
This paper is included in the Proceedings of the
2022 USENIX Annual Technical Conference.

July 11–13, 2022 • Carlsbad, CA, USA
978-1-939133-29-8

Open access to the Proceedings of the
2022 USENIX Annual Technical Conference

is sponsored by

Hashing Design in Modern Networks:
Challenges and Mitigation Techniques

Yunhong Xu, Texas A&M University; Keqiang He and Rui Wang, Google; Minlan
Yu, Harvard University and Google; Nick Duffield, Texas A&M University; Hassan

Wassel, Shidong Zhang, Leon Poutievski, Junlan Zhou, and Amin Vahdat, Google

https://www.usenix.org/conference/atc22/presentation/xu

Hashing Design in Modern Networks: Challenges and Mitigation Techniques

Yunhong Xu†, Keqiang He‡, Rui Wang‡, Minlan Yu§‡, Nick Duffield†,

Hassan Wassel‡, Shidong Zhang‡, Leon Poutievski‡, Junlan Zhou‡, Amin Vahdat‡

†Texas A&M University §Harvard University ‡Google, Inc.

Abstract

Traffic load balancing across multiple paths is a critical task
for modern networks to reduce network congestion and im-
prove network efficiency. Hashing which is the foundation of
traffic load balancing still faces practical challenges. The key
problem is there is a growing need for more hash functions
because networks are getting larger with more switches, more
stages, and increased path diversity. Meanwhile, topology and
routing become more agile in order to efficiently serve traf-
fic demands with stricter throughput and latency SLAs. On
the other hand, current generation switch chips only provide
a limited number of uncorrelated hash functions. We first
demonstrate why the limited number of hashing functions is a
practical challenge in today’s datacenter network (DCN) and
wide-area network (WAN) designs. Then, to mitigate the prob-
lem, we propose a novel approach named color recombining
which enables hash functions to reuse via leveraging topol-
ogy traits of multi-stage DCN networks. We also describe a
novel framework based on coprime theory to mitigate hash
correlation in generic mesh topologies (i.e., spineless DCN
and WAN). Our evaluation using real network trace data and
topologies demonstrate that we can reduce the extent of load
imbalance (measured by the coefficient of variation) by an
order of magnitude.

1 Introduction

Traffic load balancing is critical to the reliability and efficiency
of modern datacenter and wide-area networks [16, 34, 37].
One widely deployed technique for traffic load balancing is
Equal-Cost Multi-Path (ECMP) routing [16], where packets
forwarding to a destination are load-balanced over multiple
paths based on hashing of the packet header that takes place in
switch hardware. ECMP and its variant Weighted-Cost Multi-
Path (WCMP) [37] allow proper utilization across abundant
paths available in modern networks. Hashing on header fields
allows packets of the same flow to follow the same path
without incurring packet reordering. As ECMP/WCMP offers

a number of nice properties, including stateless operation
and no reordering, it is the de facto standard for traffic load
balancing in large IP networks [1, 28, 37].

Switch hashing is the foundation of traffic load balancing in
modern multi-path networks. To optimally load balance traffic
and utilize full available bandwidth in multi-path networks
using ECMP/WCMP, hash function allocation across a net-
work should adhere to the following rule: no correlated hash
functions should appear on the same forwarding path in the
absence of color recombining (§3). Unfortunately, commodity
switch chips only support a limited number of hash functions.
For example, the software development kit for Broadcom
switches supports RTAG7 [9], a hashing scheme utilizing
seven hash functions; the Cisco Nexus 5500 Series offers
eight versions of CRC8 [8]; the switches deployed in our dat-
acenters have six independent hash functions. It is difficult to
implement a large set of complex hash functions because hash
computation becomes a bottleneck at high line rates [17, 19]
and switch chip architects often need to trade-off between
high line rate and hash function complexity.

Because of the limited number of hash functions provided
in switch chips, a challenge in network design is that the reuse
of correlated or even identical hash functions in different
different switches along the same end-to-end path for a flow
causes traffic polarization and inherent load imbalance. Many
network operators have observed this problem before [7, 11,
14, 18, 25]. One example is the Cisco Express Forwarding
(CEF) Polarization phenomenon [7], where different switches
repeatedly use the same hashing algorithm, resulting in a
switch selecting a small portion of links for all traffic destined
for one prefix, while other links were underutilized. Another
example is the hashing imperfection problem observed by a
large cloud provider [18,25], where correlated hash functions
lead to network congestion and even high priority traffic losses
which directly impact application performance. In this paper,
we use the term hash correlation to describe the association
between hash functions in different switches that leads to
traffic polarization.

Researchers and network operators have proposed a few

USENIX Association 2022 USENIX Annual Technical Conference 805

approaches to mitigate hash correlations. One class of meth-
ods uses variations of available hash functions. The most
common approach uses hash functions with different seeds
to avoid hash correlation. However, contrary to conventional
wisdom, seeds are not as effective as expected as we will
show theoretically and experimentally in this paper. Another
approach uses Time-To-Live (TTL) in the packet header for
hashing. There are two ways of using TTL: a) using TTL as
part of hashing input, which has the following limitations in
production: 1) it breaks traceroute because probe packets are
hashed/pathed differently at the same hop; 2) IP in IP tun-
neling [12] (a common technique for network virtualization
in the cloud) commonly uses the inner IP headers because
they have more entropy than the outer IP headers, but the
inner headers’ TTL does not change. It’s also hard to select
outer header TTL and inner headers because switches do not
have enough bit vectors. b) choosing a different hash function
based on TTL [14], in addition to 1) and 2) mentioned in
a), the challenges are: 3) it also requires modifying switch
hardware, which presents administrative and commercial bar-
riers to implementation since switch chips deployed in most
datacenters do not support this operation currently; and 4) it
is still constrained by the limited number of hash functions
implemented in ASIC.

This paper focuses on fixed-function switches which are
still the majority of devices in datacenters in the industry
today. Hyperscalers cannot replace all switches with pro-
grammable ones in the near future. In this paper, we first
demonstrate that the limited number of hash functions in
commodity switch chips poses a practical challenge in mod-
ern DCNs and WANs and hinders the development of more
advanced network topology and routing designs. To over-
come this challenge, we propose two novel techniques that
improve hashing, the cornerstone of traffic load balancing,
substantially while respecting the limited number of indepen-
dent hash functions available in commodity switches– 1) for
widely adopted, multi-stage Clos DCNs, we propose a color

recombining approach by comparing the effect of hash func-
tions on traffic to light passing through multiple triangular
prisms: the color recombining technique leverages the trait of
multi-stage Clos topology where polarized traffic gets recom-
bined to color white after passing through a multi-stage Clos.
Color recombining enables us to reuse certain hash functions
along the forwarding path without causing hash correlations.
We discuss hashing design for one of the multi-stage Clos
DCNs, Jupiter [26], and how the color recombining technique
helps reduce the required number of independent hash func-
tions; 2) for non-hierarchical mesh networks such as spineless
DCN [13,32] and WAN, we propose a novel framework resid-
ing in the Software Defined Networking (SDN) [20] controller.
The framework mitigates the effect of hash correlations by
the selection of the divisors n (n is also known as group size
in ECMP/WCMP routing) used to map a flow’s hash value h

to the output port over which a packet is forwarded, i.e., h%n.

Specifically, we establish that when ECMP/WCMP group
sizes at different switches are coprime, then the effects of
underlying correlations between hash functions are reduced
significantly. We add a small amount of logic to the SDN con-
troller to ensure the group sizes of switches with correlated
hash functions are coprime. As a software-only approach,
this coprime-based approach is compatible with commodity
switch chips.

To summarize, the contributions of our work are as follows:

1. Details the hashing design in multi-stage Clos DCN and
proposes a color recombining method to allow hash func-
tion reuse and to reduce the number of hash functions
needed in multi-stage Clos DCNs;

2. Identifies an approach based on the coprime theory to
mitigate hash correlations for generic mesh networks

such as spineless DCN and WAN that require a large
number of independent hash functions, and proposes
algorithms to coprime group sizes for both ECMP and
WCMP routing;

3. Evaluation results based on real network trace data and
topologies demonstrate color recombining and coprime
techniques’ effectiveness in mitigating hash correlation –
they can reduce the extent of load imbalance (measured
by the coefficient of variation, CV) by approximately an
order of magnitude.

The color-recombining approach uses topology and for-
warding structures that are common in Clos networks and
requires no hardware or software changes except hash func-
tion reconfiguration. The coprime-based method works with
any topologies (e.g., mesh networks) but it requires controller
software changes and only resolves polarization when the
conditions described in §4 are met.

In addition to the technical contributions, we also would
like to call for switch vendors’ attention to offer better hashing
support in future generations of chips to facilitate flexible
network designs.

2 Background and Motivation

In this section, we first motivate why hashing is an important
problem in modern DCNs and WANs. Then, we provide the
background of ECMP and WCMP. Finally, we introduce the
traffic polarization issue caused by hash correlation and reveal
the fact that the current generation of switch chips only pro-
vides a limited number of independent hash functions which
poses a practical challenge to traffic load balancing in modern
networks.

The implications of bad hashing are twofold. First, bad
hashing leads to traffic polarization that endangers reliability
(due to reduced path diversity), wastes network bandwidth,
cancels efficiency gains of traffic engineering, and inevitably

806 2022 USENIX Annual Technical Conference USENIX Association

Middle Block
(MB)

Spine Block

ToR
Server Block 1 Server Block 2

Stage !!

Stage !"

Stage !#

Stage !$
Stage !%

x8

x8

x8

x8

Figure 1: Illustration of Jupiter DCN (5-stage Clos). For sim-
plicity, only one Middle Block of each Server Block and one
Spine Block of the spine layer is shown.

x16

x32

A supernode (SN) with 5.12Tbps
to WAN, DC and sidelinks.
Sidelinks are links that mesh
connect the supernodes in a site

SN1 SN2

SN3 SN4
sidelinks

A stargate site

To WAN

To DC

Figure 2: Illustration of a Stargate site in the mesh-connected
B4 WAN. Figure is adapted from [15].

increases network cost. Second, bad hashing causes inherent
traffic load imbalance and leads to network congestion that
affects application performance.

2.1 Hashing is a Practical Challenge in Net-
work Designs

There are several trends that make hashing an increasingly
important problem in modern networks: 1) both datacenter
and wide-area networks are getting bigger with more switches
and stages; 2) modern networks are very dense and have a
large number of paths between any two nodes; 3) topology
and routing become more agile and flexible in order to im-
prove network efficiency and availability, e.g., the move from
spinefull DCN to reconfigurable spineless [13, 32] and the
use of non-shortest path routing to improve availability and
performance [15]; and 4) emerging applications (such as dis-
tributed machine learning) are becoming more throughput
hungry while demanding stricter network SLA guarantees.
These new trends pose challenges to commodity switches’
hashing capability, which is the cornerstone of traffic load
balancing.

2.1.1 Multi-stage Clos DCN

Modern DCN connects a massive amount of compute/storage
nodes, runs critical services, such as Search Serving, Video
Serving, Geo & Map, Cloud, and Gaming, etc, and has very
large path diversity; therefore, hashing and traffic load bal-
ancing are crucial. We use the Jupiter topology [26, 35] (as
illustrated in Figure 1) as the case study of multi-stage Clos
DCNs. We denote a Server Block (aka Pod) as SB and the

Middle Block (MB)

Server
Block 1

Server
Block 2

Server
Block 3

128

MB1 MB2 MB3 MB4

x64
Top of Rack Switches

Server Block

x8

x8

Figure 3: Spineless DCN [32] to simulate hash correlation’s
impact on traffic load balancing.

5 switch stages as S1 to S5. So the longest forwarding path
is when a packet is routed from a ToR in SBi to another
ToR in SB j and the hop sequence is S1(SBi) → S2(SBi) →
S3(SBi)→ S4 → S5 → S4 → S3(SB j)→ S2(SB j)→ S1(SB j)
where i, j are server block indices. To achieve optimal load
balancing performance, hashing needs to follow the follow-
ing property: no correlated hash functions should appear on
the same forwarding path. Naively we need O(2L) (more
precisely, max_number_o f _hops−1) independent hash func-
tions, where L is the number of layers (or stages) of the fabric.
In the case of Jupiter, 8 hash functions are needed. Unfortu-
nately, there are only 6 uncorrelated hash functions provided
by the switch chips deployed in our datacenters and the re-
quirement of 8 independent hash functions already makes
the commodity switch’s hashing capacity stretched. We will
discuss how we reduce the number of hash functions needed
for multi-stage Clos DCN in Section 3.

2.1.2 Spineless DCN

Recently, there are new spineless DCN topologies [13, 32]
which reduce cost and enable faster tech refresh, but require
more hash functions. Figure 3 is an example of spineless
DCN topology. In spineless DCN, server blocks are directly
connected via a mesh and the spine blocks are completely
removed to reduce network cost (including the cost of both
spine switches and the associated optics) significantly and
to enable faster switch generation evolvement. Also, non-
shortest path routing is used to improve routing path diversity
for high availability and enable traffic engineering to optimize
network link utilization.

While spineless DCNs are cost-effective and efficient, hash-
ing design becomes more challenging because the number of
hash functions required depends on the number of server
blocks instead of the number of layers as in multi-stage
DCNs. Taking the Gemini [32] spineless DCN as an exam-
ple, assuming that we only allow at most one transit server
block in routing, then the longest forwarding path of a packet
is: S1(SBi)→ S2(SBi)→ S3(SBi)→ S3(SB j)→ S2(SB j)→
S3(SB j) → S3(SBk) → S2(SBk) → S1(SBk) where i, j,k are
the indices of three randomly chosen server blocks. The key
challenge is that we need to make sure there are no correlated
hash functions for any i, j,k combinations. So spineless DCN
requires O(N) hash functions where N is the number of server

USENIX Association 2022 USENIX Annual Technical Conference 807

blocks. N ranges from 10s to 100s in a typical fabric, so it
is very challenging to design hashing with the limited hash
functions provided by current-generation switch chips.

2.1.3 WAN

Traffic engineering and load balancing are critical to im-
proving WAN’s performance and reducing operational costs.
Mesh-connected WANs have the same hashing design chal-
lenge where the number of uncorrelated hash functions re-
quired is subject to the scale of the network. For example,
Figure 2 shows the topology of a Stargate site of the B4
WAN [15]. Each site is composed of up to 4 supernodes
where a supernode is a 2-stage Clos with links to WAN, Data
Center, and other supernodes in the same site. B4 site-level
topology is a partially connected mesh and non-shortest path
routing is employed for both availability and efficiency (i.e.,
traffic engineering) purposes. Similar to spineless DCNs, to
ensure optimal load balancing performance, we need O(N)
hash functions, where N is the number of sites in the WAN.
Note that B4 grew 7× larger from 2012 to 2017 [15]. We will
discuss the hash correlation mitigation technique for mesh
networks such as spineless DCNs and WANs in Section 4.

2.2 ECMP/WCMP Traffic Load Balancing

Equal-Cost Multiple-Path (ECMP) [16] – a routing and traffic
load balancing strategy that allows traffic between a source
and destination node to be transmitted across multiple paths –
identifies a set of routes, each of which is equal-cost towards
the destination. The routes identified are referred to as an
ECMP group. An ECMP group is defined at flow-level. When
forwarding a packet, the routing strategy decides which next-
hop path to use based on a hashing algorithm. That is, the
route of a packet is determined by the mapping from the hash
value to an egress port, i.e., h % n, where h is the hash value,
and n is the number of output ports in the ECMP group. The
typical IP packet header fields used for hashing input are:
source IP, destination IP, transport protocol, TCP/UDP ports,
and IPv6 flow label.

Each route in an ECMP group has an equal chance for
traffic forwarding. For example, Figure 4a shows the traffic
from source IP prefix to destination IP prefix uses four equal-
cost paths, which are labeled in four colors, where H1 and H2

are two independent hash functions.

When switch hashes packets across multiple paths ac-
cording to customized weights instead of uniform ones,
this variant of ECMP is called Weighted-Cost Multi-Pathing
(WCMP) [37]. And the set of routes identified for a flow is
referred to as a WCMP group. WCMP can be implemented
via replicating ECMP table entries in the switch to approxi-
mate the intended WCMP weights. For example, if there are 2
output ports of a flow f , denoted by p1, p2, and the intended
weights are 2:1, then the WCMP group can be implemented

as p1, p1, p2 (p1 is duplicated as 2 entries to achieve the 2:1
traffic split).

2.3 Hash Correlation Causes Traffic Polariza-
tion and Load Imbalance

2.3.1 Limited Number of Hash Functions Leads to
Hash Correlation

ECMP/WCMP is widely deployed in modern DCNs and
WANs which have a large path diversity to improve traffic
load balancing performance and reduce network congestion.
Switches are configured with hash functions that compute
hash values based on packet headers and forward packets via
selecting one out of multiple next-hops based on the hash
value and the ECMP/WCMP group size.

However, current-generation switch chips were designed
for small-scale DCNs or large but sparse ISP networks and
only provide a handful of independent hash functions. For
example, the switch chips used in our datacenters provide
six independent hash functions. The software development
kit for Broadcom switches supports RTAG7 [9], a hashing
scheme utilizing seven hash functions. The Cisco Nexus 5500
Series offers eight versions of CRC8 [8]. CRC and XOR are
two popular hashing algorithms because these two algorithms
have been used in communication systems with mature and ef-
ficient ASIC implementation, which includes plenty of circuit
optimization [33]. As discussed in Section 2.1, the number of
independent hash functions needed is far beyond (orders of
magnitude difference) what is provided today, especially for
spineless DCN and WAN.

In fact, it is difficult to implement a large set of uncorrelated
hash functions because complex hash functions become a bot-
tleneck at high line rates [17, 19]. For example, the authors
in [19] discovered that the generation of Cyclic Redundancy
Codes (CRCs) represents the main bottlenecks in iSCSI proto-
col processing. Switch chip architects often need to trade-off
between high line rate and hash function complexity and we
are not aware of any switch chips with cryptographic hash
functions today due to computation complexity concerns.

In an ideal world where all the switches on the forwarding
path are configured with completely independent hash func-
tions, there would be no hash correlation. Due to the limited
hash functions, we have to reuse them, which leads to hash
correlation and traffic polarization. Polarization is a term used
to describe what happens to light as it travels through a filter.
Only light rays that have a certain characteristic get through
the filter. We can take the same term and apply it to network
traffic. Traffic polarization is the effect when a set of packets
choose a particular path and the redundant paths remain com-
pletely unused [7]. Traffic polarization reduces path diversity
and causes sub-optimal use of redundant paths and results in
traffic load imbalance and network congestion. For example,
Figure 4b shows that switches s1, s2 and s3 employ the same

808 2022 USENIX Annual Technical Conference USENIX Association

!!

!"

!#

!$
!%
!&
!'

10.0.1.
0/24 !(10.0.2.

0/24

"! ""

path1path2
path3

pat
h4

(a) Illustration example of

ECMP.

!!

!"

!#

!$
!%
!&
!'

10.0.1.
0/24 !(10.0.2.

0/24

"! "!

path1

pat
h4

(b) ECMP with hash correla-

tion.

Figure 4: ECMP with and without hash correlation.
In (b), two out of four paths are unused due to hash
correlation.

!!

index

Switch "!

Switch ""

ECM
P groupport

0 "#
1 ""

!!

index port
0 "$
1 "%

!!

index port
0 "&
1 "'

Switch "#

Figure 5: Hash correlation leads to
correlated load balancing decisions.

Figure 6: Normalized link uti-
lization for perfect hashing and
per-stage hashing

hash function (H1). The hash correlation between switches
s2 (s3) and s1 causes traffic polarization. Figure 5 explains
the problem: hash value on s2 (s3) is the same as s1, and thus
flows are only forwarded to s4 from s2 and s7 from s3. As a
result, traffic from source to destination only uses two rout-
ing paths instead of four as in Figure 4a. Traffic polarization
endangers reliability, wastes network capacity, and leads to
hot links and network congestion under high traffic loads.

2.3.2 Random Seeds Are Not Effective

Since the shortage of independent hash functions available in
switches prevents simply assigning independent hash func-
tions to different switches, switch vendors suggest deriving
multiple hash functions from one via using a switch-specific
seed [7]: a seed is an initial value to start the CRC com-
putation via XORing the input data. Because switch chip’s
port count is powers of 2 and ports are typically divided into
two equal-size directions (e.g., up-facing and down-facing)
in modern networks, ECMP groups with an even number of
ports are prevailing. However, we found that seeds do not
work for an ECMP group of an even number of ports. For
example, based on Theorem 1, all packets on switch s2 (Fig-
ure 4b) from switch s1 have the same routing choice even
if they use different seeds for the same CRC; the proof of
Theorem 1 can be found in the appendix.

Theorem 1 If crcb(x ⊕ z1)%2 = crcb(y ⊕ z1)%2, crcb(x ⊕
z2)%2 = crcb(y⊕ z2)%2, where x and y denote the data with

the same size in bytes, z1 and z2 are two seeds of b bits, and b

is the integer to denote the number of bits of the CRC, and ⊕
denotes eXclusive OR (XOR).

The above theorem indicates that choosing two random
seeds does not create two independent hash functions from
one CRC polynomial. Please note CRC polynomials are the
most widely implemented hash functions in switch hardware,
e.g., Broadcom’s RTAG7 is a hash family with 6 CRC16s and
1 CRC32. Applying a random seed is a linear operation and it
can not decorrelate a hash function’s output effectively.

To confirm our theoretical analysis, we also build a spine-
less DCN topology (shown in Figure 3) to simulate traffic
load balancing performance with hash functions provided

by a switch vendor. The topology is composed of three
Server Blocks and each server block contains 64 ToRs (each
ToR is assigned a /24 IP prefix). All these three server blocks
have the same radix of 256. The three server blocks are con-
nected in a full mesh (i.e., this is a spineless DCN [32]), so
there are exactly 128 links between each server block pair. To
simplify the analysis, we generate flows (the source IP and
destination IP of a flow is randomly chosen from the source
ToR and destination ToR’s IP prefix range respectively) fol-
lowing a uniform traffic pattern, i.e., all the server block pairs
have the same amount of flows and the flow size distribution
follows empirical datacenter flow size measurement in [4].

We compare two hashing schemes: one is perfect hash-
ing1 on each switch; and the other is per-stage hashing with
random seed where the switches in different stages are config-
ured with different functions provided by the switch vendor
and each switch in the network is provided a completely inde-
pendent and random seed. We measure the amount of traffic
landed on the links between server blocks and show the nor-
malized link utilization distribution in Figure 6. We can see
from Figure 6 that the link utilization is close to uniform
when using perfect hashing (which is expected) while per-
stage hashing with random seeds leads to considerable traffic
imbalance (max/min link utilization is 1.33). This experiment
confirms that random seed does not solve the hash correlation
problem.

3 Hashing Design in Multi-stage Networks

In this section, we describe the hashing design for multi-stage
Clos DCNs. We first start with a strawman solution, per-stage
hashing with random seed, then introduce per-port hashing
scheme which requires more hashing functions than what is
provided by commodity switches. In order to reduce the num-
ber of independent hash functions needed, we propose a novel
approach named color recombining by leveraging topology
traits of multi-stage Clos networks where polarized traffic
is recombined into non polarized traffic and hash function
reuse is allowed. We use Jupiter topology [26] as the case
study here but the techniques proposed in this section can

1Using the Mersenne Twister pseudo-random number generator in C++.

USENIX Association 2022 USENIX Annual Technical Conference 809

Traffic

Separated Recombined Separated again

Figure 7: Illustration of color recombining concept.

be generalized to other multi-stage Clos DCNs. At the end
of this section, we will provide details on why the hashing
design for multi-stage Clos does not work in spineless DCNs
and WANs.

One naive hashing design for Jupiter is per-stage hashing
with random seed which means we assign a different hash
function to each stage of switches and each switch is fed
with a random seed. However, as we revealed in §2, random
seed does not solve the hash correlation problem. Instead,
we propose per-port hashing which means we apply hash
function based on the input port of the switch. In total, there
are 5 stages of switches in Jupiter as shown in Figure 1 and
we apply two hash functions (one for upward traffic and the
other for downward traffic) per switch except S1 and S5. S1 is
ToR so only upward traffic requires a hash function; there is
no need to have two hash functions in S5 because we do not
need to distinguish upward and downward traffic. Therefore,
we need 8 independent hash functions to implement per-port
hashing in Jupiter. And we can prove that for any routing path,
there is no hash correlation. Taking the longest forwarding
path as an example: a flow is routed from a ToR in the source
server block to another ToR in the destination server block. So
the forwarding path is S1(source ToR)→ S2 → S3 → S4 →
S5 → S4 → S3 → S2 → S1(destination ToR). At each hop, a
unique hash function is used so there is no hash correlation.

!!
(ToR)

!"

!#

S1
(ToR)

!"

!#

!$% !$&

!'%

ℎ!

ℎ"

ℎ#

ℎ$

ℎ$

ℎ'

ℎ(

ℎ"

Source Server Block Destination Server Block

Spine Block

!'&

!"

!#

!

!

Figure 8: Per-port hashing with color recombining in Jupiter.

Per-port hashing design is clean and elegant (i.e., hash func-
tion allocation is static and easy to configure) for multi-stage
Clos networks such as Jupiter, but the number of hash func-
tions required is larger than what is provided by commodity
switch chips. To reduce the number of hash function needed
by per-port hashing, we identify and propose the color re-
combining technique via exploiting topology properties of

!!
(ToR)

!"

!#

!!
(ToR)

!"

!#

ℎ!

ℎ" ℎ$

ℎ%

Source Server Block Destination Server Block

ℎ#

Figure 9: Per-port hashing works if only direct path (i.e.,
shortest path) routing is allowed in spineless DCN.

multi-stage Clos to enable hash function reuse. We compare
traffic going through a hash function to light passing through
a triangular prism: light passes through prism and gets sep-
arated to its component colors; analogously, network traffic
goes through the hash function and gets forwarded to multi-
ple paths. For example, Figure 7 shows that H1 can be reused
in switch s2 because traffic becomes color white after pass-
ing through the middle triangular prism, where color white
denotes the combined traffic before splitting or after recom-
bining. We use the term color recombining to denote the
recombining of polarized/dispersed traffic. Our key insight is
that in multi-stage Clos networks, certain stages of switches
serve as the middle triangular prism in Figure 7 and combine
polarized traffic to color white.

As shown in Figure 8, there are two places traffic becomes
"color white" in Jupiter – a) after passing the spine block
and bouncing back to S4b switches and b) after reaching the
destination server block’s S2 switches. For a), h4 is applied
on S4a towards the S5a and S5b direction. S5a and S5b apply an
orthogonal hash function h5, and therefore, the same portion
(50%) of S4a → S5a and S4a → S5b goes to S4b. Effectively, the
traffic of S4a → S5a and S4a → S5b towards S4b recombines
and h4 can be reused. We define “polarized traffic w.r.t h4” as
the unequally bucketized traffic through S4a → S5a and S4a →
S5b respectively due to h4. For b), traffic gets polarized w.r.t h2

on S2, however, after traffic reaching destination server block’s
S2 chips, each S2 is designed to receive the same portion of
polarized traffic w.r.t h2, therefore h2 can be reused on S2 for
downward traffic hashing. The sufficient condition of color
recombining is there exists a "color recombining stage" such
that each switch in this stage receives the same portion of
polarized traffic w.r.t Hx and after this color recombining
stage, Hx can be reused without incurring hash correlation.
With color recombining, we effectively reduce the number of
independent hash functions needed in Jupiter from 8 to 6 and
all of the switch chips we use can meet this number.

Per-port hashing with color recombining inherits the pros
of per-port hashing while requiring less hash functions from
commodity switches. However, we found that this scheme
breaks for the emerging spineless DCN topology [32]. In
spineless DCN, both direct paths and transit paths are em-
ployed to route traffic because network architects want to
a) increase path diversity to improve availability and b) per-

810 2022 USENIX Annual Technical Conference USENIX Association

!!
(ToR)

!"

!#

!!
(ToR)

!"

!#

ℎ!

ℎ" ℎ$

ℎ%

Source Server Block Destination Server Block

!"

!#

Transit Server Block 1

!#

!!
h1

ℎ# ℎ#

ℎ$ ℎ%
ℎ"

h5 is used for traffic from up facing ports;
h2 is used for traffic from down facing

ports on S2 chips.

!"

!#

Transit Server Block 2

!#

!!
h1

ℎ$ ℎ%
ℎ"

Hash
Correlation

Figure 10: Per-port hashing breaks (h3 appears twice on the
forwarding path) in spineless DCN with non-shortest path
routing.

form traffic engineering to hedge against unpredictable traffic
spikes. Figure 9 shows that if we restrict routing to direct
paths only, the per-port hashing scheme still works. However,
as shown in Figure 10, we need to use h3 twice for the flows
traversing through a transit server block where the packet
forwarding path is S1(sourceToR)→ S2 → S3 → S3 → S2 →
S3 → S3 → S2 → S1(destinationToR). Please note that traffic
traversing through the transit server block bounces through
S2 chips for load balancing purposes. As mentioned in Sec-
tion 2, we need O(N) independent hash functions where N

is the number of server blocks. N is a large number in our
fabrics, so we need to identify more generic techniques to
mitigate hash correlation. In Section 4, we will discuss the co-

prime technique for mesh topologies such as spineless DCN
or WAN.

4 Mitigating Correlation for Mesh Networks

In this section, we describe a generic approach based on co-

prime theory to mitigate hash correlations in mesh networks.
We first provide a theory about coprime in §4.1. Following it,
we describe how the coprime theorem can be used to mitigate
hash correlations for both ECMP and WCMP, in §4.2 and
§4.3, respectively.

4.1 The Coprime Theorem

The key idea of the coprime theory is the modulo operation on
coprime numbers (e.g., 127 and 128 are two coprime numbers)
makes a hash function’s output uncorrelated. Considering one
hash function H hashed to {0,1, ..., Ĥ}, we propose to apply
the modulo operation of two coprime values to derive two
independent hash functions H1 and H2 from H, where Ĥ is
the highest hash value.

Below we explain how we use the coprime theory to miti-
gate hash correlation between two switches. In a switch, we
use a hash function to choose the next hop via performing a
modulo operation, i.e., H(x)%m, where H(x) is a hash value
on a packet x, and m is the number of next hops in the ECMP

or WCMP group. Considering a scenario where two switches
on a forwarding path both use H to choose the next hop, there
exists hash correlation and traffic polarization as described
in Figure 4b. Instead of using the same hash function H in
these two switches, as denoted in Equation 1, we can use
the derived H1 (H1 = H%q1) on the first switch to choose a
next hop among m1 next hops and H2 (H2 = H%q2) on the
second switch, hashed to m2 next hops. q1 and q2 are coprime
numbers. The theorem 2 shows the two hash functions have
no correlations.

Hi = H%qi, i ∈ {1,2} (1)

where q1 and q2 are two coprime values, and qi < Ĥ.

Theorem 2 ∀i,∀ j,Pr(H2(x)%m2 = j|H1(x)%m1 = i) '
Pr(H2(x)%m2 = j) if the following two conditions are sat-

isfied:

Condition 1: q1 (m1 or q1%m1 = 0, and q2 (m2 or

q2%m2 = 0;

Condition 2: Ĥ (q1q2.

where q1 and q2 are two coprime values, m1 and m2 are

the number of next hops, and x is a packet.

The theorem shows that the hash value of H2%m2 is inde-
pendent with the hash value of H1%m1 for an input x when
choosing proper coprimes q1 and q2 (q1 and q2 should be
chosen to meet condition 1 and 2 of Theorem 2). The proof
of Theorem 2 can be found in the appendix.

4.2 Coprime for ECMP

Based on Theorem 2, we propose a coprime-based approach
to mitigate hash correlations along a routing path. When two
hash functions are correlated, we just choose two coprimes
and apply an extra modulo operation to derive two indepen-
dent hash functions as in Equation 1.

While it may seem to be intuitive and easy to add an extra
modulo operation to the hash value in a switch, but this re-
quires switch hardware modification and no switch chips we
are using provide this functionality. Even if switch vendors
provide this functionality in their next generation chips, we
have to replace all our existing switches, which is daunting
and costly.

Instead, we propose to duplicate the ECMP group entries
to match the coprime value in the SDN controller and inter-
act with the switch flow and group tables via the existing
OpenFlow [21] interface. Figure 11 shows the procedure of
the method. We explain this using an example. Assuming
that there are two egress ports in the ECMP group for IP
prefix 10.1.2.0/24. Suppose one hash correlation occurs, we
choose a coprime value of 5 to mitigate the hash correlation.
Instead of modifying switch hardware to achieve two modulo
operations h%5%2 (h is a hash value returned from the hash
function) to choose an egress port, we duplicate 2 physical

USENIX Association 2022 USENIX Annual Technical Conference 811

egress ports into 5 logical ports in the ECMP group which are
mapped to 2 physical egress ports. In this way, we only need
one modulo operation, that is, h%5, to determine the logical
port and finally the physical egress port. Duplicating ECMP
group entries to match the coprime value is supported by to-
day’s commodity switches and we only need to add a small
amount of logic into the SDN controller. Note that Figure 11
shows that one flow table contains many IP prefixes/flows
sharing the same group (multi-path) table in the switch, so
we need to use an offset added to hash value%group size to
index each IP prefix/flow.

Data plane

Controller Choose a Coprime Value

IP Prefixes
Multipath

Table
offset

Group
size

...

10.1.2.0/24 2 5

Logical
port

Port

0 1

1 2

2 1

3 2

4 1

5 2

6 1
+

ECMP
Group

Duplicated
ECMP
Group

9 4Hash
Packet
Header

5

2 6

Flow table in a
switch Multi-path table in

a switch

Mod

5

Duplicate ports

Figure 11: The procedure of applying a coprime number to
mitigate hash correlation without requiring an extra modulo
operation.

There are two technical challenges of the copriming ECMP

group size method mentioned above: 1) increased switch mem-
ory usage, especially for large coprime values. The memory
usage is increased by O(q/m) times, where q and m is the
coprime and original ECMP group size, respectively; and 2)
ECMP precision loss – i.e., the difference between intended
weights and actual weights of different egress ports of an
ECMP group. In order to save switch memory, we may want
to choose small coprime values. However, small coprime
value contradicts condition 1 in Theorem 2; furthermore, we
also need to tolerate the ECMP precision loss introduced by
a small coprime value. When copriming ECMP group size,
some ports are duplicated for)q/m* times, and others are
duplicated for)q/m*+1 times. So when q/m is small, this
introduces ECMP precision loss.

We use the coefficient of variation (CV) to measure how
effective a coprime value is. Suppose we have m links, and the
expected portion of traffic is pi = 1/m per link. After using co-
prime q, the actual traffic distribution is p̂i = ()q/m*+ I(i ≤
q%m))/q, where I(.) is an indicator function, i ∈ {0,m−1}
is the port id, and when i ≤ q%m, I(.) = 1. The CV is com-
puted for p̂i. In our implementation of the coprime method,
we minimize CV while obeying the ECMP table size limit
offered by switch chips.

A WCMP group

Duplicate ECMP group to
match the coprime value

Treat the WCMP group
as an ECMP group

WCMP
port

Weight

1 3

2 1

WCMP
port

Weight

1 3

2 1

Logical
port

ECMP
port

WCMP
port

1 1 1

2 2 1

3 3 1

4 4 2

5 1 1

6 2 1

7 3 1

ECMP
port

WCMP
port

1 1

2 1

3 1

4 2

WCMP
port

Actual
Weight

1 6

2 1

CV

0.33

(a) Naive coprime: the WCMP

group is treated as an ECMP group

with 4 ECMP ports.

Spliting Coprime to two parts

Logical
port

WCMP
port

1 1

2 1

3 1

4 2

WCMP
port

Actual
Weight

1 5

2 2

Logical
port

WCMP
port

5 1

6 2

7 1

CV

0.09

a*W=4 r=3

(b) Split coprime: The coprime

value 7 is split into the first q̂ =
a∗W = 4 and the remaining r =
3, where a =)q/W*= 1.

Figure 12: Illustration and comparison of the naive and im-
proved algorithm to coprime WCMP groups.

4.3 Coprime for WCMP

As discussed in [37], topology asymmetry introduced by
link or switch failures requires Weighted-Cost Multi-Path
(WCMP) to distribute traffic in proportion to downstream
hops’ capacities. In this section, we extend the coprime-based
method from ECMP to WCMP.

One straightforward method, denoted by naive coprime, is
to treat a WCMP group as an ECMP group of W ECMP ports,
where W is the sum of the weights, i.e., W = ∑i wi and wi is
the weight of port i. We duplicate the W ECMP ports to q

logical ports just as an ECMP group, where q is a coprime
value. However, the weights after duplication could deviate
significantly from the intended WCMP weights. One example
is shown in Figure 12a: there are two ports in the WCMP
group, and their weights are 3 and 1, that is, w1 = 3 and w2 = 1.
This WCMP group can be treated as an ECMP group with
W = 4 ECMP ports. Suppose, we choose a coprime value
7, and after duplication, the actual weights are ŵ1 = 6 and
ŵ2 = 1, which are significantly different from the intended
WCMP weights. We use the CV of {ŵi/wi} to quantify the
difference. As shown in Figure 12a, the CV is 0.33.

To reduce the difference between the actual weights af-
ter copriming WCMP group size and the expected WCMP
weights, we propose an improved algorithm to duplicate en-
tries in the WCMP group, denoted by split coprime. Sup-
pose the WCMP group has m ports, the weight is wi for port
i, W = ∑i wi, and the chosen coprime value is q. We split
the coprime value to two parts: q̂ = a ∗W and r = q%W ,
where a =)q/W*. It is intuitive to duplicate the ports to q̂

logical ports, that is, each WCMP port are duplicated for
exactly wi ∗ a times. We duplicate m ports to left r en-
tries in the following manner: each port i is replicated for
)r/m*+I(i< r%m) times, where I(.) is an indicator function,
and when i < r%m, i ∈ {0,1, ...,m−1}, I(.) = 1. Figure 12b
illustrates the procedure of co-priming an WCMP group: the

812 2022 USENIX Annual Technical Conference USENIX Association

coprime value q = 7 is split into q̂ = 4 and r = 3; for q̂, the
two WCMP ports are duplicated for wi times, and w1 = 3 and
w2 = 1; For r, port 1 is replicated for two times and port 1 for
once. With this improved algorithm, the CV is much smaller
than the naive way of simply treating a WCMP group as an
ECMP group.

For WCMP, the memory cost of coprime is negligible be-
cause even without coprime, we need to do WCMP quanti-
zation (i.e., approximating fractional weights via duplicating
ECMP table entries) [37] to ensure the number of WCMP
entries in a group doesn’t exceed a pre-defined limit.

5 Evaluation

We conducted simulations using three types of network topolo-
gies and real-world traffic traces. We also evaluated on a
hardware testbed with hundreds of switches and large-scale
production fabrics.

5.1 Experiment Setup

Traffic traces We use CAIDA trace dataset [5] from a high-
speed Chicago monitor on a commercial backbone link: each
1-second segment has 475.37k packets and 12.91k 5-tuple
flows on average. Hashing is the foundation of traffic load
balancing in multi-path networks and it is applied at the flow-
level in ECMP/WCMP routing, therefore we focus on flow-
level statistics rather than packet-level in our simulation to
quantify the goodness of a hashing design. To map a traffic
trace to a network topology we evaluate, we randomly assign
each IP in the traffic trace to one host in our topology.

Network topologies We employ three types of topologies
in our evaluation (Table 1): 1) the simplified multi-stage Clos
(Jupiter) DCN topology as depicted in Figure 1; 2) a spineless
DCN which has eight server blocks and the connection among
server blocks is DRing [13]. Each server block contains 8 S3

chips and 8 S2 chips (each chip has 16 ports). Every server
block is directly connected to 4 neighboring server blocks
and each server block pair has 16 direct links; 3) two ISP
topologies [27]. The routing strategy for the ISPs is k-shortest
(k = 4) path routing [31] in our simulation.

Figure 13: The normalized link utilization of eight links from
one ECMP group for color recombining and per-stage hash-
ing.

Topology #Nodes #Links

Spinefull DCN (Figure 1) 2 server blocks 128
Spineless DCN (DRing [13]) 8 server blocks 512

ISP1 (small) 69 146
ISP2 (large) 122 371

Table 1: The topologies used in our simulation.

Hash functions We use one of the most widely used hash
function family, RTAG7 [10], which includes seven hash func-
tions (6 CRC16s and 1 CRC32) in our simulation.

Metrics We employ the Coefficient of Variation (CV),
which is defined as δ/µ (δ is the standard deviation and µ

is the mean of a set of data points), to quantify the goodness
of hashing. CV is a commonly used statistical measure of
the dispersion of data points around the mean. For an ECMP
group with m output ports and the associated link utilization
set {xi}, 1 ≤ i ≤ m, CV is computed against set {xi} directly.
For a WCMP group with m output ports whose weighs are wi,
1 ≤ i ≤ m, CV is computed against set {xi/wi}.

5.2 Color Recombining for Multi-stage DCN

We first study the traffic load-balancing performance of the
proposed per-port hashing with color recombining (denoted as
color recombining below) scheme for multi-stage DCN and
compare with per-stage hashing with random seed (denoted
as per-stage hashing). For per-stage hashing, we assign an
independent hash function for each stage and initialize each
hash function with a random seed.

We present normalized link utilization of eight links from
one ECMP group in Figure 13. It shows that all eight links
have similar link utilization of around 0.67 for color recom-
bining, but the per-stage hashing approach shows severe non-
uniformity. In color recombining, we only reuse hash func-
tions when color recombining happens, which eliminates hash
correlation; but in per-stage hashing, certain hash functions
are reused without considering correlations and random seeds
are linear operations that can not decorrelate the reused hash
functions.

We also compute the CV for each ECMP group and draw
the CDF of CVs in Figure 14. All the CVs are under 0.05 for
color recombining, but per-stage hashing’s CV can be above
0.6 (note that a CV of 1 means the standard deviation is equal
to the mean). In other words, per-port hashing with the color
recombining approach reduces CV by approximately an order
of magnitude compared with per-stage hashing with random
seeds. Large CV value means links in the same ECMP group
are not properly utilized and results in wasted network capac-
ity and unnecessary hot links that lead to network congestion
under heavy traffic load.

USENIX Association 2022 USENIX Annual Technical Conference 813

Figure 14: The CDF plot of CVs of
each ECMP group. Compare color re-
combining with per-stage hashing.

��� ��� ��� ��	 ��
 ��� ���
��

���
���
��

���
��
���

��
�

�����������������
�������

Figure 15: The CDF plot of CVs of
each ECMP group. Compare coprime
with per-stage hashing.

��� ��� ��� ��� ��	
��

���
���
��	
���
��
���

��
� ���������

���������

��������	�
��������
�
����������

Figure 16: The CDF plot of CVs of
each ECMP group. Compare different
coprime values.

���� ���	 ���� ���	
��

���
���
���
��

���
���

�
�

�������������
�������������

Figure 17: The CDF plot of CVs for
each WCMP group. Compare two al-
gorithms of copriming WCMP group.

��� ��� ��� ��	 ��
 ���
��

���
���
���
��	
��

���

��

������
�������

Figure 18: CDF plot of CV of each
ECMP group for ISP 1.

 �� �	 �� �� �
 �� �	 ��
��������������������

�
���
���
	��

��

����
����
����

�
�
��
���
��
��
��
���

��

���������
���������

Figure 19: The number of ECMP
groups of CV > 0.1.

Figure 20: The normalized link utilization of 16 links con-
necting two server blocks.

5.3 Coprime for Spineless DCN

In the spineless DCN, all eight server blocks are connected
in a DRing topology [13]. We choose two coprime values
for every server block pair to mitigate the hash correlation
between them. We compare coprime with the per-stage hash-
ing where each server block uses 3 randomly chosen hash
functions from the RTAG7 hash family and each function is
supplied a random seed. We conduct experiments to evaluate
the coprime-based approach for both ECMP and WCMP.

5.3.1 Coprime for ECMP

We show the normalized link utilization from 16 links con-
necting two server blocks in Figure 20. All links have the
utilization of around 0.75 for the coprime-based approach,

where the coprime values are 8 (note each ECMP group has 8
ports because each S3 chip of a server block has 8 up-facing
ports) and 57 for the two server blocks, respectively. However,
using per-stage hashing, the max/min link utilization ratio is
above 2. Due to the shortage of independent hash functions,
per-stage hashing has to reuse certain identical hash functions
(even though they are provided with random seeds), and this
raises traffic polarization as shown in Figure 20.

For quantification, the coprime-based approach outper-
forms per-stage hashing by reducing the CV by about 80%.
For the coprime-based approach, all CVs are under 0.1, but
for per-stage hashing, the CV can be as high as 0.5, as shown
in Figure 15.

The coprime value matters when mitigating hash correla-
tion: a large coprime value is more effective than a small
one. We evaluate five different coprime values from 9 to 73,
and show the CVs in Figure 16. It shows that the CV can be
close to 0.4 when the coprime value is 9. When increasing
the coprime value to 73, the improvement is not significant
compared to 57. The result is consistent with our analysis in
the end of § 4.2, which describes a trade-off between mem-
ory usage and ECMP precision. How to choose a coprime
value depends on the memory a switch has and the level of
imbalance one can tolerate.

814 2022 USENIX Annual Technical Conference USENIX Association

5.3.2 Coprime for WCMP

To evaluate coprime for WCMP, we simulate a scenario where
the first half links in an ECMP group have 2× capacity, and
therefore, the weights for those links are 2 and the remain-
ing ones are 1. In this evaluation, we focus on two ways to
duplicate the WCMP ports to match the coprime value: one
is the naive coprime where a WCMP group is regarded as
an ECMP as shown in Figure 12a; the other one (denoted as
split coprime) is to split the coprime value into two parts as
described in Figure 12b.

We draw the CDF plot of CVs per WCMP group in Fig-
ure 17. It shows that all CVs are under 0.075 when using the
split coprime algorithm, while CV can reach 0.12 when using
the naive coprime algorithm. We also observe split coprime
reduces CV by approximately 60% for some WCMP groups
compared with naive coprime. Our results indicate that split
coprime should be preferred over naive coprime because it
reduces CV using the same amount of switch memory.

5.4 Coprime for WAN

The coprime-based approach works for WAN topologies. We
use the two ISP networks in Table 1 to evaluate load bal-
ancing performance of the coprime technique. We compare
the coprime method with a random hash allocation approach
(denoted as Random in Figure 18), where each switch ran-
domly chooses an independent hash function from RTAG7
hash family and applies a random seed.

Our result shows that the coprime-based approach reduces
CVs by about one order of magnitude compared with the
random method. We compute all CVs for the link utilizations
in every ECMP group and draw the CDF plot of CVs in
Figure 18. When using the random method, CV can be as
large as 1, which means only one link in the ECMP group
is used, and others are idle. On the other hand, applying a
coprime value to the ECMP group increases load balancing
performance significantly, with CV lower than 0.1.

We also study how many independent hash functions are
enough to eliminate traffic imbalance. We conduct an experi-
ment by increasing the number of hash functions and gather
the number of ECMP groups of CV > 0.1, caused by hash
correlations. For this experiment, we introduce more CRC
hash functions [24] beyond RTAG7, without considering the
hardware implementation limitation. The result is shown in
Figure 19. It shows that the small ISP (ISP 1) requires at
least 40 hash functions to eliminate the correlations. How-
ever, the larger ISP (ISP 2) still has nearly 200 correlations
when using 40 hashes. This result implies that even if chip
vendors provide more hash functions in their next generation
chips, it might be not sufficient for a large topology, e.g., B4
WAN grew 7× larger in 5 years [15]. On the other hand, the
coprime-base algorithm can be commonly used for topologies
of arbitrary sizes.

Figure 21: The normalized link utilization of one S3 switch
over 1-hour time window from the hardware testbed.

� �� 	�
� �� �� �
������������

���
��	
���
��
���
���

��
��

��
���

��
���
��
��
���
��
���

�

������
�����	
�����

������

Figure 22: The normalized link utilization of four links from
one spine block towards one server block over 1-hour time
window from the production fabric after applying color re-
combining.

5.5 Hardware Testbed Evaluation and Pro-
duction Fabric Deployment

We constructed a hardware testbed using the spineless DCN
topology (Figure 3). There are 4 server blocks and hundreds
of switches in this hardware testbed. The testbed serves a few
Tbps traffic generated by production-grade applications and
is carried by TCP and UDP. Within each server block, we
apply a per-port hashing scheme as Figure 9 shows and in
total 5 independent hash functions are used. We allow both
shortest path routing and non-shortest path routing, i.e., we
allow traffic to transit through an intermediate server block to
reach a destination server block. To mitigate the hash correla-
tion problem as illustrated in Figure 10, we apply the coprime
scheme to coprime ECMP group size on S3 switches – for
traffic originating a server block, ECMP group size is coprime
to 128; for traffic transiting a server block, ECMP group size
is coprime to 127. Therefore, we can ensure there is no hash
correlation for both shortest and non-shortest routing paths.
We show the normalized link utilization of one S3 switch over
1-hour time window in Figure 21. We observe excellent load
balancing performance with a CV of 0.02.

Color-recombining has been deployed in our production
multi-stage Clos fabrics for several years and significantly
reduced load imbalance due to hash correlation. The deploy-
ment of color-recombining is the following: after deciding
which hash functions can be reused, we simply configure
the switches with the designated hash functions. We studied
the hashing performance result of color-recombining in pro-

USENIX Association 2022 USENIX Annual Technical Conference 815

duction multi-stage Clos fabrics and the normalized link uti-
lization of one representative spine block towards one server
block from S4 to S3 direction is shown in Figure 22. The spine
block’s port speed is 40Gbps. As we discussed in Section 3
(Figure 8), hash function h4 is reused to load balance traffic
leaving spine blocks from S4 to S3 direction. But due to the
color-recombining technique, polarized traffic due to h4 are
merged into color white when leaving S4 chips, as a result,
we observe very nice load balancing performance with a CV
of 0.03.

6 Related Work

Traffic Load Balancing There are many prior works to ad-
dress an important limitation of ECMP/WCMP: load balanc-
ing performance degrades when there is a large traffic entropy,
i.e., when elephant flows collide on the same path, network
congestion arises. For example, previous works [3, 28] pro-
pose to split elephant flows into smaller "flowlets" that can be
load-balanced over different paths; other works [2, 30] pro-
pose to reschedule elephant flows after detecting collisions.
MPTCP [29] is a transport protocol that uses subflows to trans-
mit over multiple paths. These works rely on the assumption
that there is no hash correlation. Our work is complementary
and all load balancing schemes benefit from our improved
hashing design, which is the corner stone of load balancing.

Hashing in Networks The universal algorithm [7] adds
a 32-bit router-specific value to the hash function; however,
as we show theoretically and experimentally in §2.3, ran-
dom seeds do not work well. The paper [36] proposes to
mitigate hash function correlation by randomly setting the
VLAN-id for each switch. However, randomizing the VLAN-
id increases network management complexity. The paper [14]
selects a different hash function for a different value of the
TTL field. However, this approach is still constrained by the
limited number of hash functions and it also requires modi-
fying switch hardware. The novelty of this paper is that our
approaches work with commodity switch hardware without
any hardware modification or switch upgrade, which is costly
and daunting in large-scale networks.

Decorrelate Hashing Researches have already relied on
prime numbers to design independent hash functions. For ex-
ample, the universal hash functions employs the prime num-
ber as the divisor [6, 23], where primes are special case of
coprimes. Our work extends prior theory and applies it to
improve traffic load balancing in modern networks.

The patent by A. Meyer [22] uses co-primes to solve the
storage collision for hash tables, that is, how to insert an item
into the hash table when collision occurs; however, their
method is different from ours where they add a co-prime
offset to the original hash output, and this is similar to choos-
ing an initial value for the hash function. We have proved that
random initial values (including co-prime ones) do not work
for an ECMP group of even size in Theorem 1.

7 Conclusions

This paper tackles a real but underestimated problem in net-
work traffic load balancing, i.e., traffic polarization caused by
hash correlations. This paper proposes two novel approaches
to mitigate hash correlation: 1) a color recombining technique
which exploits topology traits of Clos networks to allow hash
function reuse and to reduce the number of needed indepen-
dent hash functions in multi-stage Clos DCN and 2) a generic
coprime-based technique to mitigate hash correlation for non-
hierarchical mesh networks such as spineless DCN and WAN.
Evaluations results based on real traffic trace and topologies
show that the proposed techniques can reduce the extent of
load imbalance, quantified by coefficient of variance (CV),
by one order of magnitude. The limited hashing capability
offered by current switch silicon reduces network reliabil-
ity, efficiency and poses challenges to modern large-scale
networks. We believe that novel approaches that work with
current switch hardware are valuable. We also hope our use
cases of more flexible topology and routing designs can moti-
vate switch vendors to provide better hashing support in the
future.

8 Acknowledgement

We thank our anonymous shepherd and reviewers for their
helpful suggestions. The authors thank David Wetherall, Ab-
dul Kabbani and Christophe Diot for their insightful feedback
which greatly improves the quality of this paper. This work
was supported in part by the National Science Foundation
(grants CNS-1618030 and CNS-2107078).

References

[1] Venkata Ramana Kiran Addanki. Method and system for
management of flood traffic over multiple 0: N link ag-
gregation groups, April 22 2014. US Patent 8,705,551.

[2] Mohammad Al-Fares, Sivasankar Radhakrishnan,
Barath Raghavan, Nelson Huang, and Amin Vahdat.
Hedera: Dynamic flow scheduling for data center
networks. In NSDI, volume 10, pages 19–19, 2010.

[3] Mohammad Alizadeh, Tom Edsall, Sarang Dharma-
purikar, Ramanan Vaidyanathan, Kevin Chu, Andy Fin-
gerhut, Francis Matus, Rong Pan, Navindra Yadav,
George Varghese, et al. Conga: Distributed congestion-
aware load balancing for datacenters. In ACM SIG-

COMM Computer Communication Review, volume 44,
pages 503–514. ACM, 2014.

[4] Mohammad Alizadeh, Albert Greenberg, David A
Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar,
Sudipta Sengupta, and Murari Sridharan. Data center

816 2022 USENIX Annual Technical Conference USENIX Association

tcp (dctcp). In Proceedings of the ACM SIGCOMM

2010 Conference, pages 63–74, 2010.

[5] CAIDA. The CAIDA anonymized internet traces
data access. http://www.caida.org/data/passive/passive
_dataset_download.xml, 2019.

[6] J Lawrence Carter and Mark N Wegman. Universal
classes of hash functions. Journal of computer and

system sciences, 18(2):143–154, 1979.

[7] Cisco. Cef polarization.
https://www.cisco.com/c/en/us/support/docs/ip/express-
forwarding-cef/116376-technote-cef-00.html, 2013.

[8] Cisco. Data center access design with cisco
nexus 5000 series switches and 2000 se-
ries fabric extenders and virtual portchannels.
https://itnetworkingpros.files.wordpress.com/2014/04/c07-
572829-01_design_n5k_n2k_vpc_dg.pdf, 2018.

[9] Broadcom Corporation. Bcm56070 switch program-
ming guide. https://docs.broadcom.com/doc/56070-
PG2-PUB, 2020.

[10] Dell. Dell configuration guide
for the s4048-on system 9.9(0.0).
https://www.dell.com/support/manuals/us/en/19/force10-
s4048-on/s4048_on_9.9.0.0_config_pub-v1/rtag7,
2015.

[11] Dell. Dell networking configuration guide for
the mxl 10/40gbe switch i/o module 9.9(0.0).
http://www.dell.com/support/manuals, 2015.

[12] Network Working Group. Ip in ip tunneling.
https://datatracker.ietf.org/doc/html/rfc1853.

[13] Vipul Harsh, Sangeetha Abdu Jyothi, and P Brighten
Godfrey. Spineless data centers. In Proceedings of the

19th ACM Workshop on Hot Topics in Networks, pages
67–73, 2020.

[14] Ariel Hendel. Mutable hash for network hash polariza-
tion, March 19 2015. US Patent App. 14/026,725.

[15] Chi-Yao Hong, Subhasree Mandal, Mohammad Al-
Fares, Min Zhu, Richard Alimi, Chandan Bhagat,
Sourabh Jain, Jay Kaimal, Shiyu Liang, Kirill Mendelev,
et al. B4 and after: managing hierarchy, partitioning,
and asymmetry for availability and scale in google’s
software-defined wan. In Proceedings of the 2018 Con-

ference of the ACM Special Interest Group on Data

Communication, pages 74–87, 2018.

[16] C. Hopps. Analysis of an equal-cost multi-path algo-
rithm. RFC 2992, RFC Editor, November 2000.

[17] Yuanhong Huo, Xiaoyang Li, Wei Wang, and Dake Liu.
High performance table-based architecture for parallel
crc calculation. In The 21st IEEE International Work-

shop on Local and Metropolitan Area Networks, pages
1–6. IEEE, 2015.

[18] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon
Ong, Leon Poutievski, Arjun Singh, Subbaiah Venkata,
Jim Wanderer, Junlan Zhou, Min Zhu, et al. B4: Expe-
rience with a globally-deployed software defined wan.
ACM SIGCOMM Computer Communication Review,
43(4):3–14, 2013.

[19] Abhijeet Joglekar, Michael E Kounavis, and Frank L
Berry. A scalable and high performance software iscsi
implementation. In FAST, volume 5, pages 267–280,
2005.

[20] Nick McKeown. Software-defined networking. INFO-

COM keynote talk, 17(2):30–32, 2009.

[21] Nick McKeown, Tom Anderson, Hari Balakrishnan,
Guru Parulkar, Larry Peterson, Jennifer Rexford, Scott
Shenker, and Jonathan Turner. Openflow: enabling inno-
vation in campus networks. ACM SIGCOMM computer

communication review, 38(2):69–74, 2008.

[22] Alex Meyer. Co-prime hashing, July 28 2020. US Patent
10,725,990.

[23] Mats Näslund. Universal hash functions & hard core
bits. In International Conference on the Theory and

Applications of Cryptographic Techniques, pages 356–
366. Springer, 1995.

[24] Carnegie Mellon University Philip Koopman. Best crc
polynomials. https://users.ece.cmu.edu/ koopman/crc/.

[25] R. Wang, H. Wassel, J. Zhou, B. Felderman and D.
Wetherall. Experiences with multipath forwarding in dc
networks. 2017 Google Networking Research Summit.

[26] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson,
Ashby Armistead, Roy Bannon, Seb Boving, Gaurav
Desai, Bob Felderman, Paulie Germano, et al. Jupiter
rising: A decade of clos topologies and centralized con-
trol in google’s datacenter network. In ACM SIGCOMM

computer communication review, volume 45, pages 183–
197. ACM, 2015.

[27] Neil Spring, Ratul Mahajan, and David Wetherall. Mea-
suring isp topologies with rocketfuel. In ACM SIG-

COMM Computer Communication Review, volume 32,
pages 133–145. ACM, 2002.

[28] Erico Vanini, Rong Pan, Mohammad Alizadeh, Parvin
Taheri, and Tom Edsall. Let it flow: Resilient asym-
metric load balancing with flowlet switching. In NSDI,
pages 407–420, 2017.

USENIX Association 2022 USENIX Annual Technical Conference 817

[29] Damon Wischik, Costin Raiciu, Adam Greenhalgh, and
Mark Handley. Design, implementation and evaluation
of congestion control for multipath tcp. In NSDI, vol-
ume 11, pages 8–8, 2011.

[30] Xin Wu, Daniel Turner, Chao-Chih Chen, David A
Maltz, Xiaowei Yang, Lihua Yuan, and Ming Zhang.
Netpilot: automating datacenter network failure miti-
gation. ACM SIGCOMM Computer Communication

Review, 42(4):419–430, 2012.

[31] Jin Y Yen. An algorithm for finding shortest routes
from all source nodes to a given destination in general
networks. Quarterly of Applied Mathematics, 27(4):526–
530, 1970.

[32] Mingyang Zhang, Jianan Zhang, Rui Wang, Ramesh
Govindan, Jeffrey C Mogul, and Amin Vahdat. Gem-
ini: Practical reconfigurable datacenter networks with
topology and traffic engineering. arXiv preprint

arXiv:2110.08374, 2021.

[33] Zhehui Zhang, Haiyang Zheng, Jiayao Hu, Xiangning
Yu, Chenchen Qi, Xuemei Shi, and Guohui Wang. Hash-
ing linearity enables relative path control in data cen-
ters. In 2021 USENIX Annual Technical Conference

(USENIX ATC 21), pages 855–862, 2021.

[34] Rui Zhang-Shen and Nick McKeown. Designing a pre-
dictable internet backbone with valiant load-balancing.
Quality of Service–IWQoS 2005, pages 178–192, 2005.

[35] Shizhen Zhao, Rui Wang, Junlan Zhou, Joon Ong, Jef-
frey C Mogul, and Amin Vahdat. Minimal rewiring:
Efficient live expansion for clos data center networks.
In 16th {USENIX} Symposium on Networked Systems

Design and Implementation ({NSDI} 19), pages 221–
234, 2019.

[36] Junlan Zhou and Zhengrong Ji. Hashing technique to op-
timally balance load within switching networks. 2017.

[37] Junlan Zhou, Malveeka Tewari, Min Zhu, Abdul Kab-
bani, Leon Poutievski, Arjun Singh, and Amin Vahdat.
Wcmp: Weighted cost multipathing for improved fair-
ness in data centers. In Proceedings of the Ninth Euro-

pean Conference on Computer Systems, page 5. ACM,
2014.

A Proofs of Theorems

Proof of Theorem 1 (CRC Seed) The CRC seed is also
known as the initial value, where we can initialize the CRC

value via XORing the seed with the input byte. Suppose the
input is denoted by x, and the two random seeds are z1 and
z2. In order to prove random seeds are not effective, we only
need to prove the following two rules:

If crcb(x)%2 = crcb(y)%2, crcb(x ⊕ z1)%2 = crcb(y ⊕
z1)%2;

If crcb(x)%2 = crcb(y)%2, crcb(x ⊕ z2)%2 = crcb(y ⊕
z2)%2.

Let z1 = crcb(t). Based on the rolling property of the CRC
function, we get:

crcb(x⊕ z1) = crcb((t - bx)|x) = crcb(t - bx)⊕ crcb(x).
where bx is the binary length of x,⊕ is XOR and | is bitwise

and. We also have

crcb(y⊕ z1) = crcb(t - bx)⊕ crcb(y).
If crcb(x) and crcb(y) are both even (odd), crcb(t - bx)⊕

crcb(x) and crcb(t - bx)⊕ crcb(y) are both even or odd, that
is, crcb(x⊕ z1) and crcb(y⊕ z1) are both even(odd).

It is the same for crcb(x⊕ z2)%2 = crcb(y⊕ z2)%2

Proof of Theorem 2 (co-primes) Let U , W , U ′ and W ′ de-
note the distribution of the hashing output of H%m1, H%m2,
H%q1%m1 and H%q2%m2, respectively. When Ĥ (q1q2

(condition 2 in Theorem 2), ∀i′ ∈ [0,q1 −1], j′ ∈ [0,q2 −1],
i ∈ [0,m1 −1], and j ∈ [0,m2 −1], we have,

Pr(U ′ = i′,W ′ = j′) = 1/(q1q2)

When condition 1 is not satisfied in Theorem 2, there ex-
ists hash correlation brought by q1%m1 and q2%m2 because
the mapping from q1(q2) to m1(m2) has a remainder. This
mapping causes the non-uniform distribution of q1 integers
over m1 slots, where q1%m1 slots get)q1/m1*+ 1 integers
each, and m1 −q1%m1 slots get)q1/m1* integers each. We
denote this non-uniformity by the term the approximation
error. Note that when q1 increases, the difference between
()q1/m1 + 1*)/q1 and ()q1/m1*)/q1 can be reduced, and
thus, we can quantify the approximation error by Equation
(2).

err = (q1%m1)/q1 +(q2%m2)/q2 (2)

where err denotes the approximation error. When condition
1 is satisfied, err ≈ 0. Let S(i) = {i′|i′%i = 0}, and S(j) =
{ j′| j′% j = 0}, we have,

Pr(W = j|U = i) =
∑i′∈S(i), j′∈S(j) P(U ′ = i′,W ′ = j′)

∑i′∈S(i) P(U ′ = i′)

=
(q1/m1)(q2/m2)(1/(q1q2))

(q1/m1)(1/q1)

= 1/m2 = Pr(W = j)

(3)

818 2022 USENIX Annual Technical Conference USENIX Association

