is feasible.
Specifically, we can assign fractional network flows as fol-
lows:

• for the link (i, j), assign x̂(h)i, j /h amount of flow;

• for the link A ∈ A ′, assign (∑i∈A ∑
J
j=1 x̂(h)i, j )/h amount

of flow;

• for the link B ∈B′, assign (∑I
i=1 ∑ j∈B x̂(h)i, j )/h amount

of flow.

It is easy to verify that the above fractional flow assignment
satisfies the two constraints in the Definition 4. Thus, the
circulation problem in Algorithm 2 is feasible. Note that all
the bounds of this circulation problem are all integers. If we
use Edmonds-Karp algorithm or Goldberg-Tarjan algorithm
to compute a flow assignment, there is a guaranteed integer
solution.

Step 2: x(1), ...,x(H) satisfy Conditions (1)-(4) of Theo-
rem 3.

The proof of Step 2 requires the following lemma.
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Input: x = {xi, j}, and two good sets A and B.
Output: x(1), ...,x(H)

/* Use x̂(h) to track the remaining part of

x. */

1 Let x̂(H) = x.
2 for h = H; h≥ 1; h−− do

/* Assign bounds to the circulation

graph. */

3 for any bipartite graph link (i, j) do
4 Set its bound as

[⌊
x̂(h)i, j /h

⌋
,
⌈

x̂(h)i, j /h
⌉]

;

5 end
/* Note that there are no bounds

assigned to the links in A ′ \A and

B′ \B. */

6 for any link A in A do
7 Set its bound as

[b(∑i∈A ∑
J
j=1 x̂(h)i, j )/hc,d(∑i∈A ∑

J
j=1 x̂(h)i, j )/he];

8 end
9 for any any link B in B do

10 Set its bound as

[b(∑I
i=1 ∑ j∈B x̂(h)i, j )/hc,d(∑I

i=1 ∑ j∈B x̂(h)i, j )/he];
11 end
12 Compute an integer solution to the above

circulation problem;
13 for any bipartite graph link (i, j) do
14 Let x(h)i,j = Amount of flow on the link (i, j);
15 end
16 Let x̂(h−1) = x̂(h)−x(h);
17 end

Algorithm 2: Integer-Matrix Decomposition Algo-
rithm.

Lemma 6 Given positive integers y,z,h satisfying by/(h+
1)c ≤ z≤ dy/(h+1)e, the following inequality holds
by/(h+1)c ≤ b(y− z)/hc ≤ d(y− z)/he ≤ dy/(h+1)e.

Since x(h) is an integer solution to the circulation problem
constructed in Algorithm 2, x(h) must satisfy the following
constraints:

2′) for any i = 1, ..., I, j = 1, ...,J and h = 1,2, ...,H, x̂(h)i, j

h

≤ x(h)i, j ≤

 x̂(h)i, j

h

 ;

3′) for any index set A ∈A and any h = 1,2, ...,H,∑i∈A ∑
J
j=1 x̂(h)i, j

h

≤∑
i∈A

J

∑
j=1

x(h)i, j ≤

∑i∈A ∑
J
j=1 x̂(h)i, j

h

 ;

4′) for any index set B ∈B and any h = 1,2, ...,H,∑
I
i=1 ∑ j∈B x̂(h)i, j

h

≤ I

∑
i=1

∑
j∈B

x(h)i, j ≤

∑
I
i=1 ∑ j∈B x̂(h)i, j

h

 .

Let h = 1 in (2′). We obtain x(1) = x̂(1). Thus,

x = x̂(1)+x(2)+ · · ·+x(H) = x(1)+ · · ·+x(H).

It remains to prove that (2′)(3′)(4′) imply the constraints
(2)(3)(4) in Theorem 3. The constraints (2)(3)(4) can be
proved using similar techniques. Here, we take (2) as an
example.

Note that x̂(h)i, j = x̂(h+1)
i, j − x(h+1)

i, j and
⌊

x̂(h+1)
i, j /(h+1)

⌋
≤

x(h+1)
i, j ≤

⌊
x̂(h)i, j

h

⌋
≤
⌈

x̂(h+1)
i, j /(h+1)

⌉
. According to Lemma 6,

we immediately have x̂(h+1)
i, j

h+1

≤
 x̂(h)i, j

h

≤ x(h)i, j ≤

 x̂(h)i, j

h

≤
 x̂(h+1)

i, j

h+1

 .
Repeat the above analysis, we then have

⌊xi, j

H

⌋
=

 x̂(H)
i, j

H

≤ x(h)i, j ≤

 x̂(H)
i, j

H

=
⌈xi, j

H

⌉
.

A.3 “Minimal Rewiring” for Integer Matrix
Decomposition

We have proved the integer matrix decomposition Theorem
3. As a byproduct, we also obtain an algorithm that can ac-
complish the decomposition in polynomial time (see Algo-
rithm 2). As readers will see in Appendix B, these results
guarantee that the solutions of (13) are always decompos-
able. However, none of these results can be used for variable
deaggregation due to the objective function in (14). In this
section, we study how to do integer-matrix decomposition
when we have an minimal-rewiring objective function of the
following form:

min
H

∑
h=1

I

∑
i=1

J

∑
j=1

(b(h)i, j − x(h)i, j )
+, (15)

where b(1), ...,b(H) are I× J reference matrices for decom-
position.

We introduce two approaches for the minimal-rewiring
integer-matrix decomposition problem in the following.

A.3.1 ILP based Approach

The first one is based on integer linear programming. Specif-
ically, we note that (b(h)i, j − x(h)i, j )

+ can be positive only if

b(h)i, j > bxi, j/Hc because x(h)i, j needs to satisfy the second con-
straint in Theorem 3. Hence, the minimal-rewiring integer-
matrix decomposition problem can be formulated as the fol-
lowing ILP problem:

minx(h) ∑
b(h)i, j >bxi, j/Hc

(b(h)i, j − x(h)i, j ), (16)

subject to constraints (1)-(4) in Theorem 3.
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Input: x = {xi, j}, two good sets A and B, and H
base matrices b(1), ...,b(H).

Output: x(1), ...,x(H)

/* Use x̂(h) to track the remaining part of

x. */

1 Let x̂(H) = x.
2 for h = H; h≥ 1; h−− do
3 Initialize the cost of all the links as 0.

/* Assign bounds to the circulation

graph. */

4 for any bipartite graph link (i, j) do
5 Set its bound as

[⌊
x̂(h)i, j /h

⌋
,
⌈

x̂(h)i, j /h
⌉]

;

6 if b(h)i, j > bxi, j/Hc then
7 Set the cost of the link (i, j) as −1;
8 end
9 end

/* Note that there are no bounds

assigned to the links in A ′ \A and

B′ \B. */

10 for any link A in A do
11 Set its bound as

[b(∑i∈A ∑
J
j=1 x̂(h)i, j )/hc,d(∑i∈A ∑

J
j=1 x̂(h)i, j )/he];

12 end
13 for any any link B in B do
14 Set its bound as

[b(∑I
i=1 ∑ j∈B x̂(h)i, j )/hc,d(∑I

i=1 ∑ j∈B x̂(h)i, j )/he];
15 end
16 Compute an integer solution to the above

min-cost circulation problem;
17 for any bipartite graph link (i, j) do
18 Let x(h)i,j = Amount of flow on the link (i, j);
19 end
20 Let x̂(h−1) = x̂(h)−x(h);
21 end

Algorithm 3: A Min-Cost Flow based Integer-Matrix
Decomposition Algorithm.

A.3.2 Min-Cost-Flow based Approach

The second approach is based on the min-cost flow problem.
Similar to the Circulation problem in Definition 4, we intro-
duce the following min-cost circulation problem.

Definition 7 (Min-Cost Circulation Problem) Given a flow
network with

• l(v,w), lower bound on flow from node v to node w;

• u(v,w), upper bound on flow from node v to node w;

• c(v,w), cost of a unit of flow on (v,w),

the goal of the min-cost circulation problem is to find a flow
assignment f (v,w) that minimizes

∑
(v,w)

c(v,w) · f (v,w),

while satisfying the following two constraints:

1. l(v,w)≤ f (v,w)≤ u(v,w);

2. ∑u f (u,v) = ∑w f (v,w) for any node v.

Similar to the circulation problem, the min-cost circula-
tion problem can be also solved in polynomial time using
the Goldberg-Tarjan min-Cost flow algorithm [6].

With the above min-cost circulation problem, we can
slightly modify Algorithm 2 to obtain an algorithm for
the minimal-rewiring integer-matrix decomposition prob-
lem. Specifically, we introduce a weight to all the bipartite
graph links (i, j) (see lines 6-8 in Algorithm 3), and then use
the min-Cost flow algorithm to compute a flow solution (see
line 16 in Algorithm 3). Then, at each iteration, we obtain
a new decomposed matrix that minimizes the total rewiring,
i.e., ∑

I
i=1 ∑

J
j=1(b

(h)
i, j − x(h)i, j )

+.
Compared to the ILP-based approach, the min-cost-flow

based approach has significantly lower complexity. How-
ever, the solution of the min-cost-flow based approach can
be suboptimal. Algorithm 3 is essentially a greedy algo-
rithm that optimizes (15) in multiple steps. In practice, both
approaches are useful. When the ILP-based approach can
compute a solution within tolerable time, use the ILP-based
approach. When users care more about run-time complexity,
use the min-cost-flow based approach.

B Variable Deaggregation
With the newly-developed integer-matrix decomposition the-
ory (see Appendix A), we are now ready to decompose the
aggregated decision variables d∗kg

(Et
ng ,Smg) in this section.

Instead of solving (14) directly, we decompose d∗kg
(Et

ng ,Smg)

in three steps: patch-panel decomposition, server block de-
composition, and spine block decomposition. The general
idea is to apply the integer matrix decomposition theory in
each step. Patch-panel decomposition is easier, and thus will
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be discussed first. Server block decomposition and spine
block decomposition are more involved, and thus will be dis-
cussed later. We note that server block decomposition and
spine block decomposition are very similar. So we will only
discuss server block decomposition in the following.

B.1 Patch-Panel Decomposition
In this section, we decompose d∗kg

(Et
ng ,Smg) to d∗k (E

t
ng ,Smg).

d∗k (E
t
ng ,Smg) can be also viewed as an aggregated variable

of d∗k (E
t
n,Sm). Thus, d∗k (E

t
ng ,Smg) must satisfy the following

constraints:

0≤ d∗k (E
t
ng ,Smg)≤ |ng||mg|min{Gk(Et

n),Gk(Sm)}. (17)

Mg

∑
mg=1

d∗k (E
t
ng ,Smg) = |ng|Gk(Et

n). (18)

Ng

∑
ng=1

4

∑
t=1

d∗k (E
t
ng ,Smg)≤ |mg|Gk(Sm). (19)

|ng||mg|bpn,mc ≤
K

∑
k=1

4

∑
t=1

d∗k (E
t
ng ,Smg)≤ |ng||mg|dpn,me.

(20)

|ng||mg|bqt
n,mc ≤

K

∑
k=1

d∗k (E
t
ng ,Smg)≤ |ng||mg|dqt

n,me. (21)

Note that d∗kg
(Et

ng ,Smg) satisfies (11) and (12), then (20)
and (21) hold as long as d∗kg

(Et
ng ,Smg) = ∑k∈kg d∗k (E

t
ng ,Smg).

Then, the patch-panel decomposition problem can be pre-
cisely formulated as follows:

min
K

∑
k=1

Ng

∑
ng=1

4

∑
t=1

Mg

∑
mg=1

(bk(Et
ng ,Smg)−dk(Et

ng ,Smg))
+,

subject to ∑
k∈kg

dk(Et
ng ,Smg) = d∗kg

(Et
ng ,Smg) (22)

and (17)(18)(19) for all kg,

where bk(Et
ng ,Smg) = ∑n∈ng ∑m∈mg bk(Et

n,Sm).
From the formulation (22), it is easy to verify that there

is no constraint containing decision variables from different
patch-panel groups. Hence, we can further decompose (22)
into Kg independent decomposition problems as follows:

min ∑
k∈kg

Ng

∑
ng=1

4

∑
t=1

Mg

∑
mg=1

(bk(Et
ng ,Smg)−dk(Et

ng ,Smg))
+,

subject to ∑
k∈kg

dk(Et
ng ,Smg) = d∗kg

(Et
ng ,Smg) (23)

and (17)(18)(19) for a specific kg.

Based on the above discussion, we can decompose patch-
panel groups one by one. Hence, we will focus on solving
(23) in the following.

We first prove the feasibility of (23). Specifically, for
a given patch-panel group kg, d∗kg

(Et
ng ,Smg) can be viewed

as a 4Ng ×Mg matrix, where 4Ng is the total number of
middle block groups14 and Mg is the total number of spine
block groups. Let A = {{1},{2}, ...,{4Ng}} and B =
{{1},{2}, ...,{Mg}}. It is easy to verify that both A and
B are good. According to Theorem 3, d∗kg

(Et
ng ,Smg) can

be decomposed into d∗k (E
t
ng ,Smg),k ∈ kg such that the four

constraints in Theorem 3 holds. Recall that d∗kg
(Et

ng ,Smg)

satisfies the constraints (8)(9)(10). Combined with the
four constraints in Theorem 3, it is easy to verify that
d∗k (E

t
ng ,Smg),k ∈ kg satisfy the constraints (17)(18)(19) in

(23).
After proving the feasibility of (23), we can use either the

ILP based approach or the min-cost-flow based approach de-
veloped in Section A.3.2 to solve (23). We do not elaborate
it here any more.

B.2 Server-Block Decomposition
We have decomposed d∗kg

(Et
ng ,Smg) to d∗k (E

t
ng ,Smg) in the

previous section. We will further decompose d∗k (E
t
ng ,Smg) to

d∗k (E
t
n,Smg) in this section. d∗k (E

t
n,Smg) can be also viewed

as an aggregated variable of d∗k (E
t
n,Sm). Thus, d∗k (E

t
n,Smg)

must satisfy the following constraints:

0≤ d∗k (E
t
n,Smg)≤ |mg|min{Gk(Et

n),Gk(Sm)}. (24)

Mg

∑
mg=1

d∗k (E
t
n,Smg) = Gk(Et

n). (25)

N

∑
n=1

4

∑
t=1

d∗k (E
t
n,Smg)≤ |mg|Gk(Sm). (26)

|mg|bpn,mc ≤
K

∑
k=1

4

∑
t=1

d∗k (E
t
n,Smg)≤ |mg|dpn,me. (27)

|mg|bqt
n,mc ≤

K

∑
k=1

d∗k (E
t
ng ,Smg)≤ |mg|dqt

n,me. (28)

Note that d∗kg
(Et

n,Smg) satisfies (19), then (26) holds as
long as d∗kg

(Et
n,Smg) = ∑n∈ng d∗k (E

t
n,Smg). Then, the server-

block decomposition problem can be precisely formulated as
follows:

min
K

∑
k=1

N

∑
n=1

4

∑
t=1

Mg

∑
mg=1

(bk(Et
n,Smg)−dk(Et

n,Smg))
+,

subject to ∑
n∈ng

dk(Et
n,Smg) = d∗k (E

t
ng ,Smg) (29)

and (24)(25)(27)(28) for all ng,

where bk(Et
n,Smg) = ∑m∈mg bk(Et

n,Sm).
From the formulation (29), it is easy to verify that there

is no constraint containing decision variables from different

14By grouping server blocks, middle blocks are also grouped together.
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server-block groups. Hence, we can further decompose (29)
into Ng independent decomposition problems as follows:

min ∑
n∈ng

K

∑
k=1

4

∑
t=1

Mg

∑
mg=1

(bk(Et
n,Smg)−dk(Et

n,Smg))
+,

subject to ∑
n∈ng

dk(Et
n,Smg) = d∗k (E

t
ng ,Smg) (30)

and (24)(25)(27)(28) for a specific ng,

Based on the above discussion, we can decompose server-
block groups one by one. Hence, we will focus on solving
(30) in the following.

Again, we need to prove the feasibility of (30) first. For
a given server block group ng, it is easy to verify that there
are 4KMg number of different d∗k (E

t
ng ,Smg)’s. Unfortunately,

if we viewed d∗k (E
t
ng ,Smg) as a matrix with 4KMg entries,

we would not be able to accomplish the decomposition. In-
stead, we need to view d∗k (E

t
ng ,Smg) as a 4Mg×4K matrix (a

graph representation is shown in Fig. 14). This matrix can
be divided into 16 Mg×K blocks, with diagonal blocks cor-
responding to d∗k (E

1
ng ,Smg), d∗k (E

2
ng ,Smg), d∗k (E

3
ng ,Smg) and

d∗k (E
4
ng ,Smg), respectively.

Kkt ,...,1,1   Kkt ,...,1,2   Kkt ,...,1,3   Kkt ,...,1,4   

gMm

t

,...,1

,1

 

 

gMm

t

,...,1

,2

 

 

gMm

t

,...,1

,3

 

 

gMm

t

,...,1

,4

 

 

),( 1*

mn SEd
gk 0 0

0

0

00

0

00

0

0

0

),( 2*

mn SEd
gk

),( 3*

mn SEd
gk

),( 4*

mn SEd
gk

Figure 14: A matrix representation of d∗k (E
t
ng
,Smg).

Let A = {{1},{2}, ...,{4Mg}, {1,Mg+1,2Mg+1,3Mg+
1},{2,Mg +2,2Mg +2,3Mg +2}, ...,{Mg,2Mg,3Mg,4Mg}}
and B = {{1},{2}, ...,{4K}}. It is easy to verify that both
A and B are good. According to Theorem 3, d∗k (E

t
ng ,Smg)

can be decomposed into d∗k (E
t
n,Smg),n∈ ng such that the four

constraints in Theorem 3 holds. In this case, the four con-
straints in Theorem 3 can be restated as follows:

d∗k (E
t
ng ,Smg) = ∑

n∈ng

d∗k (E
t
n,Smg); (31)⌊

d∗k (E
t
ng ,Smg)

|ng|

⌋
≤ d∗k (E

t
n,Smg)≤

⌈
d∗k (E

t
ng ,Smg)

|ng|

⌉
; (32)

Constraint (3) in Theorem 3 corresponds to two types of con-
straints as follows:⌊

∑
K
k=1 d∗k (E

t
ng ,Smg)

|ng|

⌋
≤

K

∑
k=1

d∗k (E
t
n,Smg) (33)

≤

⌈
∑

K
k=1 d∗k (E

t
ng ,Smg)

|ng|

⌉
;

⌊
∑

K
k=1 ∑

4
t=1 d∗k (E

t
ng ,Smg)

|ng|

⌋
≤

K

∑
k=1

4

∑
t=1

d∗k (E
t
n,Smg) (34)

≤

⌈
∑

K
k=1 ∑

4
t=1 d∗k (E

t
ng ,Smg)

|ng|

⌉
;

Constraint (4) in Theorem 3 corresponds to just one type of
constraints as follows:∑

Mg
mg=1 d∗k (E

t
ng ,Smg)

|ng|

 ≤
Mg

∑
mg=1

d∗k (E
t
n,Smg) (35)

≤

∑
Mg
mg=1 d∗k (E

t
ng ,Smg)

|ng|

 .
Recall that d∗k (E

t
ng ,Smg) satisfies the constraints (17)(18)

(20)(21). Combined with the constraints (31)-(35), it is
easy to verify that d∗k (E

t
n,Smg),n ∈ ng satisfy the constraints

(24)(25)(27)(28) in (30).
After proving the feasibility of (30), we can use either the

ILP based approach or the min-cost-flow based approach de-
veloped in Section A.3.2 to solve (30). We do not elaborate
it here any more.

B.3 Spine Block Decomposition
Now, we have accomplished patch-panel decomposition and
server block decomposition, and proved that the decomposed
variables d∗k (E

t
n,Smg) satisfy the constraints (24)-(28). Once

we accomplish spine block decomposition, we would obtain
d∗k (E

t
n,Sm) satisfying constraints (1)-(5). The details of spine

block decomposition is very similar to server block decom-
position, and thus we will not elaborate here.
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