
Federated Learning for Emoji Prediction in a Mobile Keyboard

Swaroop Ramaswamy Rajiv Mathews Kanishka Rao Françoise Beaufays
Google LLC

Mountain View, CA, U.S.A.
{swaroopram, mathews, kanishkarao, fsb}@google.com

Abstract

We show that a word-level recurrent neural
network can predict emoji from text typed
on a mobile keyboard. We demonstrate the
usefulness of transfer learning for predicting
emoji by pretraining the model using a lan-
guage modeling task. We also propose mech-
anisms to trigger emoji and tune the diver-
sity of candidates. The model is trained us-
ing a distributed on-device learning framework
called federated learning. The federated model
is shown to achieve better performance than
a server-trained model. This work demon-
strates the feasibility of using federated learn-
ing to train production-quality models for nat-
ural language understanding tasks while keep-
ing users’ data on their devices.

1 Introduction

Emoji have become an important mode of expres-
sion on smartphones as users increasingly use them
to communicate on social media and chat appli-
cations. Easily accessible emoji suggestions have
therefore become an important feature for mobile
keyboards.

Gboard is a mobile keyboard with more than 1
billion installs and support for over 600 language
varieties. With this work, we provide a mechanism
by which Gboard offers emoji as predictions based
on the text previously typed, as shown in Figure 1.

Mobile devices are constrained by both memory
and CPU. Low-latency is also required, since users
typically expect a keyboard response within 20 ms
of an input event (Hellsten et al., 2017).

A unidirectional recurrent neural network archi-
tecture (RNN) is used in this work. Since forward
RNNs only include dependencies backwards in
time, the model state can be cached at each timestep
during inference to reduce latency.

Figure 1: Emoji predictions in Gboard. Based on the
context “This party is lit”, Gboard predicts both emoji
and words.

2 Federated Learning

Federated Learning (FL) (Bonawitz et al., 2019)
is a new computation paradigm in which data is
kept on users’ devices and never collected cen-
trally. Instead, minimal and focused model up-
dates are transmitted to the server. This allows us
to train models while keeping users’ data on their
devices. FL can be combined with other privacy-
preserving techniques like secure multi-party com-
putation (Bonawitz et al., 2017) and differential pri-
vacy (McMahan et al., 2018; Agarwal et al., 2018;
Abadi et al., 2016). FL has been shown to be robust
to unbalanced and non-IID data.

We use the FederatedAveraging algorithm
presented in McMahan et al. (2017) to aggregate
client updates after each round of local, on-device
training to produce a new global model. At training
round t, a global model with parameters wt , is sent
to K devices selected from the device population.
Each device has a local dataset Pk which is split
into batches of size B. Stochastic gradient descent
(SGD) is used on the clients to compute new model
parameters wt+1

k . These client weights are then av-
eraged across devices, on the server, to compute
the new model parameters wt+1.

ar
X

iv
:1

90
6.

04
32

9v
1

 [
cs

.C
L

]
 1

1
Ju

n
20

19

3 Method

3.1 Network architecture
The Long-Short-Term Memory (LSTM) (Hochre-
iter and Schmidhuber, 1997) architecture has been
shown to achieve state-of-the art performance of a
number of sentiment prediction and language mod-
eling tasks (Radford et al., 2017).

We use an LSTM variant called the Coupled
Input and Forget Gate (CIFG) (Greff et al., 2017).
As with Gated Recurrent Units (Cho et al., 2014),
the CIFG uses a single gate to control both the input
and recurrent cell self-connections. The input gate
(i) and the forget gate (f) are related by f = 1− i.
This coupling reduces the number of parameters
per cell by 25%, compared to an LSTM.

We use an input word vocabulary size of 10,000,
an input embedding size of 96, and a two-layer
CIFG with 256 units per layer. The logits are
passed through a softmax layer to predict prob-
abilities over 100 emoji.

3.2 Pretraining
Howard and Ruder (2018) demonstrated that pre-
training parameters on a language modeling task
can improve performance on other tasks.

We pretrain all layers except the output projec-
tion layer, using a language model trained to pre-
dict the next word in a sentence. For the output
projection, we reuse the input embeddings. This
type of sharing of input and output embeddings has
been shown to improve performance of language
models (Press and Wolf, 2017). Pretraining is done
with federated learning using techniques similar
to those described by Hard et al. (2018). The lan-
guage model achieves an Accuracy@1 of 13.7%,
on the same vocabulary. Pretraining with a lan-
guage model task leads to much faster convergence
for the emoji model, as seen in Figure 2.

3.3 Triggering
In addition to predicting the correct emoji, a trig-
gering mechanism must determine when to show
emoji predictions to users. For instance, a user is
likely to type after typing “Congrats” or “Con-
grats to you” but not after “Congrats to”.

One way to handle this would be to use a single
language model that can predict both words and
emojis. However, we want to separate the task of
predicting relevant emoji from that of deciding how
much we wanted emoji to trigger, since the latter is
more of a product decision, rather than a technical

0.0 0.2 0.4 0.6 0.8 1.0

Timestep 1e7

0.00

0.05

0.10

0.15

0.20

0.25

0.30

A
cc

u
ra
cy

@
1

Pretrained

Random Initialization

Figure 2: Accuracy@1 vs. training step with and with-
out pretraining, using server-based evaluations.

challenge. For instance, if we want to allow users
to control how often emoji predictions are offered,
it’s easier to do with a separate model.

Another way to handle triggering is to use a
separate binary classification model that predicts
the likelihood of the user typing any emoji after
a given phrase. However, using a separate model
for triggering leads to additional overhead in terms
of memory and latency. Instead, we adjust the
softmax layer of the model to predict over N emoji
and an additional unknown token <UNK> class. The
<UNK> class is set as the target output for inputs
without emoji labels. At inference, we show the
predictions from the model only if the probability
of the <UNK> class is less than a certain threshold.

During training, sentences without emoji are
truncated to a random length in the range [1, length
of sentence]. Truncation allows the model to learn
to not predict emoji after conjunctions, preposi-
tions etc. which typically occur in the middle of
sentences.

3.4 Diversification
The distribution of emoji usage frequency is very
light-tailed as seen in Figure 3. As a result, the
top predictions from the model are almost always
the most frequent emoji regardless of the input
context. To overcome this, the probability of each
emoji(P̂) is scaled by the empirical probability of
that emoji(P) in the training data as follows.

Si =
P̂(emoji = i|text)

P(emoji = i)α (1)

where α is a scaling factor, determined empiri-
cally through experiments on live traffic. Setting

Figure 3: Distribution of 15 most frequently used emoji
in English (US).

Context α = 0.0 α = 0.7

Sorry I ended up falling asleep
Good morning sunshine
Coz I miss you xx
I’m so sorry sweetie
Hey girl you take it easy
not sure what happened to that

Table 1: Examples of emoji predictions with and with-
out diversification

α to 0 removes diversification. Table 1 provides
examples with and without diversification.

4 Server-based Training

Server-based training of models is done on data
logged from Gboard users who have opted to peri-
odically share anonymized snippets of text typed
in selected apps. All personally identifiable in-
formation is stripped from these logs. The logs
are filtered further to only include sentences that
are labeled as English with high confidence by
a language detection model (Botha et al., 2017;
Zhang et al., 2018). The subset of logs used for
training contain approximately 370 million snip-
pets, approximately 11 million of which contain
emoji. Hyperparameters for server-based training
are optimized using a black-box optimization tech-
nique (Golovin et al., 2017).

5 Federated Training

The data used for federated training is stored in
local caches on client devices. For a device to par-
ticipate in training, it must have at least 2 GB of
RAM, must be located in United States or Canada,
and must be using English (US) as the primary lan-

guage. In addition, only devices that are connected
to un-metered networks, idle, and charging are eli-
gible for participation at any given time. On aver-
age, each client has approximately 400 sentences.
The model is trained for one epoch on each client,
in each round. The model typically converges after
2000 training rounds.

In federated training, there is no explicit split of
data into train and eval samples. Instead, a sepa-
rate evaluation task runs on a different subset of
client devices in parallel to the training task. The
eval task uses model checkpoints generated by the
federated training task during a 24-hour period and
aggregates the metrics across evaluation rounds.

6 Evaluation

Model quality is evaluated using Accuracy@1, de-
fined as the ratio of accurate top-1 emoji predic-
tions to the total number of examples containing
emoji. Area Under ROC Curve (AUC) is used to
evaluate the quality of the triggering mechanism.
Computing the AUC involves numerical integration
and is not straightforward to do in the FL setting.
Therefore, we report AUC only on logs data that is
collected on the server. All evaluation metrics are
computed prior to diversification.

7 Federated Experiments

In FL, the contents of the client caches are con-
stantly changing as old entries are cleared and re-
placed by new activity. Since these experiments
were conducted non-concurrently, the client cache
contents are different and therefore numbers can-
not be compared across experiments. We conduct
experiments to study the effect of client batch size
(B), devices per round (K) and server optimizer
configuration on model quality. We then take the
best model and compare it with a server trained
model. The results are summarized in Table 2.

Because of the sparsity of sentences containing
emoji in the client caches, the model quality is im-
proved to a large degree by using large client batch
sizes. This is not entirely surprising, since gradient
updates are more accurate with larger batch sizes
(Smith et al., 2018). This is particularly true when
the target classes are heavily imbalanced.

The accuracy of the model also increases with
the number of devices per round but there are di-
minishing returns beyond K = 500.

We experimented with various optimizers for the
server update after each round of federated train-

Experiment Accuracy@1 AUC

B = 1 0.008 0.513
B = 10 0.037 0.500
B = 50 0.240 0.837
B = 200 0.253 0.863

K = 20 0.239 0.846
K = 50 0.242 0.852
K = 200 0.253 0.867
K = 500 0.255 0.863

SGD, ηs = 1.0 0.236 0.850
SGD, ηs = 2.0 0.245 0.856

Momentum, ηs = 1.0 0.247 0.856

Best federated 0.256 0.863
Best server trained 0.239 0.898

Table 2: The results from federated experiments. All
numbers reported are after 2000 training rounds. ηs
refers to the learning rate used on the server for apply-
ing the update aggregated across users in each round.

ing and found that using momentum of 0.9 with
Nesterov accelerated gradients (Sutskever et al.,
2013) gives significant benefits over using SGD,
both in terms of speed of convergence and model
performance.

The best federated model, which runs in produc-
tion, uses B = 1000,K = 1000, and is trained with
momentum. We assign a weight of 0 to 99% of the
<UNK> examples at training time so as to balance
the triggering and emoji prediction losses. We ran
federated evaluation tasks of the best server-trained
model on the client caches in order to fairly com-
pare the two training approaches. The federated
model achieved better Accuracy@1 in the feder-
ated evaluation, as shown in Figure 4. However,
the AUC achieved by the federated model is lower
than that of the server trained model.

AUC is only computed on the logs collected
on the server. These logs are restricted to short
snippets of text typed in selected apps, therefore
the data is not believed to be as representative of the
text typed by users as data that resides on the client
caches. The lower AUC of the federated model is
likely because of this bias.

8 Live experiment

At inference time, we use a quantized TensorFlow
Lite (TFLite) model format. The average inference
latency is around 1 ms.

0 500 1000 1500 2000 2500 3000 3500
Round

0.00

0.05

0.10

0.15

0.20

0.25

0.30

A
cc
u
ra
cy
@
1

Federated
Server-based

Figure 4: Evaluation Accuracy@1 vs. Round for feder-
ated and server trained models.

Metric Relative change [%]

Server trained Federated

Prediction CTR 3.61±1.00 3.66±0.95
Emoji Shares 3.63±0.99 5.54±1.19
Emoji DAU 9.57±0.39 11.22±0.48

Table 3: Relative changes to metrics as a result of the
server trained and federated emoji prediction models,
measured in experiments on live user traffic. The base-
line does not have any emoji predictions. Quoted 95%
confidence interval errors for all results are derived us-
ing the jackknife method with user buckets.

We ran a live-traffic experiment for users in
USA and Canada typing in English (US). We ob-
served that both the federated and the server trained
model lead to significant increases in the overall
click-through rate (CTR) of predictions, total emoji
shares, and daily active users (DAU) of emoji (see
Table 3). We also observed that the federated model
did better than the server trained model on all of
the metrics.

Given that emoji are triggered rarely, the in-
crease in CTR is quite large, for both the models.

9 Conclusions

In this paper, we train an emoji prediction model
using a CIFG-LSTM network. We demonstrate
that this model can be trained using FL to achieve
better performance than a server trained model.
This work builds on previous practical applications
of federated learning in Yang et al. (2018); Hard
et al. (2018); Bonawitz et al. (2019). We show
that FL works even with sparse data and poorly
balanced classes.

References
Martin Abadi, Andy Chu, Ian Goodfellow, H Bren-

dan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. 2016. Deep learning with differential pri-
vacy. In Proceedings of the 2016 ACM SIGSAC Con-
ference on Computer and Communications Security,
pages 308–318. ACM.

Naman Agarwal, Ananda Theertha Suresh, Felix Yu,
Sanjiv Kumar, and Brendan McMahan. 2018. cpsgd:
Communication-efficient and differentially-private
distributed sgd. In Neural Information Processing
Systems.

Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp,
Dzmitry Huba, Alex Ingerman, Vladimir Ivanov,
Chloe Kiddon, Jakub Konecny, Stefano Mazzocchi,
H Brendan McMahan, et al. 2019. Towards feder-
ated learning at scale: System design. arXiv preprint
arXiv:1902.01046.

Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Anto-
nio Marcedone, H. Brendan McMahan, Sarvar Patel,
Daniel Ramage, Aaron Segal, and Karn Seth. 2017.
Practical secure aggregation for privacy-preserving
machine learning. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communica-
tions Security, CCS ’17, pages 1175–1191, New
York, NY, USA. ACM.

Jan A. Botha, Emily Pitler, Ji Ma, Anton Bakalov, Alex
Salcianu, David I Weiss, Ryan T. McDonald, and
Slav Petrov. 2017. Natural language processing with
small feed-forward networks. In EMNLP.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1724–
1734, Doha, Qatar. Association for Computational
Linguistics.

Daniel Golovin, Benjamin Solnik, Subhodeep Moitra,
Greg Kochanski, John Elliot Karro, and D. Sculley,
editors. 2017. Google Vizier: A Service for Black-
Box Optimization.

Klaus Greff, Rupesh Kumar Srivastava, Jan
Koutnx00EDk, Bas R. Steunebrink, and
Jx00FCrgen Schmidhuber. 2017. Lstm: A
search space odyssey. IEEE Transactions on Neural
Networks and Learning Systems, 28:2222–2232.

Andrew Hard, Kanishka Rao, Rajiv Mathews,
Françoise Beaufays, Sean Augenstein, Hubert
Eichner, Chloé Kiddon, and Daniel Ramage. 2018.
Federated learning for mobile keyboard prediction.
CoRR, abs/1811.03604.

Lars Hellsten, Brian Roark, Prasoon Goyal, Cyril Al-
lauzen, Francoise Beaufays, Tom Ouyang, Michael

Riley, and David Rybach. 2017. Transliterated mo-
bile keyboard input via weighted finite-state trans-
ducers. In Proceedings of the 13th International
Conference on Finite State Methods and Natural
Language Processing (FSMNLP).

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9(8):1735–
1780.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), volume 1, pages 328–339.

Brendan McMahan, Eider Moore, Daniel Ramage,
Seth Hampson, and Blaise Agüera y Arcas. 2017.
Communication-efficient learning of deep networks
from decentralized data. In Proceedings of the 20th
International Conference on Artificial Intelligence
and Statistics, AISTATS 2017, 20-22 April 2017,
Fort Lauderdale, FL, USA, pages 1273–1282.

Brendan McMahan, Daniel Ramage, Kunal Talwar,
and Li Zhang. 2018. Learning differentially private
recurrent language models. In International Confer-
ence on Learning Representations (ICLR).

Ofir Press and Lior Wolf. 2017. Using the output em-
bedding to improve language models. In EACL.

Alec Radford, Rafal Józefowicz, and Ilya Sutskever.
2017. Learning to generate reviews and discovering
sentiment. CoRR, abs/1704.01444.

Samuel L. Smith, Pieter-Jan Kindermans, and Quoc V.
Le. 2018. Don’t decay the learning rate, increase the
batch size. In International Conference on Learning
Representations.

Ilya Sutskever, James Martens, George Dahl, and Geof-
frey Hinton. 2013. On the importance of initializa-
tion and momentum in deep learning. In Proceed-
ings of the 30th International Conference on Ma-
chine Learning, volume 28, pages 1139–1147, At-
lanta, Georgia, USA.

TFLite. Tensorflow lite, âĂIJtensorflow’s solution for
running machine learning models on mobile and em-
bedded devices,âĂİ. https://www.tensorflow.
org/lite. Accessed: 2019-01-16.

Timothy Yang, Galen Andrew, Hubert Eichner,
Haicheng Sun, Wei Li, Nicholas Kong, Daniel Ram-
age, and FranÃğoise Beaufays. 2018. Applied fed-
erated learning: Improving google keyboard query
suggestion. arXiv preprint arXiv:1812.02903.

Yuan Zhang, Jason Riesa, Daniel Gillick, Anton
Bakalov, Jason Baldridge, and David I Weiss. 2018.
A fast, compact, accurate model for language identi-
fication of codemixed text. In EMNLP.

http://papers.nips.cc/paper/7984-cpsgd-communication-efficient-and-differentially-private-distributed-sgd.pdf
http://papers.nips.cc/paper/7984-cpsgd-communication-efficient-and-differentially-private-distributed-sgd.pdf
http://papers.nips.cc/paper/7984-cpsgd-communication-efficient-and-differentially-private-distributed-sgd.pdf
https://doi.org/10.1145/3133956.3133982
https://doi.org/10.1145/3133956.3133982
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
http://www.kdd.org/kdd2017/papers/view/google-vizier-a-service-for-black-box-optimization
http://www.kdd.org/kdd2017/papers/view/google-vizier-a-service-for-black-box-optimization
http://arxiv.org/abs/1811.03604
http://aclweb.org/anthology/W17-4002
http://aclweb.org/anthology/W17-4002
http://aclweb.org/anthology/W17-4002
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://proceedings.mlr.press/v54/mcmahan17a.html
http://proceedings.mlr.press/v54/mcmahan17a.html
https://openreview.net/pdf?id=BJ0hF1Z0b
https://openreview.net/pdf?id=BJ0hF1Z0b
https://openreview.net/forum?id=B1Yy1BxCZ
https://openreview.net/forum?id=B1Yy1BxCZ
http://proceedings.mlr.press/v28/sutskever13.html
http://proceedings.mlr.press/v28/sutskever13.html
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite

