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An accurate assessment of how quantum computers can be used for chemical simulation,
especially their potential computational advantages, provides important context on how
to deploy these future devices. To perform this assessment reliably, quantum resource
estimates must be coupled with classical computations attempting to answer relevant
chemical questions and to define the classical algorithms simulation frontier. Herein, we
explore the quantum computation and classical computation resources required to assess
the electronic structure of cytochrome P450 enzymes (CYPs) and thus define a classical–
quantum advantage boundary. This is accomplished by analyzing the convergence of
density matrix renormalization group plus n-electron valence state perturbation the-
ory (DMRG+NEVPT2) and coupled-cluster singles doubles with noniterative triples
[CCSD(T)] calculations for spin gaps in models of the CYP catalytic cycle that indicate
multireference character. The quantum resources required to perform phase estimation
using qubitized quantum walks are calculated for the same systems. Compilation into
the surface code provides runtime estimates to compare directly to DMRG runtimes and
to evaluate potential quantum advantage. Both classical and quantum resource estimates
suggest that simulation of CYP models at scales large enough to balance dynamic and
multiconfigurational electron correlation has the potential to be a quantum advantage
problem and emphasizes the important interplay between classical computations and
quantum algorithms development for chemical simulation.

quantum computing | quantum chemistry | fault-tolerant quantum algorithms

Chemical simulation is among the most promising applications of quantum computers.
Despite this, it remains a challenge to accurately assess and identify chemical problems for
which one can reasonably expect future quantum computational advantage. This problem
is challenging for many reasons, but two key difficulties emerge when demarcating the
boundary of quantum computational advantage. First, given the myriad conventional
polynomial-scaling electronic structure methods, it is difficult to find chemical problems
that will not yield to at least one classical method. For any claim that a problem is
classically difficult—or even impossible—there is no guarantee that the claim will not be
challenged by a new method at some time later. The second difficulty is that quantum
algorithms for chemistry are still an active area of development, so estimates of the
resources required to compile and run experiments on quantum computers will continue
to evolve. Until the development of a truly scalable and fault-tolerant quantum computer,
resource estimates of the most promising quantum algorithms are limited to rigorous
calculations of prefactors yielding runtime upper bounds. Moreover, a chemical problem
may prove to be prohibitive on either a quantum or a classical computer.

Thus, any attempts to determine the boundary of quantum computational advantage
must involve high-accuracy classical quantum chemistry simulations along with a detailed
resource estimation of quantum algorithms and the cost of measuring chemically relevant
observables. Ideally, quantum advantage is defined within a realistic model of chemistry
and is associated with a computation that answers a typical chemistry question. In this
work, we articulate the nuances in describing this boundary concretely by focusing on
the quantum and classical resources required to reliably simulate the active space of a
biologically important enzyme. We simulate the active space of cytochrome P450 (CYP)
mimics with a variety of classical electronic structure methods to assess the degree of
strong correlation and what would be required to evaluate 1) the chemical mechanism of
reactivity for CYPs and 2) the spin-state ordering of reactive intermediates of the catalytic
cycle of CYPs that are necessary for a correct description of energy barriers. To assess the
quantum cost we evaluate runtimes and logical qubit requirements required to implement
phase estimation within the surface code error correction scheme.

Significance

Chemical simulation is one of the
most promising applications for
future quantum computers. It is
thought that quantum computers
may enable accurate simulation
for complex molecules that are
otherwise impossible to simulate
classically; that is, it displays
quantum advantage. To better
understand quantum advantage
in chemical simulation, we
explore what quantum and
classical resources are required to
simulate a series of
pharmaceutically relevant
molecules. Using classical
methods, we show that reliable
classical simulation of these
molecules requires significant
resources and therefore is a
promising candidate for quantum
simulation. We estimate the
quantum resources, both in
overall simulation time and the
size. The insights from this study
pave the way for future quantum
simulation of complex molecules.
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We focus on costing out these two questions as they are
representative of the types of chemical questions one could ask
about a realistic system that highlight the difficulties of application
of quantum and classical algorithms in chemical science. To this
end, we use several systematically improvable classical electronic
structure methods (discussed below) to scope out the limits of
classical algorithms to obtain reliable chemical energetics. Having
shown that classical calculations will be cost prohibitive, we
compute the resource estimates for quantum phase estimation
algorithms, which would be required for efficient and reliable
computation of the energetics in CYP mimics. What emerges
from these detailed accountings of cost is that despite a potential
exponential simulation time advantage for quantum computers,
direct simulation of a large enough system to reliably account
for dynamic correlation may be beyond the reach of classical and
quantum devices. This suggests room for further development of
quantum algorithms.

To quantify the cost, and therefore the limits, of classical
electronic structure calculations we focus on families of meth-
ods that are systematically improvable. Such methods have the
property that one can estimate convergence of any given property
toward the exact result, which is the basis of truly predictive
computation. One such family of methods is the coupled-cluster
(CC) hierarchy (1–7) that, for most systems, provides results with
controllable error at a high, but polynomial, cost. For systems with
significant multireference character, coupled-cluster methods will
fail, and one must turn to multireference methods usually based
upon an exact or near-exact solution within an active space of
orbitals. In theory, such methods can be systematically improved
by increasing the size of the active space, but in practice the high
cost often necessitates small active spaces or aggressive truncations
to the molecular model for which the error is difficult to control.
For small active spaces, the full configuration interaction (FCI)
calculation can be performed directly, while for larger active spaces
one must turn to approximate methods such as the density matrix
renormalization group (DMRG) (8–11), full configuration inter-
action quantum Monte Carlo (FCIQMC) (12), or some variant
of selected configuration interaction method (13–16). Although
research into these methods has enabled large active-space calcu-
lations in recent years, medium- to large-sized molecular systems
will still require some treatment of electron correlation outside
of the active space to obtain qualitatively correct results. Progress
has been made with various flavors of multireference perturbation
theory (17, 18) and multireference coupled-cluster theory (19),
but a balanced description of electron correlation outside of the
active space remains a major challenge.

The quantum algorithm we choose to compare against is phase
estimation, which allows one to sample in the eigenbasis of a
given Hamiltonian. Assuming one can prepare an initial state
with sufficient overlap with the ground state, phase estimation
can be used to estimate the ground-state energy of a chemical
system. Although there are a variety of quantum algorithms for
acquiring different types of chemical observables, energy com-
putations provide direct comparison to address the aforemen-
tioned problem of spin-gap estimation with single-point energy
calculations. Improvements to the algorithm have brought costs
down from prohibitively high runtimes to scalings that now
scale linearly in inverse precision and the square root of the
basis-independent information content of the Hamiltonian (20).
However, asymptotic scalings are not enough to define a quantum
advantage boundary. Prefactor estimates along with compilation
considerations have been taken into account to provide an upper
bound to a real-time estimate for the runtime of a quantum
algorithm subject to the assumption of high initial overlap. To

make a direct comparison to classical simulation costs in active
spaces of chemical systems, we perform a quantum resource
estimation assuming phase estimation of the qubitized quantum
walk operator (20). Qubitization strongly depends on the type
of tensor factorization one uses for the two-electron integrals
in the standard electronic structure Hamiltonian. We study this
dependency for three different factorizations and demonstrate that
tensor hypercontraction leads to substantially lower runtimes in
CYP systems. Finally, we analyze tradeoffs in qubit count and
number of Toffoli factories to define a quantum advantage frontier
for a variety of hardware configurations.

To compare cost of classical and quantum computation, we
focus on models of the active site of CYP proteins. Compared to
exotic systems, like the FeMo cofactor of nitrogenase (FeMoco)
(20), that are usually used for quantum resource estimates, the
active sites of CYP proteins are more representative of the typical
systems that can benefit from chemical simulation. The super-
family of CYPs is membrane-bound heme-containing enzymes
that function mostly as monooxygenases. In the human genome
57 CYP isoforms are encoded; moreover, it is the largest fam-
ily of hemoproteins known, with more than 300,000 members
throughout all organisms (21). The major role of CYPs lies in
the detoxification of organisms. The most common detoxification
mechanism involves a single-oxygen insertion into C-H bonds
of CYP substrates, thereby generating a hydroxy group, which
enables further metabolism. The oxidation by CYPs is also the
most common metabolization mechanism for drugs in humans,
where more than 70% of all drugs are metabolized by just two
CYP isoforms (CYP 3A4 and CYP 2D6) (22). In the case of
CYP 3A4, which is known to roughly metabolize 50% of all
marketed drugs (23), more than one substrate molecule may be
accommodated in the active site (24).

The oxidation by CYPs is a multistep catalytic cycle, shown
in SI Appendix, section 2, Fig. 1, involving at least eight interme-
diates (25), consuming one molecule of O2, two electrons, and
two protons to achieve the monooxygenation of a substrate. The
catalytically active species, compound I (Cpd I) (25), is thought
to be a polyradical neutral species involving an iron porphyrin
ring coordinating to atomic oxygen and thiolate from cysteine.
The spin-state energetic orderings of Cpd I are still a matter
of debate, where nearly degenerate doublet and quartet states
are postulated (25). The spin states are sensitive to the protein
environment and Cpd I is often referred to as a “chameleon
species,” as it changes its spin nature depending on subtle struc-
tural changes in the protein. A complete theoretical description
of this catalytic cycle is challenging because incorrect results for
a single intermediate can qualitatively change the chemistry. If
a single intermediate has an electronic structure demanding a
more accurate treatment, then for consistency all intermediates
should be calculated at this level of theory. To portray the classical
and quantum computing costs along the CYP catalytic cycle, we
decided to employ model systems of the water-bound resting state,
the pentacoordinate “empty” state, and Cpd I. Additionally, due to
the high pharmaceutical relevance, we also include a model system
corresponding to an inhibitor-bound active site of P450, where a
pyridine is bound to the heme–iron, such as shown in Fig. 1. This
model system has proved to be very useful in the investigation
of reaction mechanisms of Cpd I by density functional theory
(DFT) either in vacuum or as a quantum mechanical (QM) region
in quantum mechanics/molecular mechanics (QM/MM) calcula-
tions (26, 27). Moreover, the truncation to the model system does
not cause lack of generality, as Lonsdale et al. (28) demonstrated
the electronic structures of Cpd I to be very similar within human
CYP isoforms. However, to achieve an accurate description of
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Fig. 1. Model systems employed in this study. (Top Left) The resting state
with water bound to heme. (Top Right) The pentacoordinated “empty” state.
(Bottom Left) Pyridine inhibitor bound model complex. (Bottom Right) Cpd I. To
improve clarity all nonpolar hydrogen atoms are hidden.

individual isoforms and substrate interaction requires multiscale
modeling (29–31), as CYP action has been shown to have subtle
dependence on the protein environment (28, 32), especially on
polarization, hydrogen bonding, and membrane composition.

In this work we analyze the model compounds with state-
of-the-art classical electronic structure methods, estimate the
quantum resources required for different-sized active-space
Hamiltonians, and provide a classical characterization of the
electron correlation in these systems. In Section 1 we describe
the series of active-space models studied and DMRG calculations
with an n-electron valence state perturbation theory (NEVPT2)
correction to determine accurate spin gaps and discuss potential
hero calculations that can be performed to resolve the spin-gap
problem. In Section 2 we provide quantum resource estimates
and runtimes after compiling to a surface-code quantum error
correction scheme. With full compilations to realistic hardware
configurations we compare runtimes from DMRG and the
quantum computer for the task of simulating the ground-state
energy of the active-space models. For complete analysis, in
SI Appendix, section 6 we characterize the electronic structure of
four model CYP compounds and demonstrate that the empty, in-
hibited, and resting states can be characterized by single-reference
electronic structure methods while Cpd I exhibits some multicon-
figurational character. Specifically, we demonstrate that traditional
metrics for strong correlation, max(|t1|)-diagnostic, and spin
contamination, are corrected by including dynamic correlation
and thus the three aforementioned compounds are classified as
“artificially” symmetry broken. We close with a discussion of
future research directions and chemically relevant observables for
characterizing CYP with quantum or classical computation.

1. Classical Calculations of Electron Correlation
in P450 Models

The energetics, dominant electronic structure features, and spin
gaps have been the subjects of many quantum chemistry cal-
culations on various CYP isoforms (25, 33–36), ranging from
full-space DFT calculations (37–40) to active-space models with
dynamic correlation corrections (41–43). The model systems in
this work were derived from experimental X-ray structures of
CYP3A4 by removing all noniron coordinating entities of the
protein and the solvent. Further details on how the geometries
were determined can be found in SI Appendix, section 2.1. In the

following section we describe the construction of a hierarchy of
active spaces and use coupled-cluster singles doubles with noniter-
ative triples [CCSD(T)] and DMRG with NEVPT2 corrections
to characterize the electronic structure at various experimentally
motivated spin states. The DMRG timings and accuracy are
used to provide context for the quantum resource estimates and
ultimately motivate a potential quantum advantage boundary.
The computational details for all calculations can be found in
SI Appendix, section 3.

Active-Space Selection. To create the active-space models, the or-
bitals of the high-spin restricted open-shell Hartree-Fock (ROHF)
state in the correlation-consistent polarized valence double zeta
(cc-pVDZ) basis (44) were localized with the Pipek–Mezey lo-
calization scheme (45) to yield a set of local orbitals for each
compound. We constructed active spaces of increasing size in a
hierarchical manner by starting with the five singly occupied or-
bitals of the high-spin reference (A) and then adding orbitals from
the occupied and virtual spaces as summarized in SI Appendix,
section 8, Table 3. For heme–iron systems the computed spin gap
will depend strongly on the choice of active space (42, 46–52).
While most previous studies sought the most efficient possible
active space of a given size, our strategy is designed to yield a
balanced hierarchy of active spaces that will facilitate analysis of
computational cost and convergence to the exact limit.

This process was repeated for each of the four compounds to
yield a hierarchy of active spaces (A, B, C, D, E, F, G, X), each a
superset of the previous, all with roughly the same filling fraction.
The numbers of orbitals and electrons in each active space are
tabulated in SI Appendix, section 8.

Spin-State Ordering from DMRG+NEVPT2. In all active spaces
considered for Cpd I, we found the sextet to be much higher
in energy than the nearly degenerate doublet and quartet states.
This is largely consistent with previous calculations (25, 33, 34).
In Fig. 2 we show the DMRG and CCSD(T) spin gaps within
the specified active space. CCSD(T) and DMRG agree to within
0.1 kcal/mol for the sextet and quartet states indicating single-
reference character. However, for the doublet state, the DMRG
energy is consistently much lower than the CCSD(T) energy.
The DMRG natural orbital (NO) occupation numbers shown in

Fig. 2. Energy differences between the high-spin sextet (S = 5/2) and low-
spin doublet (S = 1/2) and quartet (S = 3/2) states of Cpd I. Only for
the doublet is there significant disagreement between CCSD(T) and DMRG
energies within the active space. DMRG consistently predicts the doublet and
quartet states to be nearly degenerate.
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Fig. 3. Natural orbital occupation numbers from the DMRG density matrix
in the 41-orbital “G” active space for the sextet (S = 5/2), quartet (S = 3/2),
and doublet (S = 1/2) states. Note that the doublet clearly has three singly
occupied orbitals.

Fig. 3 reveal that the doublet state has three open-shell natural
orbitals. This state is not well described in traditional coupled-
cluster theory, and accurate computation therefore requires a
method, such as DMRG, that is capable of treating systems with
multiconfigurational character.

Our DMRG results for the G active space are the largest
DMRG calculations yet performed on any model of Cpd I.
We find the doublet state to be lower than the quartet by only
0.02 kcal/mol. Thus, from these estimates both the doublet and
quartet states would be expected to be populated at room tem-
perature. The sextet is 42.7 kcal/mol higher in energy than the
two low-spin states. This is qualitatively consistent with most past
calculations on this system (9, 25, 33, 34, 53). We show the
three singly occupied NOs in Fig. 4, along with their occupation
numbers (ONs), from which we can see that there are two Fe-O
orbitals with π∗

xz and π∗
yz character and a third sulfur nonbonding

orbital. In this case the sulfur nonbonding orbital is mixed with
one of the Fe-O π∗ orbitals. This is consistent with studies that
use S-Me or the full cysteine ligand in the gas phase (9, 53). In
studies that either use S-H in place of the cysteine ligand (32, 46)
or include the protein environment in some way (54, 55), the third
orbital is found to be mixed with a heme au (π∗) orbital.

The near degeneracy of the doublet and quartet states makes
prediction of the lowest-energy spin state very difficult for this
system. In particular, including the remaining dynamic corre-
lation from outside of the active space can change this picture
qualitatively (see the results in SI Appendix, section 5). While
NEVPT2 can provide a good estimate of the relatively large
dynamic correlation energy, it is not accurate enough to resolve
the doublet and quartet states. In this system, the addition of the
NEVPT2 correlation energy can even shift the relative energy of
the sextet such that it becomes the lowest spin state in some of
the active spaces. Without larger, prohibitively expensive calcu-
lations, one cannot distinguish a real effect from an artifact of
the various approximations. Furthermore, details of the protein
model, dielectric environment, and cysteine ligand model can
easily shift the energies by enough to change the qualitative result
(56). Together, these sources of uncertainty indicate that reliable
identification of the lowest spin state of Cpd I as it appears in most
experiments is not feasible. However, unambiguous identification
of the lowest spin state in our model compound could be possible
with a DMRG calculation in a very large active space, such as our

active space, followed by a NEVPT2 correction for the remain-
ing dynamic correlation. As the active space is made larger, the
NEVPT2 correction becomes smaller and more reliable, although
a DMRG-NEVPT2 calculation of this size is beyond our current
capability. It is interesting to note that in a system like this, a very
large active space is required not because there are a large number
of strongly correlated orbitals, but rather because this is the only
well-known, reliable means to obtain a balanced combination of
static and dynamic correlation for different spin states.

Cost Estimates for Classical Computation. The computational
cost of DMRG calculations depends on the bond dimension, M ,
and number of active orbitals, k . The bond dimension, M , is an
adjustable parameter that controls the quality of the calculation,
and convergence of the energy with respect toM must be carefully
monitored to ensure accurate results. The theoretical asymptotic
scaling of computational resources required for a DMRG calcula-
tion with a given bond dimension and number of active orbitals
has been discussed elsewhere (57). The scaling of the central
processing unit (CPU) time is O(k3M 3), and the memory and
disk requirements scale as O(k2M 2) and O(k3M 2), respectively.
Given the theoretical scaling, we can estimate the computational
cost of a calculation in the 58-orbital X active space. These
estimates are shown in Table 1. For the StackBlock program,
which implements both shared-memory and distributed-memory
parallelism, it may be possible to perform an M = 3,000 calcula-
tion on the 58-orbital X active space with a significant investment
of computational resources over a period of approximately 1 mo of
wall time. However, there is no guarantee that a bond dimension
of M = 3,000 will be sufficient and it is likely that calculations of
even higher bond dimension are required.

For systems like our model of Cpd I that do not have a
quasi–one-dimensional structure the bond dimension required to
converge a DMRG calculation to the required precision will grow
in such a way to make the overall scaling of the method weakly
exponential. In practice, this means that active spaces larger than
the X active space described here quickly become intractable.

2. Quantum Computing Resource Estimates

In this section we perform a detailed accounting of the space
and time complexity for sampling from the eigenbasis of the
active-space Hamiltonians within the context of error-corrected
quantum computers. The space resources we consider are the total
number of logical qubits and physical qubits required to perform
the phase estimation algorithm. For time complexity we focus
on the number of Toffoli gates that are the rate-limiting gate
operation within the surface code error correction protocol (58).
To provide a range of estimates we consider various error rates
of the qubits composing the surface code and optimize success
probability for the full quantum algorithm and code distance.
We demonstrate assuming physical qubit error rates of 0.1% that
the ground-state energy of the largest model Hamiltonian for
the active-space X of Cpd I can be assessed with ∼4.6 million
physical qubits in 73 h of runtime. Anticipating improvements
in qubit technology and reduction of error rates to 0.001% the
same computation preparing the ground state of Cpd I can be
performed in ∼500,000 physical qubits and 25 h of runtime.

The prevailing method for using a quantum computer to learn
about the eigenspectrum of a molecular system is through phase
estimation. The quantum computer simulates an operator related
to the chemical system and learns spectral information without
having to sacrifice accuracy beyond the basis set errors inherent to
specifying the Hamiltonian. In terms of the electronic structure
Hamiltonian (H ) the phase estimation algorithm implements
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ON = 1.14 ON = 1.12 ON = 0.98

Fig. 4. Visualization of the three singly occupied natural orbitals of the doublet state of Cpd I.

unitaries generated by a simple function of the Hamiltonian
f (H ), which, when applied to a state ψ, accumulates phases
according to the spectrum of f (H ) (59):

U |ψ〉=
∑

k

〈k |ψ〉e−if (Ek )|k〉, [1]

where k indexes an eigenstate of f (H ). Leveraging the quantum
Fourier transform, a phase can be approximately determined to
error ε by applying U to the state 1

ε ||∂f (E )/∂E ||−1 times and
then performing a projective measurement. In this scheme, the
probability of measuring the ground state of f (H ) to error ε is
|〈0|ψ〉|2. Therefore, the parameters controlling the cost of phase
estimation are the error ε, the cost of implementing U , and
the overlap with the ground state |〈0|ψ〉|2. We assess all these
factors for CYP active spaces to obtain leading-order estimates
of the space complexity and time complexity (Toffoli counts)
for obtaining the ground-state energy with the phase estimation
protocol.

There are numerous variations of phase estimation that all come
with different cost models depending on the type of Hamiltonian
function, f (H ), and the cost of implementing U . For example,
the function that expresses a Hamiltonian as a sum of Hermitian
operators f (H ) =

∑
l Hl would result in a simple unitary under

Trotterization whose spectrum is close to the original Hamilto-
nian H . Recent work (20, 60, 61) has shown that applying phase
estimation to the qubitization iterate (62) allows one to learn
eigenvalues and prepare eigenstates with error no greater than ε
by repeated application of the relevant quantum operator—the
so-called qubitized quantum walk operator—O(λ/ε) (63) times
where λ is the L1-norm of the coefficients of the Hamiltonian.
λ is associated with the cost of implementing the qubitization
walk operator f (H ). The resulting function f (H ) turns out to
be proportional to the arccosine of H and thus the unitary U
is an operator whose eigenvalues are e±iarccos(E), where E are
eigenvalues of the original Hamiltonian (20, 64).

Three previous papers performed a full resource estimation
on the number of physical qubits and runtime requirements for
simulating chemical systems in a molecular orbital basis using

Table 1. Actual resources required for DMRG calcula-
tions in the 43-orbital G active space and estimated re-
sources needed for DMRG calculations in the 58-orbital
X active space

G (M = 1,500) X (M = 1,500) X (M = 3,000)
CPU time, h 1, 800 4, 570 36, 564
Memory, GB 48 87 348
Disk, GB 235 572 2, 288

various forms of the qubitized quantum walk protocol (20, 60,
61). A detailed description of their differences, costs, and imple-
mentations can be found in ref. 64 but here we highlight the
differences relevant to quantum chemistry. Most generically, for
all qubitization schemes the walk operators can be implemented in
Toffoli complexity scaling as O(

√
Γ) and O(

√
Γ) ancilla qubits,

where Γ is the amount of information needed to specify a par-
ticular tensor factorization of the Hamiltonian coefficients where
each tensor factorization can be implemented in O(N ) Toffoli
complexity. Generally, the Hamiltonian coefficients we consider
are the scalars associated with the two-electron Coulomb repulsion
integrals. Using these costs, phase estimation can be implemented
in a total gate complexity of Õ(

√
Γλ/ε).* In all methods Γ and

λ are nontrivially related to each other through the particulars of
tensor factorization of the Hamiltonian coefficients. Thus, to find
the best schemes for chemical systems we study the performance
of three instances of qubitization schemes using different tensor
factorizations in full detail to assess the overall scaling of each
technique.

The three Hamiltonian factorization schemes we compare are
the single factorization (SF) (60, 65) (related to the Cholesky
decomposition of the two-body electronic structure Hamiltonian)
(67), double factorization (DF) (61, 65, 67), and tensor hypercon-
traction (THC) (68–70) with Γ costs articulated in Table 2. In
both the DF and THC factorizations each tensor factor is evolved
by rotating into a basis such that the central tensor is diagonal.
This rotation costsO(N )Givens rotations (61), which yield linear
Toffoli complexity. For THC the basis rotation is a projection into
a larger basis with rank equal to the THC rank. In prior work uti-
lizing the THC decomposition on the two-electron integral tensor
within the qubitization framework, a brute-force optimization
scheme was used to determine the THC decomposition involving
random restarts and direct gradient descent on the least-squares
objective (20). In this work we use a variation of prior THC
decomposition workflows by starting with a symmetric canonical
polyadic decomposition of the Cholesky vectors followed by
L1-regularized optimization of the THC factors. Full details of
this protocol are described in SI Appendix, section 7. We validate
that this scheme reliably produces small λ values for increasing
system size.

Quantum Resource Scaling. Each factorization scheme requires
a user-specified cutoff in terms of how accurately the two-electron
integral tensor (and thus the underlying Hamiltonian) should
be represented. This cutoff directly affects the scaling of the
algorithms. To efficiently estimate the cutoff for a fixed accuracy
we use CCSD(T) with two-electron integrals reconstructed with

*The Õ(.) indicates asymptotic scaling but dropping any parameters that scale as polyno-
mials of logarithms in that parameter.
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Table 2. Tabulation of space and time complexity of
the cost of performing phase estimation on qubitized
quantum walk operators

Tensor Space
factorization complexity Toffoli
method (logical qubits) complexity

SF Õ(N3/2) Õ(N3/2λ/ε)

DF Õ(N
√
Ξ) Õ(N

√
Ξλ/ε)

THC Õ(N) Õ(Nλ/ε)

Generically, qubitized quantum walks scale as Õ(
√
Γ) in space and Õ(λ

√
Γ/ε), where Γ

is the amount of information required to specify the Hamiltonian within a particular tensor
factorization. For the SF method Γ = Õ(N3). For double factorization Γ = Õ(N2Ξ), where
Ξ is the average rank of the second factorization that is expected to scale as O(N) in most
regimes (65). For THC Γ = Õ(N2), assuming the THC rank grows linearly with system size.

a specific cutoff for the high-spin electron configurations. As
validated previously, CCSD(T) is accurate in the active space
for all compounds with a high-spin electron configuration. For
example, to determine the sufficiently accurate THC rank, we
perform THC decompositions with increasing rank until the
CCSD(T) error is within one milliHartree (∼0.6 kcal/mol). One
milliHartree is selected for consistency with previous work (20)
but it may be necessary to select an even lower cutoff due to the
fact that errors are additive between the total success probability
of phase estimation, rounding in the procedure implementing
the oracles associated with qubitization via Quantum Read Only
Memory (QROM) rounding, and truncation of two-electron
integrals via approximate factorization. From here, the λ for each
factorization is computed and subsequently input into the detailed
cost estimates for each step of the walk operator construction. Ref.
20 contains a full description of all costs associated with optimal
implementation of each of the oracles in the qubitized quantum
walk operator. For reproducibility we provide a software tool that
takes as input various tensor factorizations and computes the
total resource requirements in terms of logical qubits and Toffoli
counts. The process of determining the THC rank cutoff for the
largest active space of Cpd I is shown in Table 2. To estimate a
generic THC rank to avoid the process of rank optimization we
aggregate all determined THC ranks for all four compounds in
all active spaces and perform a linear regression. The generic THC
rank is determined to be 4.7 (see SI Appendix, section 7, Fig. 7 for
details). As previously described, the true scaling of qubitization
for each factorization depends largely on how well the various
factorizations can use the existing structure in the two-electron
integral tensors and compress the information. Using the progres-
sively larger active spaces and resource estimates in terms of Toffoli
gate and logical qubit counts for each factorization, we can assess
the scaling and extrapolate to larger size factorizations not studied

in this work. The extrapolations for number of Toffoli gates and
number of logical qubits required are shown in Fig. 5.

Compilation into Surface Code. To perform the required number
of gates for phase estimation the quantum state must be protected
against errors through a quantum error correction protocol. The
surface code is one such protocol that can be implemented on a
two-dimensional array of qubits and requires physical error rates
no worse than 0.5% (71). In the surface code one can make trade-
offs between space and time, i.e., changing the length of time
required for the computation at the expense of using more physical
qubits. Significant controlling factors for this are the number of
Toffoli factories and how these resource factories are implemented.

We start with analyzing the runtime requirements for sim-
ulating the largest X Hamiltonians. For these systems dynamic
correlation corrections may be small and are thus more likely to
result in accurate spin gaps. To estimate the cost of executing
phase estimation in the surface code, we start from the number
of data qubits and Toffoli gates required, determined from the
previous section based on a THC factorization of the two-electron
integrals. We assume that four magic-state factories are being used
and the execution time is determined by the Toffoli count, due
to being bottlenecked waiting for magic-state factories. Higher
factory counts would require a much different analysis on routing
overheads. We assume space usage is determined by the number
of logical data qubits, the number of magic-state factories, and a
50% overhead for routing. Finally, we assume a physical per-gate
error rate of 0.1%, a surface code cycle time of 1 ms, and a control
system reaction time of 10 ms.

These assumptions are used to determine a variety of different
configurations (code distances and factory layouts) and to select
the configuration that uses the least spacetime volume while
ensuring that the quantum computation corrects all errors at least
90% of the time. The code to do this estimation is provided
as a submodule of OpenFermion (72). For physical qubit error
rates below 0.1% we use self-correcting CCZ (AutoCCZ) factories
from ref. 58 and T factories from ref. 73. To get an overall failure
rate for the entire algorithm for a given configuration we estimate
the failure rate of the factories and the failure rate of logical data
qubits.

For a physical error rate of 0.1%, four factories, and the afore-
mentioned surface-code timings the optimal configuration was
AutoCCZ magic-state factories with a level-1 code distance of 19
and level-2 code distance of 31 and logical data qubits with a code
distance of 29. This requires 4,624,440 physical qubits and a total
runtime of 73 h. For these estimates we assume that the space–
time requirements (qubits and Toffolis) are translated directly into
error-corrected requirements, which is an overestimation of the
needed resources. Thus these estimates should be viewed as upper

Fig. 5. (Left) Number of Toffolis as a function of the number of active-space orbitals for the four heme compounds in this study, grouped by factorization
algorithm: THC (blue), DF (yellow), and SF (red). Empirical scaling of the number of Toffolis as a function of orbitals N is obtained by a least-squares fit on
the log-log plot. (Right) Number of logical qubits as a function of the number of active-space orbitals for the four heme compounds in this study, grouped by
factorization algorithm: THC (blue), DF (yellow), and SF (red). Empirical scaling of the number of qubits as a function of orbitals N is obtained by a least-squares
fit on the log-log plot.
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Fig. 6. Phase estimation runtimes with physical qubit error rate of 0.1% and
four Toffoli factories while assuming a 1-μs surface code cycle. While the
THC factorization has substantial leading-order costs to account for, over the
simpler to implement single factorization, the asymptotic advantage of THC
compression is demonstrated at small system sizes.

bounds assuming other timing criteria are met by real machines. In
Fig. 6 we plot the runtime scaling for phase estimation performed
on all active-space calculations with different tensor factoriza-
tions. The data show that despite higher prefactors for tensor
hypercontraction qubitization the asymptotic scaling advantage
appears even at small sizes. As a forecasting exercise we can make
runtime, physical qubit, and code distance estimates as a function
of physical qubit error rate. This provides insight into the scenario
of qubit error rates becoming substantially better. We again make
the assumption that surface code cycle and reaction times are
1 μs and 10 μs and we use four Toffoli factories. In Fig. 7 we
show the decreased runtime, physical qubit requirements, and
code distances as a function of physical error rate. In the event we
have extremely low gate error rates of 0.001%, solving the largest
system will take only 500,000 qubits and 25 h of runtime.

Demarcating the Quantum Advantage Boundary. Using tim-
ings from DMRG calculations and estimated runtimes on an

error-corrected quantum computer we can compare the corre-
sponding CPU and quantum processing unit (QPU) time require-
ments as a function of active-space size to investigate the potential
for a simulation advantage. In Fig. 8 we plot the measured timings
of DMRG calculations on all active spaces for different values of
bond dimension (M ) and the estimated runtimes for the quantum
computing to perform phase estimation. The QPU runtimes
are estimated using two Toffoli factories, which corresponds to
4.9 million qubits and 135 h of runtime for the largest systems.
DMRG runtimes are computed as the wall clock time multiplied
by the number of threads. In practice the runtime of either
calculation can be reduced by using more cores or more Toffoli
factories, respectively. To put the DMRG timings in context
relative to QPU timings we need a notion of how accurate they
are at fixed bond dimension. Due to the lack of convergence in
any of the DMRG or coupled-cluster calculations for the spin
gap, we instead compare to the extrapolated DMRG energy for
a given active space. This comparison makes the assumption that
the extrapolated energy at any bond dimension is highly accurate.
Fig. 8 suggests that for large bond (M ≥ 1,000) dimension
and large active space quantum phase estimation already has a
computational advantage when the task is simulating the ground-
state energy.

While DMRG provides access to reduced-density matrices
(and therefore other observables), phase estimation provides only
estimates of the energy and further processing is required to com-
pute other quantities. This is important for energetic quantities
as well, because corrections for dynamic correlation outside of
the active space usually require reduced-density matrices (1-, 2-,
3-, and sometimes 4-particle). These corrections, such as the
NEVPT2 used in this work, can allow for smaller active-space
calculations in principle. This difference highlights a need for
quantum algorithms addressing dynamic correlation. Extrapo-
lating out the number of qubits and Toffoli gates required for
CYP active-space models at 500 orbitals (which is approximately
the number of orbitals used for the full-space coupled-cluster
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Fig. 7. Comparison of compiled resource requirements as a function of physical error rate. (Top Left) Runtime. (Top Right) Algorithm failure probability. (Bottom
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achieved would precipitate using a different error correction protocol.
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5 7 10 20 40 60 5 7 10 20 40 60

Fig. 8. (Left) CPU time for Complete Active Space Configuration Interaction (CASCI) CASCI/DMRG calculations on different active spaces and QPU time to
perform phase estimation on the THC-decomposed active-space Hamiltonian. Times are determined by wall clock time multiplied by the number of threads.
QPU time is determined assuming a 0.1% gate error rate and two Toffoli factories and neglects repetitions needed due to potentially small initial-state overlap.
Both methods, save CASCI, are parallelizable to some extent by using more resources. (Center) Same timings as Right but now considering 32 threads for DMRG
and six Toffoli factories for the QPU. (Right) DMRG energy at fixed bond dimension relative to extrapolated energy for various numbers of orbitals.

calculations) would require ∼9,000 logical qubits and 1.5 trillion
Toffoli gates to perform phase estimation on the entire space.
Thus, the development of quantum algorithms for addressing
dynamic correlation is an important step toward chemical com-
putational relevancy.

The success probability for phase estimation also relies on
overlap S of the initial state with an eigenstate of the Hamiltonian.
Therefore, a full timing comparison would ideally factor the
overlap dependency as a poly(S−1) multiplying prefactor that
can be improved with knowledge of the gap (74). To have an
idea of the size of this prefactor for Cpd I we have computed the
determinant used in the exact diagonalization basis, also known as
a computational basis state, that has the largest overlap with the
DMRG M = 1,500 bond dimension wavefunction for systems
A through G. These overlaps were computed using the block2
program (75). In Fig. 9 we plot the overlap as a function of active-
space size for all three spin states considered. As expected, the
largest overlap decays by a factor of 2 going from a system size
of 10 qubits to 84 qubits but never falls to a value that would be
problematic for phase estimation.

Conclusion

To demarcate the quantum advantage boundary for biologically
relevant compounds we have performed a detailed characteriza-
tion of the classical and quantum resources required to accurately

Fig. 9. Largest computational basis-state overlap with the ground-state
DMRG M = 1,500 wavefunction.

describe the electronic structure of the P450 enzyme active site.
This work highlights the demand of careful application of a variety
of classical chemical methods and that even in regimes where
a problem is not “strongly correlated” quantum computers can
potentially provide advantage due to the need to treat dynamic
and static correlation in a balanced way. We also determine that
circumventing the traditional strategy of partitioning dynamic
and static correlation by using a quantum computer to sim-
ulate the entire problem is unlikely to be feasible due to the
very large number of resource states needed to execute phase
estimation. These findings suggest that further development of
fault-tolerant algorithms, either in observable extraction or in
scaling, are necessary for quantum computers to be transformative
for simulating electronic structure where modest multireference
character is augmented by a large dynamic amount of correlation.

To make the aforementioned conclusions we analyzed the
multireference character through a variety of classical electronic
structure methods that help to clearly determine the computa-
tional frontier of CYP simulation. The necessity of using multiref-
erence methods is supported by examining spin contamination,
defined by 〈S 2 − S 2

z − Sz 〉, as well as three other metrics from
correlated wavefunction theory, namely, max(|t1|) and max(|t2|)
from CCSD, as well as natural orbital occupation numbers from
regularized κ-OOMP2 (Regularized Orbital-Optimized Second-
Order Møller-Plesset Perturbation Theory [kappa-OOMP2]).
From these metrics, we found that Cpd I displayed some mul-
tireference character. DMRG calculations confirm the triradical
character involving three open shells in the Cpd I doublet corre-
sponding to Fe-O π∗

xz/yz orbitals and a lone pair orbital on the
sulfur atom of the Me-S ligand emulating the full coordinating
cysteine ligand. This triradical character is consistent with previous
multireference calculations on Cpd I (33, 55, 76). Despite a clear
characterization of nontrivial open-shell electronic structure in
Cpd I, the ground-state spin state and spin gaps remain elusive
due to the need to treat dynamic and static correlation on equal
footing.

Analysis of the quantum resources required to simulate these
systems indicated that of the three Hamiltonian factorizations
(SF, DF, and THC factorization) used in qubitized phase esti-
mation, tensor hypercontraction consistently outperformed the
other two. Compilation into the surface code provided an upper-
bound runtime estimate for executing phase estimation. Most
notably, under realistic hardware configurations we predict that
the largest models of CYP can be simulated with under 100 h
of quantum computer time using approximately 5 million qubits
implementing 7.8× 109 Toffoli gates using four T factories. A
direct runtime comparison of qubitized phase estimation shows a
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more favorable scaling than DMRG, in terms of bond dimension,
and indicates future devices can potentially outperform classical
machines when computing ground-state energies. Extrapolating
the observed resource estimates to the full Cpd I system and
compiling to the surface code indicate that a direct simulation
of the entire system could require 1.5 trillion Toffoli gates—an
unfeasible number of Toffoli gates to perform.

The classical benchmarking of CYP compounds demonstrates
the need to account for dynamic correlation and the quantum
cost estimates detailing the requirements for a high-accuracy sim-
ulation encourage further development of quantum algorithms
to address multireference quantum chemistry beyond the strong
correlation regime. Furthermore, this work demonstrates that
classical calculations play an important role in guiding quantum
algorithms research and are essential for defining the computa-
tional frontier for chemistry.

Data, Materials, and Software Availability. For reproducibility, we share
data and code used in this work on a public Zenodo repository (10.5281/zenodo.
5941130) (78), including the molecular geometries and active-space Hamilto-
nians, along with the inputs to reproduce the calculations. All software used for

Hamiltonian tensor factorizations and phase estimation resource estimates can
be found in the resource estimates module of OpenFermion (72) commit no.
cf53c063d0f124a02ff8776bb7f8afb110d4bde6. To perform the tensor hyper-
contraction factorization with the code in OpenFermion an interface, pybtas, to
BTAS (77) commit 5702259d5d207fe5a8e0c975c3cf1f610dcf381a is required.
The pybtas library is included in the Zenodo repository and can be found at
https://github.com/ncrubin/pybtas (79). The THC factors obtained from this work
are also available in the Zenodo repository.

ACKNOWLEDGMENTS. We thank Leon Freitag for code contributions and discus-
sions on active-space construction and Clemens Utschig-Utschig for discussions
regarding the content and vision of the paper. Some of the discussions and
collaboration for this project occurred while using facilities at the Kavli Institute
for Theoretical Physics, supported in part by the NSF under Grant No. NSF PHY-
1748958.

Author affiliations: aGoogle Quantum AI, Google Research, Venice, CA 90291; bQuantum
Simulation Technologies, Inc., Boston, MA 02135; cDepartment of Chemistry, Columbia
University, New York, NY 10027; dMedicinal Chemistry, Boehringer Ingelheim Pharma
GmbH & Co KG, 88397 Biberach, Germany; eDepartment of General, Inorganic, and
Theoretical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria; and fQuantum Lab,
Boehringer Ingelheim, 55218 Ingelheim am Rhein, Germany

1. F. Coester, Bound states of a many-particle system. Nucl. Phys. 7, 421–424 (1958).
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