
Collaborative Deep Metric Learning for Video Understanding
Joonseok Lee

Google AI Perception
Mountain View, CA

joonseok@google.com

Sami Abu-El-Haija
Google AI Perception
Mountain View, CA
haija@google.com

Balakrishnan Varadarajan
Google AI Perception
Mountain View, CA

balakrishnanv@google.com

Apostol (Paul) Natsev
Google AI Perception
Mountain View, CA
natsev@google.com

ABSTRACT
The goal of video understanding is to develop algorithms that en-
able machines understand videos at the level of human experts.
Researchers have tackled various domains including video classifi-
cation, search, personalized recommendation, and more. However,
there is a research gap in combining these domains in one unified
learning framework. Towards that, we propose a deep network that
embeds videos using their audio-visual content, onto a metric space
which preserves video-to-video relationships. Then, we use the
trained embedding network to tackle various domains including
video classification and recommendation, showing significant im-
provements over state-of-the-art baselines. The proposed approach
is highly scalable to deploy on large-scale video sharing platforms
like YouTube.

CCS CONCEPTS
• Computing methodologies → Visual content-based index-
ing and retrieval; Neural networks; • Information systems →
Recommender systems;

KEYWORDS
Video understanding, metric learning, triplet learning, recommen-
dation, classification, collaborative filtering
ACM Reference Format:
Joonseok Lee, Sami Abu-El-Haija, Balakrishnan Varadarajan, and Apostol
(Paul) Natsev. 2018. Collaborative Deep Metric Learning for Video Under-
standing. In KDD ’18: The 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, August 19–23, 2018, London, United
Kingdom. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3219819.3219856

1 INTRODUCTION
Recent advancements in computer vision enabled machines to sur-
pass human accuracy in object recognition in still images [14],
powered by large amounts of manually labeled data. We human
beings, however, naturally understand our surroundings with less

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
KDD ’18, August 19–23, 2018, London, United Kingdom
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5552-0/18/08.
https://doi.org/10.1145/3219819.3219856

supervision through stereovision and watching moving objects. In
order for machines to understand the world as we do, supervised im-
age understanding may not suffice as still images lose information
about actor intent and how objects interact. Video understanding, a
rapidly developing area of research, aims at understanding videos at
the level of a human expert and is essential to make drastic progress
in visual recognition.

There are many applications in video understanding. One appli-
cation is video annotation, where the goal is to identify key indi-
vidual objects (e.g., car) or higher-level concepts (e.g., soccer game)
given a video. As humans, we quickly recognize familiar objects,
such as cars, children, or buildings. We are able to recognize fur-
ther details such as the kind of the car, or identify the main actors.
Usually the set of candidate labels are finite, and in this case video
annotation problem can be considered as multi-label video classifi-
cation problem, assigning an appropriate set of labels to the given
video. Another application is video recommendation. In online video
sharing platforms like YouTube, there is “Recommended” section,
which is personalized based on the user profile, watch history, and
site-wide behaviors such as searching or commenting. Video search
is another application. Traditionally, video has been searched based
only on the human-labeled tags or meta-data (e.g., titles or descrip-
tions). With video understanding, we can retrieve videos that are
relevant to the query purely from the content. Related video retrieval
problem is a variant of video search or recommendation, where the
query is a video and the response is a list of videos. For example,
YouTube shows a set of related videos on the right side while you
are watching a video. This recommendation may depend not only
on the inferred user taste, but also on the video currently being
watched. These examples are shown in Figure 1. In addition to
these applications, there are many more applications where video
content understanding can be applied, including event detection,
video question answering (VQA), motion recognition, and video
summarization.

Video understanding research, however, faces some challenges.
First, video files are large and often prohibitive to download and
store. Second, training machine learning models on videos is com-
putationally intensive as the video files must be decoded during
training. Third, collecting human labels on videos is costly as raters
are required towatch the video, which can takeminutes to hours per
video. Fortunately, recent release of large-scale public dataset [1, 39]
and specialized hardware [23] alleviate some of these challenges.

https://doi.org/10.1145/3219819.3219856
https://doi.org/10.1145/3219819.3219856
https://doi.org/10.1145/3219819.3219856

Figure 1: Examples of Video Understanding Problems. (Left): Video recommendations for a user who recently watched trailers
of “Spider-Man: Homecoming (2017)” and “WonderWoman (2017)”. (Right): Related video retrieval problem, where the query
is a trailer for “House of Cards Season 5 (2017)”.

We propose to tackle these various video understanding prob-
lems by metric learning [4]. Concretely, we are given a graph of
videos, where a pair of videos have an edge in the graph if they
are related. Our goal is to learn an “embedding” function which
can project a video onto a low-dimensional space, where related
videos are close in the embedding space, while unrelated ones are
far apart. Our goal is to learn an embedding function that can
generalize across different video understanding tasks.

Our proposedmethod uses two sources of information: raw video
content and user behavior. From the first source, we use state-of-
the-art deep neural networks to extract image and audio features.
From the second source, we construct a graph on videos where an
edge exists between two videos if they are co-watched by many
users. We train our embedding function to preserve the structure
of this graph. This idea is conceptually aligned with Collaborative
Filtering (CF) [15], where many users (implicitly) collaborate each
other to filter relevant items. We wish to generalize beyond the
training set, where a video or its edges are not observed during
training.

We foresee many applications with our method, some of which
are demonstrated in this paper. For instance, our method can be
used for cold-start recommendation, where one wishes to infer
user interests in newly uploaded videos. Our method can also be
used for video annotation, which could assist search and discovery.
Improving performance on these tasks can have positive impact
on user engagement, as such methods can help users navigate
YouTube’s large content1. We show quantitative and qualitative
results on video recommendation and annotation, showing that our
metric space improves performance over our baselines.

To summarize, we propose Collaborative Deep Metric Learning
(CDML) approach which utilizes both video content and CF infor-
mation. Specifically, our deep embedding of audio-visual content
defines a metric space that is trained to reconstruct the CF infor-
mation. Since the audio-visual content is available at upload time,
our model can do inference right-away, and can then assist prac-
tical tasks of video recommendation and annotation. Qualitative

1YouTube receives 300 hours of video uploads every minute, http://youtube-trends.
blogspot.com/2015/05/y-is-for-you-10yearsofyoutube_26.html

analysis suggests that our embedding function generalizes beyond
simple visual and audial similarity, and can capture higher-level
semantic relationships. Our main contributions are:

• We train a mapping from video content to CF signals, cap-
turing high-level semantic relationship between videos. This
content-aware embedding can be used towards solving the
cold-start problem.

• We verify that our embedding generalizes and can be trans-
ferred to various problems, including personalized video
recommendation and video annotation.

• The proposed method is scalable and can be deployed on
large-scale video sharing platform like YouTube. We describe
engineering concerns and solutions regarding scalability
issues, and evaluate on large-scale datasets.

We start by reviewing related work in literature in Section 2.
Then, we introduce our proposed approach with details in Section 3.
In Section 4, we demonstrate performance of our system in various
video understanding problems, both on public dataset and with real
system. We conclude with our contributions and future work in
Section 5.

2 RELATEDWORK
There are many related work modeling pair-wise similarities of
items in a learned metric space. It is firstly introduced for nearest
neighbor classification in early papers [13, 44], followed by a sem-
inal paper [56] for clustering. It has been applied to many areas,
including text retrieval [26], recommendation [32], and bioinformat-
ics [57]. See the survey by Bellet et al. [4] for traditionalmethods and
other applications. Recently, “deep metric learning” [6] is widely
used in computer vision, such as image classification [20, 38] and
face recognition [8].

Deep neural networks are also popular on other video under-
standing tasks. Content-based video classification (or video anno-
tation) takes advantage of convolutional neural networks (CNN)
for image (frame) understanding [24] as well as recurrent neu-
ral networks (RNN) for temporal aspect of videos. [46, 49, 55, 58,
60] Fernando et al. [12] introduced rank-pooling for end-to-end

http://youtube-trends.blogspot.com/2015/05/y-is-for-you-10yearsofyoutube_26.html
http://youtube-trends.blogspot.com/2015/05/y-is-for-you-10yearsofyoutube_26.html

Frames Audio

Image feature
extractor

Audio feature
extractor

Pooling Poolingg g

L2 L2

Video feature Audio feature

(a) Feature extraction. From sampled frames and low-
level audio signals, we extract video and audio features
with pre-trained models.

Video feature Audio feature

Video feature Audio feature

FC

L2L2

Final embedding

Video feature Audio feature

FC FC

Video embedding Audio embedding

X

L2

X

Final embedding

(b) Two possible variants of embedding network f . Video and audio features are combined,
either from the beginning (early fusion; left) or with element-wise multiplication after two separate
towers for each of them (late fusion; right).

Figure 2: The network architecture for Collaborative Deep Feature Embedding

video classification. Deep learning also has been applied to video
search [21, 59].

Collaborative filtering [15] has beenwidely used in recommender
systems, commonly with matrix factorization [27–30, 42]. There
is a large wealth of works that employ editorial content-based
information, such as movie genres, description and user-generated
tags, traditionally known as content-based filtering. [9, 33, 36, 37,
47, 48, 62] We do not use editorial information, with the exception
of movie titles, which we only use to collect YouTube trailers for
movies.

Our approach is also related to semi-supervised node classifi-
cation, where we predict labels for all unlabeled nodes, given a
partially-labeled graph with its node features. Broadly speaking, it
can be divided into two classes. The first one learns a model of labels
from features, and uses the graph to “regularize” the model [3, 41],
and the second propagates latent node representations through
edges and the aggregated information at each node is used to pre-
dict its label [10, 25], but they require the graph during inference.
We are more similar to the first, in that we do not need a graph
during inference. However, we differ from them because the graph
(i.e., Collaborative Filtering information) is our optimization target,
rather than a regularizer. Most similarly, Van den Oord et al. [51]
trains a deep network to predict song ratings from the sound wave.
This is similar to ours, except that we use a triplet learning objective
and apply our method on videos with audio-visual information.

3 PROPOSED METHOD
In this section, we detail our video metric learning method. We start
by describing how we extract video and audio features, followed
by our triplet-based neural network embedding model.

3.1 Video and Audio Features
Since videos are large in size, we follow [1] by extracting visual
and audio features from videos using pre-trained models. Feature
extraction step is illustrated in Figure 2(a).

In particular, we extract image features at 1-frame-per-second
using an Inception-v3 network [50], trained on the JFT dataset [19]

which contains 100 million labeled images. We fetch the ReLu acti-
vation of the last hidden layer, before the classification layer. After-
wards, we apply PCA (and whitening) to reduce feature dimensions
to 1,500 for storage and computational reasons. These frame-level
features are aggregated into video-level by average pooling. There
may be more sophisticated methods to combine frame-level fea-
tures, but we leave it as a future work.

We extract audio features using a VGG-inspired acoustic model
with a modified version of ResNet-50 [18]. Specifically, the audio is
divided into non-overlapping 960 ms frames, and then decomposed
with a short-time Fourier transform with 25 ms windows for every
10 ms, producing 64 mel-spaced frequency spectrogram. We feed
100 feature frames (corresponding to 1 second) into the ResNet [17],
followed by average pooling to aggregate them into video level.

3.2 Collaborative Deep Metric Learning
The visual and audial features we extract above compactly represent
the video content, but do not contain information about relationship
between video pairs. We train an embedding function f over the
content features to predict the collaborative signals.

3.2.1 Training Objective. Given a streaming session, where a
user watches videos {v1,v2,v3...} on YouTube, we callvk andvk+1
are co-watched. We aggregate co-watches from multiple users to
construct a graph on videos, where the edges are weighted by the
co-watch frequency. In practice, we may drop edges below some
threshold. We would like co-watched videos to appear close in the
embedding space.

In order to do so, we optimize a ranking triplet loss [43], where
a training data point is defined as a triplet of three videos: anchor,
positive, and negative. A triplet is constructed such that the anchor
is relevant to the positive, but not to the negative, or the anchor
video is more relevant to the positive than to the negative. During
training, we update the parameters of the embedding network such
that the anchor is closer to the positive than to the negative in the
embedding space. We select co-watched pair as the anchor and
positive, and randomly sample a negative. We train our embedding

function f by solving

min
θ

n∑
i=1

L(fθ (x
a
i), fθ (x

p
i), fθ (x

n
i)), (1)

where xai , x
p
i , and xni correspond to the feature vector of anchor,

positive, and negative video of the i-th training data point, respec-
tively, fθ (·) is the embedding function (e.g, a neural network) pa-
rameterized by θ , and L is a loss function penalizing if fθ (xai) is
closer to fθ (xni) than to fθ (x

p
i). (Henceforth, we may omit θ to

denote f for simplicity.) Some widely-used loss functions include
hinge loss Lhinge(x, y, z) = [∥x − y∥22 − ∥x − z∥22 + α]+, log loss
Llog(x, y, z) = log(1 + exp{∥x − y∥22 − ∥x − z∥22 + α }), and expo-
nential loss Lexp(x, y, z) = exp{∥x − y∥22 − ∥x − z∥22 + α }, where α
is a margin parameter. We use the hinge loss with α = 0.

3.2.2 Embedding Network. We feed the extracted features in
Section 3.1 into the embedding network f . We propose two pos-
sible forms in Figure 2(b): early fusion and late fusion. The first
concatenates the two modalities (vision and audio) at the input, and
the second combines them after separate fully-connected layers.
There can be other choices, for example, mid-level fusion, but we
only experiment with the forementioned two. In both cases, we
apply L2 normalization at the output.

The parameters of embedding network f are trained to minimize
the objective in Eq. (1). Since the output of f is L2 normalized, i.e.,
∥ f (x))∥2 = 1, the pairwise negative distance −∥ f (x1) − f (x2)∥ pro-
vides the same ordering as the dot-product f (x1)⊤ f (x2) or cosine
similarity cos(f (x1), f (x2)).

4 EXPERIMENTS
In this section, we extensively evaluate the proposed method and
generated embeddings in various video understanding tasks: 1)
related video retrieval, 2) personalized video recommendation, and
3) video annotation/classification.

4.1 Related Videos Retrieval
Related video retrieval problem is the main task we train on. Given
a query video q with its content features xq , we retrieve related
videos in a candidate set. This relatedness is defined as how much
the two videos are co-watched by users. Using our embedding
network f , we embed the candidates videos and take the top k with
largest cosine similarity to the query video. Formally, the score
between a candidate c and query video q is given by

cos(f (xq), f (xc)) = f (xq)⊤ f (xc). (2)

4.1.1 Experimental Settings. To train themodel, we extract video
and audio features from 278M YouTube videos with 1,000 or more
views. We randomly split the videos into training and eval parti-
tion with 7:3 ratio, and create the training triplets based from the
co-watch graph with videos in the training partition only. After
training, we evaluate with two different cold-start cases: 1) where
we retrieve fresh (eval) videos for a query from train partition
(train-to-eval, T2E), and 2) where we retrieve established videos for
a query with fresh video (eval-to-train, E2T). We evaluate end-to-
end retrieval performance in two widely-used ranking metrics:

Input Features NDCG MAP
T2E E2T T2E E2T

Video Only 7.22% 10.38% 2.27% 2.68%
Video + Audio 8.48% 12.04% 2.70% 3.20%

Table 1: Related video retrieval performance of our pro-
posed model trained with video features only vs. video + au-
dio features. We clearly see that the audio signal helps to
improve end-to-end performance.

1) Normalized Discounted Cumulative Gain (NDCG) considers
the order of retrieved items in the list. DCG@k is defined as:

DCG@k =
k∑
i=1

2r eli − 1
log2(i + 1)

, (3)

where i is the position in the list and reli ∈ {0, 1} indicates whether
the i-th item is relevant to the user or not. NDCG is the ratio of DCG
to the maximum possible DCG for that query video. This maximum
occurs when the recommended items are presented in decreasing
order of user preference. We use k = 10 for our experiment.

2) Mean Average Precision (MAP) is the area under precision-
recall curve, and is given by:

MAP =
1
|Q |

∑
q∈Q

∫ 1

0
Pq (r)dr ≈

1
|Q |

∑
q∈Q

n∑
k=1

Pq (k)∆r (k), (4)

where r ranges over all possible recall levels and Pq (r) is the pre-
cision at recall level r for the query q. In practice, the integral is
replaced with a finite sum over every position k in the ranked list
of n videos.

For all experiments, we apply semi-hard negative mining [43]
within a large mini-batch of 7,200 triplets. We choose this size based
on empirical evidence, observing inferior performance with smaller
but almost no improvement with larger size than this. Intuitively,
it is important to mine hard examples as we train, since original
triplets created with random negatives become too easy after some
iterations. We assign to each triplet the hardest (mostly violating
anchor-positive-negative relationship) negative within the mini-
batch to facilitate training. For the triplet loss gap parameter, we
cross-validate over {0.1, 0.3, 0.5}, and search learning rate among
{0.001, 0.005, 0.01, 0.03, 0.05, 0.07, 0.1}. We apply learning rate de-
cay of {0.2%, 0.4%, 0.6%} for every 100,000 or 150,000 training steps.

4.1.2 Results and Discussion. At first, we compare performance
of our model trained only with visual signal vs. with both visual and
audio features. Video-only model is equivalent to the left (video)
tower of the late fusion embedding network in Figure 2(b). Table 1
shows NDCG andMAP scores for bothmodels. In both types of cold-
start scenarios, we see that the audio signal clearly helps to improve
end-to-end retrieval performance over the video-only model.

Another interesting parameter is the size of output embedding
vector. There is general trade-off between capacity and cost; the
larger the size, the more expressive the feature can be, potentially
leading to better performance. For this, however, we pay the cost for
longer training time with more computational resources. If we are
about to serve the features online, the storage size may be also an

2%

3%

4%

5%

6%

N
D
C
G

0%

1%

32 64 128 256 512 1024 1500

Feature Size

T2E

E2T

2%

3%

4%

5%

M
A
P

0%

1%

32 64 128 256 512 1024 1500

Feature Size

T2E

E2T

Figure 3: Related video retrieval performance with various
output feature size. We choose the 256-dimensional embed-
ding, which performs almost close to the larger ones.

Architecture (Fusion) NDCG MAP
T2E E2T T2E E2T

2560-256 (Early) 8.48% 12.04% 2.70% 3.20%
4000-256 (Early) 9.51% 13.13% 3.01% 3.49%
4000-256 (Late) 9.91% 13.46% 3.13% 3.58%
4000-512-256 (Early) 9.29% 12.64% 2.90% 3.33%
4000-1024-256 (Early) 9.46% 12.80% 2.95% 3.38%
4000-1024-256 (Late) 9.82% 13.05% 3.07% 3.44%

Table 2: Related video retrieval performance with differ-
ent network architectures. We observe wider layer helps
more than deeper models. Late fusion generally outper-
forms early fusion.

important concern, preventing large feature size despite its better
performance. In Figure 3, we see that increasing the feature size
above 512 gives little gain. On the other hand, the performance
dramatically drops when the size is smaller than 128. We chose
256 dimensions as a good compromise between performance and
computational cost.

We also compare several different neural network architectures,
with shallower vs. deeper models, different number of nodes in hid-
den layers, and early vs. late fusion. Table 2 summarizes end-to-end
performance with different architectures we tried. Interestingly,
we see little advantage with deeper models. It is probably because
the input features have already gone through deep models (Incep-
tion and ResNet), and this embedding function may not be that
complex to take advantage of deeper models. Another observation
is that increased width of the first hidden layer actually helps to
improve the performance. Lastly, late fusion tends to always per-
form better than early fusion. This might be because one signal
is almost ignored with early fusion if it is not strong enough to
survive against the other. From this empirical evidence, we choose
4000-256 architecture with late fusion.

4.1.3 Demonstration. We demonstrate qualitative performance
of our proposed method on YouTube-8M dataset [1], which consists
of about 8 million videos of 450K hours. To illustrate cold-start
situation, we choose all query videos from the eval partition (ap-
proximately 30%), thus no query video has been shown to the model
during training. All videos in the dataset other than the chosen

query are considered as candidates. For each query video, we re-
trieve the most relevant top-k (here, k = 4) videos to the query
using Eq. (2). We do not use meta-data other than audio-visual
signals.

Figure 4 illustrates some examples of the result. From the top, 1)
the query video is about Sergio Busquets, a Spanish soccer player.
All retrieved videos are about soccer, and in the last two thumb-
nails we see the same uniform from F.C. Barcelona. This shows our
proposed method effectively finds out similarity even in fine details.
2) The second query is a video game (Candy Crush). All retrieved
videos show the same game. 3) Next query is about a hamster. We
can see hamsters in all retrieved videos, but each hamster is in dif-
ferent color and shape. We can infer that our embedding captures
not just visual but semantic similarity. 4) In the next seed video, a
girl demonstrates how to make her hair braided (‘tresse’ in French,
seen in the title). The retrieved videos look semantically very rel-
evant, as they are also showing how to braid hair. Interestingly,
the title of the first and third recommended videos are in Russian
and Korean, respectively. This is natural since we take visual and
audio signal only, not the title or other meta-data like language. 5)
The last row shows that for a concert video it retrieves other con-
certs with similar background and music. Overall, visual and audial
features are powerful to retrieve relevant videos from the corpus,
but in practice may be used in conjunction with other sources like
meta-data to compensate its blind spots, such as language.

4.2 Video Recommendation
Personalized video recommendation is the task to rank items for
a particular user in the order of her preference. It is similar to
related video retrieval, except that here the query (context) is a
user instead of a single video. We model a user with her recent
watch history, i.e., a sequence of videos. Computing similarity with
a candidate video now gives a sequence of scores, one for each
recently watched video. We would like to aggregate these scores
into one. One possible aggregation is the arithmetic mean, where
the ranking function returns videos that maximize the score:

max
v ∈V−Q

1
|Q |

∑
q∈Q

cos(f (xq), f (xv)), (5)

whereQ is the set of videos the user has recently watched, andV is
the set of candidate videos. Another aggregation is max, where the
score of a candidate video is the maximum cosine similarity across
videos in Q . Specifically,

max
v ∈V−Q

max
q∈Q

cos(f (xq), f (xv)). (6)

4.2.1 Scalability. In real services like YouTube, |V | can be mil-
lions or billions, but these recommendations need to be computed
in micro-seconds. Video embeddings may be cached for quick re-
trieval, so it is important to reduce the feature size to save storage.
For this, we quantize the embedding values. Specifically, we choose
2k representative values to minimize the expected squared distance
between original and quantized features, representing each dimen-
sion with k bits. For faster similarity computation, we pre-compute
and cache all possible combinations of multiplications in a lookup
table, minimizing expensive floating-point operation at serving
time.

Figure 4: Demonstration of related video retrieval with YouTube-8M Dataset. The left-most column is the query video, and
other videos in the same row are top 4 most relevant videos found by our model. We show YouTube thumbnail, title, and
relevance score we computed (in red italic).

Output Dim Quantization Size (byte) T2E E2T
512 original 2048 2.99% 5.68%
256 original 1024 2.96% 5.61%
32 original 128 2.19% 4.20%
128 8 bit/dim 128 2.87% 5.47%
256 4 bit/dim 128 2.94% 5.58%
512 2 bit/dim 128 2.87% 5.47%
128 4 bit/dim 64 2.84% 5.40%
256 2 bit/dim 64 2.75% 5.23%
128 2 bit/dim 32 2.48% 4.74%

Table 3: Comparison in NDCG for various feature size with
quantization. We observe that 4 bits per value are enough to
almost preserve end-to-end recommendation performance.

We empirically test the performance we can retain with different
levels of quantization. We quantize each dimension into 2, 4, and
8 bits (from 4 bytes float), allowing 4, 16, and 256 representative

values, respectively. Table 3 compares end-to-end performance
with various quantization options. The top two rows show the
best performance we achieved without quantization. When we
reduce the output size to 128 bytes (16x from the best), we compare
4 options: {32 floats, 128D * 8 bits, 256D * 4 bits, 512D * 2 bits}.
We observe that 4 bits per dimension are enough to preserve the
original performance, as NDCGs dropped just 0.02% and 0.03% for
each scenario. 2 bits per dimension seem not enough to preserve
information, whenwe compare it against performance with original
512D (the top row). When we reduce further to 64 bytes, we still
achieve reasonable performance with 4 bits/dim quantization with
128D. In conclusion, we can reasonably represent a video with just
128 or 64 bytes, which is compact enough to deploy in large-scale
platform like YouTube.

Another computational bottleneck of this system is solving
Eq. (5) and (6). A naive implementation of this may iterate over
all possible pairs of q and v , leading to quadratic time complexity
O(|Q | |V |). Since ∥ f (x)∥2 = 1, the cosine becomes a dot-product and
average aggregation in Eq. (5) can be done in linear time, taking

advantage of distributive property of inner-product as:

max
v ∈V−Q

1
|Q |

∑
q∈Q

f (xq)⊤ f (xv) = max
v ∈V−Q

©« 1
|Q |

∑
q∈Q

f (xq)
ª®¬
⊤

f (xv)

Averaging vectors inQ does not rely onv and can be pre-computed
once and reused, achieving linear time complexity of O(|V | + |Q |).

4.2.2 Evaluation withMovieLens Trailers. Weevaluate ourmethod
on MovieLens2 with amendment [2], one of the most widely-used
public dataset for recommendations. As it does not come with
video and audio data of movies, we collected movie trailers avail-
able on YouTube as a proxy. To obtain the trailer YouTube video
IDs for the movies in MovieLens, we programatically searched on
google.com with “<MovieTitle> (<year>) trailer” for all movies in
MovieLens, and took the first YouTube result, limiting to the top 5
results. Usually, the YouTube result is the third result, after IMDB
and Wikipedia. In some cases, our search query did not return a
YouTube trailer. We collected 25,141 (94.0%) trailers for the 26,744
unique movies that are rated in MovieLens 20M. Movies without
trailers were excluded from experiments.

First, we evaluate the aggregation methods discussed in Sec-
tion 4.2.1. For each user, we split ratings into training and test
partitions by 5:5 ratio. Users with less than 10 test ratings were
excluded from the experiment. For each user, we define the set of
preferred movies as those in training partition with a rating higher
than some threshold: 1) fixed threshold with {3, 4, 5} stars or higher;
2) the user’s own mean rating; and 3) no threshold (simulating ap-
plications with watch history given without explicit ratings). We
then rank candidate videos in the test partition by similarity to the
preferred movie set, computed as dot-product in our embedding
space. We aggregate the scores by average and max aggregation
proposed in Eq. (5) - (6). For this experiment, we used actual ground
truth rating for reli in Eq. (3) to make the setting comparable to [28].
Table 4 summarizes performance on MovieLens 100K in NDCG@10
and MAP. Below is our observations and discussions:

• With higher threshold, the performance gets better in gen-
eral. This makes sense, since with higher threshold we only
take videos that we are sure the user liked, as long as we have
enough ratings from the user.We see some performance drop
when we do not filter out videos with low ratings, but in
applications only with implicit feedback (e.g, clicks, views)
this may be the only option.

• Max aggregation performs generally better than average ag-
gregations. In other words, it performs better to recommend
the most similar item to one of the user’s favorites, probably
because many users have more than one preferred types of
movies. We also tried some variations of these aggregations,
such as average of top k = 2, 3, 5, and variance, but these did
not outperform max and average aggregations.

4.2.3 Comparison with Existing Methods. We follow the stan-
dard experimental setup in literature [11, 28, 52, 54], using the same
dataset (MovieLens 100K). For each user, N randomly chosen rat-
ings, with N = 10, 20, 50, are used for training. All other items are

2https://grouplens.org/datasets/movielens/

Aggregation Watch History Threshold NDCG MAP
Max Higher than user mean 0.6242 0.7186
Max 5 stars only 0.6282 0.7155
Max 4 stars or higher 0.6251 0.7196
Max 3 stars or higher 0.6149 0.7141
Max All rated movies 0.6071 0.7078
Average Higher than user mean 0.6022 0.7073
Average 5 stars only 0.6133 0.7120
Average 4 stars or higher 0.6018 0.7065
Average 3 stars or higher 0.5954 0.7013
Average All rated movies 0.5900 0.6966

Table 4: Recommendation performance with different score
aggregations. Max aggregation with higher threshold tends
to perform better.

Model Average Precision NDCG@10
N = 10 N = 20 N = 50 N = 10 N = 20 N = 50

CofiRank [54] 0.6632 0.6825 0.6915 0.6502 0.6629 0.6912
SVD 0.7000 0.7454 0.7510 0.5594 0.6514 0.6750
NMF [27] 0.7107 0.7234 0.7328 0.6285 0.6336 0.5956
BPMF [42] 0.6376 0.6517 0.6915 0.5636 0.5513 0.6746
LLORMA [30] 0.7341 0.7424 0.7490 0.6712 0.6682 0.6932
LCR [28] 0.7406 0.7503 0.7626 0.7152 0.6908 0.7039
CDML (ours) 0.7030 0.7215 0.7442 0.5725 0.6213 0.6941

Table 5: Recommendation performance compared with ex-
isting methods. Other than SVD and CDML, we use the re-
ported values in [28], which were obtained using the same
protocol as reported here.

used for evaluation. Users with less than N + 10 ratings are ignored
to guarantee at least 10 items for testing.

Table 5 compares recommendation performance of the proposed
method against several existing methods, in NDCG and MAP. We
observe that the proposed approach performs comparable to most
of the baselines, including CofiRank [54] and Bayesian PMF [42].
Although it does not outperform the state-of-the-art, Local Collab-
orative Ranking [28], it is remarkable for the proposed method to
accomplish comparable performance to most existing models, con-
sidering that 1) the embedding was not optimized for this task but
trained for related video retrieval task, and 2) it does not extensively
exploits the rating matrix but mostly based on the contents.

Considering this result, we hypothesize that the proposed embed-
ding may perform relatively stronger for colder-start cases, while
other CF-based models may outperform with sufficient feedback
from users. To test this hypothesis, we conduct further experiments
with smaller N , as small as 2. Specifically, we compare performance
of the proposed CDML model vs. SVD, one of the most widely used
CF-based baselines. We use rank 5 for SVD, as it is enough capacity
for this extremely sparse matrix with small N . Figure 5 shows that
the proposed method outperforms the CF counterpart with less
than 14 (NDCG) or 10 (MAP) ratings per user, confirming that the
content-aware model is powerful when we know less about the
user.

https://grouplens.org/datasets/movielens/

0.57

0.59

0.61

0.63

0.65

N
D
C
G

CDML (Ours)

CF (MF)

0.51

0.53

0.55

2 4 6 8 10 12 14 16 18

Number of Training Points per User

0.71

0.72

0.73

0.74

0.75

M
A
P

CDML (Ours)

CF (MF)

0.68

0.69

0.70

2 4 6 8 10 12 14 16 18

Number of Training Points per User

Figure 5: Cold-start recommendation performance with dif-
ferent number of training data points per user, in NDCG
(left) and MAP (right). We see that our CDML is relatively
stronger for colder start cases.

4.3 Video Annotation
We consider a video annotation task, where the goal is to predict one
or more labels for a video, following the setup of [1]. Considering
only a finite set of labels, we can model this as a multi-labeled clas-
sification problem. Formally, given a training set {(xi , yi)}i=1, ...,N
over d classes, where xi is the feature vector for i-th video, and
yi ∈ {0, 1}d is a binary vector with 1 on corresponding classes and
0 everywhere else, the task is estimating y on unseen x.

4.3.1 Annotation Model. We use a fully connected layer (with
L2 norm) followed by a Mixture of Experts (MoE) model [22] for
our multi-label classifier. Specifically, a video feature x is as a con-
catenation of input audio-visual features. We PCA each feature into
256D by

z =
A(x − µ)

∥A(x − µ)∥2
(7)

where A is block PCA matrix shared across all labels and µ is the
mean of x. Given z, MoE model estimates the probability p(e |z) for
an entity e exist in the video as a weighted average over experts
h ∈ He . For each expert h, we use a binary logistic regression
classifier, p(e |z,h) = σ (w⊤

h z). Overall, the classifier is given by

p(e |z) =
∑

h∈He

p(h |z)p(e |z,h) =
∑

h∈He

p(h |z)σ (w⊤
h z), (8)

where p(h |z) is a softmax over |He | + 1 with a dummy state indicat-
ing non-existence of the entity. To train this model, We minimize
log-lossL(p,д) = −д logp−(1−д) log(1−p) over the entire training
data, where д ∈ {0, 1} is the ground truth and p is p(e |z).

In all of our experiments, we first train the MoE model with
{5, 10, 30, 100} mixtures using Adam optimizer with a learning
rate of 0.008 and a mini-batch size of 512. Then, the block PCA
matrix and the MoE are alternatively fine-tuned using a full batch
optimization technique named RPROP [40]. Given the output p(e |z)
for all classes e , we take the top k labels for the video.

4.3.2 Experimental Settings. We evaluate in two widely-used
metrics:

0.81

0.83

0.85

G
A
P

0.77

0.79

0 5 10 15 20 25

Epoch

0.44

0.48

0.52

M
A
P

0.36

0.40

0 5 10 15 20 25

Epoch

0.77 0.79 0.81 0.83 0.85

0 5 10 15 20 25G
A
P

Epoch

CDML only Visual only Visual + Audio Visual + Audio + CDML

Figure 6: YouTube-8M video classification training curve
comparing different features. Adding CDML features im-
proves classification accuracy, by bringing the complimen-
tary user behavior information to the content information.

(1) Global Average Precision (GAP) for the topk predicted labels
is given by

GAP =

k |Q |∑
i=1

P(i)∆R(i), (9)

where Q is the set of query videos, P(i) is the precision, and
R(i) is the recall. This is the metric used in the first YouTube-
8M video classification challenge, so we use the same k = 20
for comparison.

(2) MeanAverage Precision (MAP): this is same as Eq. (4), where
Q is the set of query videos.

GAP computes overall accuracy of the predicted labels on the entire
dataset, while MAP evaluates each video individually and takes
average of the scores. If the labels are uniformly distributed over
all videos, GAP and MAP will be equal. As most dataset have long-
tailed distribution over labels (so does YouTube-8M dataset), MAP
penalizes more on errors with videos corresponding to less frequent
labels.

We use the input video and audio features extracted from pre-
trained feature extractors in Figure 2(a) as our baseline. Comparing
against these features reveals the direct improvement with co-watch
information. For fair comparison, we took PCA over these input
features to have the same dimensionality (256) with our embedding.
In addition, we also compare against the top-performers at the 1st
YouTube-8M video classification challenge.

4.3.3 YouTube-8M Results and Discussion. YouTube-8M [1] is
the largest video classification benchmark dataset as of this writing.
It consists of 8 millions of videos with labels over 4,716 classes.
Each video has 3.4 labels on average, representing the main themes
of the video.

We first compare the performance of several features and their
combinations with the same MoE model. Figure 6 presents how
GAP and MAP scores improve with MoE training. It is interesting
to note that the model with all three features (visual + audio +
CDML) outperforms the baselines with visual + audio, by 2.6%
(GAP) and 3.1% (MAP). Considering that the CDML feature itself is
also trained on top of the same visual and audio features, the user
behavior information that CDML brings into is complimentary to

Rank Team Name Video-level features only Frame-level features used
Single-model Ensembled Single-model Ensembled

1 WILLOW [34] — — 0.8300 0.8469
2 monkeytyping [53] 0.8106 0.8225 0.8179 0.8458
3 offline [31] 0.8082 — 0.8275 0.8454
4 FDT [7] — — 0.8178 0.8419
5 You8M [45] — 0.8308 — 0.8418
6 Rankyou [61] 0.8141 — 0.8246 0.8408
7 Yeti [5] — — 0.8254 0.8396
8 SNUVL X SKT [35] — — 0.8200 0.8389
9 Lanzan Ramen — — — 0.8372
10 Samaritan [63] — — 0.8139 0.8366

Video + Audio 0.8247 — — —
Video + Audio + CDML 0.8430 — — —

Table 6: Comparison with top performers at the First YouTube-8M video classification challenge (CVPR 2017). All scores are
in GAP, Eq. (9).

the content information. It has been known that watch behavior is
informative for video recommendation, but we verify that it actually
improves classification accuracy as well.

At CVPR 2017, the creators of YouTube-8M hosted a challenge on
large-scale video classification3. Table 6 lists the top 10 performers
with their highest GAP scores. For comparison, we also add a line
for another baseline “video + audio”, where we simply concatenate
video and audio features we extracted, without CDML. All the top
10 teams applied ensemble methods, which boost the performance
by 1-2%, so we listed the best performance with and without ensem-
bles. Also, some participants provided performance on models only
utilizing video-level features (not using frame-level features with
temporal models). As our models are video-level only, it is fair to
compare against the video-level models. As shown in Table 6, our
proposed embedding performs better than any other top 10 teams
dealing with video-level features only, regardless of ensembling.
Even if we take frame-level models into account, it still performs
better than any single model in the table. It turns out that only the
top 3 ensembled models slightly perform better than ours. (Note
that this comparison is mainly to show how it performs compared
to the state-of-the-art in video annotation models. It may not be
directly comparable as we use additional data for training.)

4.3.4 MovieLens-20M Results and Discussion. MovieLens-20M
[16] comes with genome tags for 27,278 movies. We exclude infre-
quent tags with less than 200 movies associated, leaving 187 most
frequent tag classes as ground truth labels. Table 7 shows that GAP
improves when we concatenate our features with the audio-visual
features.

5 SUMMARY AND FUTUREWORK
We propose to model collaborative signals over videos using their
audio-visual content. Specifically, we train a deep network that
takes as input video features and outputs an embedding that pre-
serves pair-wise video-to-video collaborative similarity. Then, we
use the trained embedding network for various large-scale video

3https://www.kaggle.com/c/youtube8m

Features GAP
Video only 0.2717
Audio only 0.2429
Video + Audio 0.2972
Video + Audio + CDML 0.3115

Table 7: Video annotation result on MovieLens-20M. CDML
features improve classification accuracy over other base-
lines.

understanding tasks, including related video retrieval, personalized
video recommendation, and multi-label video annotation. We show
that our trained embeddings improve baselines on all, even though
our embedding was not directly trained for these tasks.

Our work sets a baseline in learning features that generalize
across video tasks. The work can be extended along different di-
rections, including incorporation of modern neural architectures
for extracting input features like LSTMs, modern metric learning
techniques, e.g., via lifted structured embedding, or modern graph
learning methods such as propagating information through the
edges via Graph Convolutional Networks. We hope that other re-
searchers find our work inspiring, towards training a universal
video network that generalizes across many challenging video un-
derstanding tasks.

REFERENCES
[1] S. Abu-El-Haija, N. Kothari, J. Lee, P. Natsev, G. Toderici, B. Varadarajan, and S. Vi-

jayanarasimhan. 2016. YouTube-8M: A large-scale video classification benchmark.
arXiv:1609.08675 (2016).

[2] S. Abu-El-Haija, J. Lee, M. Harper, and J. Konstan. 2018. MovieLens YouTube
Trailers. (2018).

[3] M. Belkin, P. Niyogi, and V. Sindhwani. 2006. Manifold regularization: A geomet-
ric framework for learning from labeled and unlabeled examples. (2006).

[4] A. Bellet, A. Habrard, and M. Sebban. 2013. A survey on metric learning for
feature vectors and structured data. arXiv:1306.6709 (2013).

[5] M. Bober-Irizar, S. Husain, E. J. Ong, and M. Bober. 2017. Cultivating DNN
Diversity for Large Scale Video Labelling. arXiv:1707.04272 (2017).

[6] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah. 1994. Signature
verification using a" siamese" time delay neural network. Advances in Neural

https://www.kaggle.com/c/youtube8m

Information Processing Systems (1994).
[7] S. Chen, X. Wang, Y. Tang, X. Chen, Z. Wu, and Y. G. Jiang. 2017. Aggregating

frame-level features for large-scale video classification. arXiv:1707.00803 (2017).
[8] S. Chopra, R. Hadsell, and Y. LeCun. 2005. Learning a similarity metric discrim-

inatively, with application to face verification. Proc. of the IEEE Conference on
Computer Vision and Pattern Recognition (2005).

[9] L. de Campos, J. Fernandez-Luna, J. Huete, and M. Rueda-Morales. 2010. Interna-
tional Journal of Approximate Reasoning. International Journal of Approximate
Reasoning (2010).

[10] D. Duvenaud, D. Maclaurin, J. Aguilera-Iparraguirre, R. Gómez-Bombarelli, T.
Hirzel, A. Aspuru-Guzik, and R. P. Adams. 2015. Convolutional Networks on
Graphs for Learning Molecular Fingerprints. In Advances in Neural Information
Processing Systems.

[11] C. Fan, Y. Lan, J. Guo, Z. Lin, and X. Cheng. 2013. Collaborative factorization
for recommender systems. In Proc. of the International ACM SIGIR Conference on
Information Retrieval.

[12] B. Fernando and S. Gould. 2016. Learning end-to-end video classification with
rank-pooling. In Proc. of the International Conference on Machine Learning.

[13] J. Friedman et al. 1994. Flexible metric nearest neighbor classification. Technical
Report. Technical report, Dept. of Statistics, Stanford University.

[14] R. Geirhos, D. H. J. Janssen, H. H. SchÃijtt, J. Rauber, M. Bethge, and F. A. Wich-
mann. 2017. Comparing deep neural networks against humans: object recognition
when the signal gets weaker. arXiv:170606969 (2017).

[15] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry. 1992. Using Collaborative
Filtering to Weave an Information Tapestry. 35, 12 (1992), 61–70.

[16] F. M. Harper and J. A Konstan. 2016. The movielens datasets: History and context.
ACM Transactions on Interactive Intelligent Systems (TiiS) 5, 4 (2016), 19.

[17] K. He, X. Zhang, S. Ren, and J. Sun. 2016. Deep residual learning for image
recognition. In Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition.

[18] S. Hershey, S. Chaudhuri, D. PW Ellis, J. Gemmeke, A. Jansen, R. C. Moore, M.
Plakal, D. Platt, R. Saurous, B. Seybold, et al. 2017. CNN architectures for large-
scale audio classification. In IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP).

[19] G. Hinton, O. Vinyals, and J. Dean. 2015. Distilling the knowledge in a neural
network. arXiv:1503.02531 (2015).

[20] Song H.O., Xiang Y., and Jegelka S. 2016. Deep Metric Learning via Lifted
Structured Feature Embedding. (2016).

[21] L. Jiang, Y. Kalantidis, L. Cao, S. Farfade, J. Tang, and A. Hauptmann. 2017. Delving
deep into personal photo and video search. In Proc. of the ACM International
Conference on Web Search and Data Mining (WSDM).

[22] M. I Jordan and R. A Jacobs. 1994. Hierarchical mixtures of experts and the EM
algorithm. Neural Computation 6, 2 (1994), 181–214.

[23] N. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. A.
Bhatia, et al. 2017. In-datacenter performance analysis of a tensor processing
unit. In Proc. of the Annual International Symposium on Computer Architecture.

[24] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei. 2014.
Large-scale video classification with convolutional neural networks. In Proc. of
the IEEE Conference on Computer Vision and Pattern Recognition.

[25] T. Kipf and M. Welling. 2017. Semi-Supervised Classification with Graph Convo-
lutional Networks. In Proc. of the International Conference on Learning Represen-
tations.

[26] G. Lebanon. 2006. Metric learning for text documents. IEEE Transactions on
Pattern Analysis and Machine Intelligence 28, 4 (2006), 497–508.

[27] D. Lee and S. Seung. 1999. Learning the parts of objects by non-negative matrix
factorization. Nature 401, 6755 (1999), 788.

[28] J. Lee, S. Bengio, S. Kim, G. Lebanon, and Y. Singer. 2014. Local collaborative
ranking. In Proc. of the International Conference on World Wide Web.

[29] J. Lee, S. Kim, G. Lebanon, and Y. Singer. 2013. Local low-rank matrix approxi-
mation. In Proc. of the International Conference on Machine Learning.

[30] J. Lee, S. Kim, G. Lebanon, Y. Singer, and S. Bengio. 2016. LLORMA: Local low-
rank matrix approximation. The Journal of Machine Learning Research 17, 1 (2016),
442–465.

[31] F. Li, C. Gan, X. Liu, Y. Bian, X. Long, Y. Li, Z. Li, J. Zhou, and S. Wen. 2017.
Temporal modeling approaches for large-scale youtube-8m video understanding.
arXiv:1707.04555 (2017).

[32] B. McFee, L. Barrington, and G. Lanckriet. 2012. Learning content similarity
for music recommendation. IEEE Transactions on Audio, Speech, and Language
Processing 20, 8 (2012), 2207–2218.

[33] P. Melville, R. J. Mooney, and R. Nagarajan. 2001. Content-Boosted Collaborative
Filtering. In Proc. of the SIGIR Workshop on Recommender Systems.

[34] A. Miech, I. Laptev, and J. Sivic. 2017. Learnable pooling with Context Gating for
video classification. arXiv:1706.06905 (2017).

[35] S. Na, Y. Yu, S. Lee, J. Kim, and G. Kim. 2017. Encoding Video and Label Priors
for Multi-label Video Classification on YouTube-8M dataset. arXiv:1706.07960
(2017).

[36] D. Y. Pavlov and D. M. Pennock. 2002. A maximum entropy approach to collab-
orative filtering in dynamic, sparse, high-dimensional domains. In Advances in
Neural Information Processing Systems.

[37] D. M. Pennock, E. Horvitz, S. Lawrence, and C. L. Giles. 2000. Collaborative
filtering by personality diagnosis: A hybrid memory- and model-based approach.
In Proc. of the Conference on Uncertainty in Articifial Intelligence (UAI).

[38] Q. Qian, R. Jin, S. Zhu, and Y. Lin. 2015. Fine-grained visual categorization via
multi-stage metric learning. Proc. of the IEEE Conference on Computer Vision and
Pattern Recognition (2015).

[39] E. Real, J. Shlens, S. Mazzocchi, X. Pan, and V. Vanhoucke. 2017. Youtube-
boundingboxes: A large high-precision human-annotated data set for object
detection in video. In IEEE Conference on Computer Vision and Pattern Recogni-
tion.

[40] M. Riedmiller and H. Braun. 1992. RPROP-A fast adaptive learning algorithm. In
Proc. of ISCIS VII.

[41] R. Rothe, R. Timofte, and L. V. Gool. 2016. Some like it hot - visual guidance for
preference prediction. In Proc. of the IEEE Conference on Computer Vision and
Pattern Recognition.

[42] R. Salakhutdinov and A. Mnih. 2008. Bayesian probabilistic matrix factorization
using Markov chain Monte Carlo. In Proc. of the International Conference on
Machine Learning. 880–887.

[43] F. Schroff, D. Kalenichenko, and J. Philbin. 2015. Facenet: A unified embedding
for face recognition and clustering. In Proc. of the IEEE Conference on Computer
Vision and Pattern Recognition.

[44] R. Short and K. Fukunaga. 1981. The optimal distance measure for nearest
neighbor classification. IEEE Transactions on Information Theory 27, 5 (1981),
622–627.

[45] M. Skalic, M. Pekalski, and X. Pan. 2017. Deep Learning Methods for Efficient
Large Scale Video Labeling. arXiv:1706.04572 (2017).

[46] N. Srivastava, E. Mansimov, and R. Salakhudinov. 2015. Unsupervised learning
of video representations using lstms. In Proc. of the International Conference on
Machine Learning.

[47] F. Strub, J. Mary, and R. Gaudel. 2016. Hybrid Collaborative Filtering with Neural
Networks. CoRR abs/1603.00806 (2016).

[48] X. Su, R. Greiner, T. M. Khoshgoftaar, and X. Zhu. 2007. Hybrid collaborative
filtering algorithms using a mixture of experts. In Proc. of the IEEE/WIC/ACM
International Conference on Web Intelligence.

[49] Y. Sun, Z. Wu, X. Wang, H. Arai, T. Kinebuchi, and Y. G. Jiang. 2016. Exploiting
Objects with LSTMs for Video Categorization. In Proc. of the ACM Internacional
Conference on Multimedia.

[50] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich. 2015. Going deeper with convolutions. In Proc. of the
IEEE Conference on Computer Vision and Pattern Recognition.

[51] A. van den Oord, S. Dieleman, and B. Schrauwen. 2013. Deep content-based
music recommendation. In Advances in Neural Information Processing Systems.

[52] M. Volkovs and R. Zemel. 2012. Collaborative ranking with 17 parameters. In
Advances in Neural Information Processing Systems. 2294–2302.

[53] H. Wang, T. Zhang, and J. Wu. 2017. The Monkeytyping Solution to the YouTube-
8M Video Understanding Challenge. arXiv:1706.05150 (2017).

[54] M. Weimer, A. Karatzoglou, Q. Le, and A. J. Smola. 2008. Cofi rank-maximum
margin matrix factorization for collaborative ranking. In Advances in neural
information processing systems. 1593–1600.

[55] Z. Wu, X. Wang, Y. G. Jiang, H. Ye, and X. Xue. 2015. Modeling spatial-temporal
clues in a hybrid deep learning framework for video classification. In Proc. of the
ACM International Conference on Multimedia.

[56] E. Xing, M. Jordan, S. Russell, and A. Ng. 2003. Distance metric learning with
application to clustering with side-information. In Advances in neural information
processing systems.

[57] H. Xiong and X. W. Chen. 2006. Kernel-based distance metric learning for
microarray data classification. BMC bioinformatics 7, 1 (2006), 299.

[58] X. Yang, P. Molchanov, and J. Kautz. 2016. Multilayer and multimodal fusion of
deep neural networks for video classification. In Proc. of the ACM International
Conference on Multimedia.

[59] S. Yu, L. Jiang, Z. Xu, Y. Yang, and A. Hauptmann. 2015. Content-based video
search over 1 million videos with 1 core in 1 second. In Proc. of the ACM on
International Conference on Multimedia Retrieval.

[60] J. Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga, and G.
Toderici. 2015. Beyond Short Snippets: Deep Networks for Video Classification.
In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition.

[61] L. Zhu, Y. Liu, and Y. Yang. 2017. UTS submission to Google YouTube-8M
Challenge 2017. arXiv:1707.04143 (2017).

[62] C.-N. Ziegler, G. Lausen, and L. Schmidt-Thie. 2004. Taxonomy-driven computa-
tion of product recommendations. In Proc. of the thirteenth ACM international
conference on Information and knowledge management.

[63] H. Zou, Kun Xu, and J. Li. 2017. The YouTube-8M Kaggle Competition: Challenges
and Methods. arXiv:1706.09274 (2017).

	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Video and Audio Features
	3.2 Collaborative Deep Metric Learning

	4 Experiments
	4.1 Related Videos Retrieval
	4.2 Video Recommendation
	4.3 Video Annotation

	5 Summary and Future Work
	References

