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ABSTRACT

Personalized recommender systems rely on knowledge of user pref-
erences to produce recommendations. While those preferences are
often obtained from past user interactions with the recommenda-
tion catalog, in some situations such observations are insufficient
or unavailable. The most widely studied case is with new users,
although other similar situations arise where explicit preference
elicitation is valuable. At the same time, a seemingly disparate
challenge is that there is a well known popularity bias in many al-
gorithmic approaches to recommender systems. The most common
way of addressing this challenge is diversification, which tends to
be applied to the output of a recommender algorithm, prior to items
being presented to users.

We tie these two problems together, showing a tight relationship.
Our results show that popularity bias in preference elicitation con-
tributes to popularity bias in recommendation. In particular, most
elicitation methods directly optimize only for the relevance of rec-
ommendations that would result from collected preferences. This
focus on recommendation accuracy biases the preferences collected.
We demonstrate how diversification can instead be applied directly
at elicitation time. Our model diversifies the preferences elicited
using Multi-Armed Bandits, a classical exploration-exploitation
framework from reinforcement learning. This leads to a broader
understanding of users’ preferences, and improved diversity and
serendipity of recommendations, without necessitating post-hoc
debiasing corrections.
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1 INTRODUCTION

Recommender Systems (RSs) [46] have become ubiquitous for rec-
ommending movies [19], music [54], books [57], news [34], and in
numerous other domains. Their goal is to help users more quickly
find relevant items in vast catalogues.

One of the most common approaches is Collaborative Filtering
(CF), which depends on rich user preference information to discover
relationships between items, and in turn allows user-user and item-
item similarity to be estimated. Given a user profile, items of interest
to similar users can then be suggested. Preferences can be explicit
(for example, ratings on books, or likes of posts) or implicit (for
example, the history of songs a user has listened to, or films the user
has watched). However, for CF approaches to work well, algorithms
need sufficient user preferences, which are not always available. In
fact, cold start is one of the most acute problems of CF methods
and is heavily studied [50]. User cold start refers to the problem of
new users, where a system has no or little preference information.
In this situation, the usual solution to enable CF algorithms is to
perform preference elicitation: The system asks the user for some
initial preference information (e.g., [14, 44, 45]).

However, elicitation is useful beyond the cold start problem. For
instance user interests change or conflict over time [42], or depend
on context [7]. Beyond this, systems can improve by validating
preferences collected previously, to remove noisy observations [4,
53, 58]. In general terms, an elicitation algorithm’s objective is
to decide which items or questions to ask a user so as to obtain
information about their preferences most effectively.

Recommendation accuracy has dominated RSs research in the
past. However, there has been a recent recognition that other as-
pects are also important. For instance, item novelty and recom-
mendation diversity have been found to improve user satisfaction
[11, 22, 37]. As such, it is now generally accepted that recommen-
dation systems should help users find items they would not have
discovered otherwise. This has led to studies measuring unexpected
items, or serendipity [2, 29], which is often associated with user sat-
isfaction [16]. Indeed, it has been shown that improving diversity,
as a proxy for serendipity, also improves user satisfaction [10].

To improve such aspects, the most common approach is to im-
prove diversity in recommendation results, as surveyed by [31].

Diversification algorithms reorder the items scored for relevance
to increase item diversity. However, the best performing RSs fre-
quently rank very similar items together at the top of the ranking
(as similar items are of similar relevance). Diversification thus tends
to delve deep into the recommendation list, increasing the proba-
bility of selecting non-relevant items to recommend. This creates a
trade-off between accuracy and diversity [38].

In this work, we present an alternative approach, addressing the
diversity problem at a fundamentally different stage: We introduce
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a method for the diversification of the preference elicitation pro-
cess. By tackling diversity when user interests are established, our
method provides the recommender algorithm with a broader and
more complete user profile. This variety of user interests allows
the recommendation algorithm to produce recommendations less
prone to popularity bias and overspecialization. Specifically, we
propose a Multi-Armed Bandits based algorithm [26] that improves
both thematic and item diversity during preference elicitation.
We make two key contributions:

e We present the first model that diversifies preference elicita-
tion. This approach is independent of any particular recom-
mendation algorithm, and results in broader user profiles.

e We present a new methodology for offline evaluation of
preference elicitation, reducing an important bias that we
identify in existing approaches, favouring apparent accuracy
of greedy-like algorithms.

Next, we discuss related work and provide background on key
concepts. Then Section 3 presents our algorithm for diversified pref-
erence elicitation. We describe the experimental setup in Section 4
and results in Section 5. Finally, we conclude in Section 6.

2 RELATED WORK

To the best of our knowledge, this is the first attempt to diversify the
preference elicitation process. However, there is extensive work on
preference elicitation, diversification of recommendation lists, and
Multi-Armed Bandits for recommendation. We now summarize this
previous work and introduce some of the key relevant concepts.

2.1 Preference Elicitation

Preference elicitation refers to acquiring explicit information from
a user regarding their tastes about items, with the goal of building
a user profile [14]. This elicitation process is useful in many scenar-
ios: For users for which the RS has no information at all (new or
cold-start users); for users with changing preferences (preference
revision); and for users whose preferences have been estimated by
the system (usually implicitly by observing user actions) and which
require validation [4, 53] (preference validation).

In this paper, we will address only the algorithmic process of
selecting the items to be presented to the user. In particular, we
restrict ourselves to absolute preference data (preference about a
single item). Although there are some advantages of eliciting prefer-
ences between pairs of items [25, 41], we do not address a pairwise
formulation of our model here. Pertinently, Christakopoulou et al.
[13] addressed interactive preference elicitation for restaurant rec-
ommendation, proposing models for both absolute and relative
preferences. In their setting, they found that absolute models per-
form better than the relative ones, and show a greedy algorithm
performs best in terms of optimizing Average Precision.

Most previous work in this area optimizes recommendation accu-
racy based on the user preference obtained. For instance, Salimans
et al. [48] proposed a Bayesian factor model showing how it can be
used for active relative preference elicitation in an active learning
fashion. The model reduces the entropy of the posterior distribu-
tion. Rashid et al. [44] recommended the integration of popularity
and entropy in the selection criteria, and this was reiterated in [17].
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The advantage of this (rather than only pursuing entropy reduc-
tion) is that popular items have a higher chance of having been
rated in offline test data used to evaluate elicitation algorithms. This
fact, combined with the tendency of popularity-biased user pro-
files to produce popularity-biased recommendations, suggests that
those recommendation lists would tend to show higher precision
in offline evaluation. This argument resulted in the appearance
of models designed to work around two well-known problems of
offline RSs evaluation: popularity bias, and missing ratings. Rashid
et al. [45] also recognized the problem of the missing item ratings
and present an entropy variant for that problem. Their Entropy0
method presented better accuracy figures than popularity in iso-
lation. Similarly, Sepliarskaia et al. [51] presented an approach to
create a fixed preference questionnaire offline instead of interac-
tively computing the next item to be presented after each answer.
Static questionnaires facilitate the logistics of the preference elici-
tation without the need of an online feedback loop-back. All this
work contrasts with optimizing for user satisfaction.

2.2 Results Diversification

Diversity in Recommendations has attracted attention as well [6],
with much other work surveyed by Kunaver and Porl [31]. In the
same way that top-n recommendation has benefited from advances
in search ranking, diversity in recommendation also takes ideas
from Web search result diversification. In particular, the Maximal
Marginal Relevance method (MMR) presented by Carbonell and
Goldstein [9] has been the base of many RS diversification proposals.
In general terms, such approaches try to maximize a sub-modular
function that combines both items’ estimated relevance and dissim-
ilarity with already selected items.

Diversity is commonly considered together with another desired
property, namely novelty [11]. Although strongly related, these
concepts refer to subtly different aspects beyond accuracy. Novelty
refers to how new an item is for a user, given what the user has
already seen. Diversity, on the other hand, is applied over a set
of items and refers to how different the items are. In this regard,
diversity has two sides: On the item supply side, diversity is about
which items from the catalog are recommended [15]. On the user
side, diversity is considered in individual’s recommendation lists:
Are items repetitive, or do they provide a broad range of choices?

Arguably, one of the counterparts of diversity is popularity bias
[23]. This bias refers to the fact that frequently rated items often
dominate recommendations. Although the recommendation of pop-
ular items may benefit the accuracy of an RS, promoting such items
tends to reduce diversity. Several works have studied how RSs tend
to narrow recommendations gradually [1, 30], noticing that these
tend to be more biased towards popularity than user profiles.

Another closely related concept is unexpectedness. This refers
to the recommendation of items that are ranked at a position that
is significantly above that expected for a random user. This im-
pacts the user’s perceived value of the recommendation: “Is the
system recommending items that I would not find otherwise?”.
Many user studies have explored the effect of unexpected items
on user satisfaction. For instance, Castagnos et al. [10] show how
diverse recommendations may reduce precision but still help to
increase users’ satisfaction.
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More recently, Chen et al. [12] demonstrated significant causal
relationship from serendipity to user satisfaction and purchase
intention in a large-scale user survey (3.000 users).

Adamopoulos and Tuzhilin [2] presented an analysis of the rela-
tionship between unexpectedness and diversity, proposing a utility
function for calculating the usefulness of recommendations. In the
past, many algorithms were presented to improve the diversity
of the recommendations. For instance, Abdollahpouri et al. [1] in-
troduced a regularization factor in the RankALS recommendation
algorithm. Its objective is to diversify the recommendations by in-
cluding medium-tail items. However, most existing work addresses
diversification at the item level. Ziegler et al. [59] presented the
first attempt at producing diverse recommendations at a topic level
(i.e. types or categories of items): their model considers the different
types of items through the use of a taxonomy-based similarity met-
ric. In fact, Rong and Pearl [47] studied the importance of topical
diversity with respect to item diversity. In that work, perceived
topical diversity is found to have a greater effect on perceived value
and ease of use of the RS.

2.3 Multi-Armed Bandits

Multi-Armed Bandits [26] (MABs) are a well-known reinforcement
learning framework. They are modeled on a gambler trying to
choose which slot machine to play, whose objective is to maximize
total return after ¢ pulls (trials), by modeling the probability of each
machine providing a payoff. Each machine (arm) can be pulled, and
it emits a reward. After that the reward is observed, the estimate of
the utility of pulling that arm can be recalculated. At any time step,
the gambler can decide to exploit the machine that has been most
profitable in the past, or explore new machines.

Some authors have considered using MABs for item recommen-
dation. Li et al. [32] present LinUCB, a variant of the UCB (Upper
Confidence Bound) bandit algorithm for contextualized news rec-
ommendation. Bayesian bandits have also been used for online
recommendation. Kawale et al. [27] presented the use of Thompson
Sampling in an online recommendation setting for selecting items
with a matrix factorization recommendation method. Another ap-
plication of MABs in RSs is clustering and neighborhooding. Li
et al. [33] present the use of MABs for adaptive clustering in con-
tent recommendation based on exploration-exploitation strategies.
More recently, Sanz-Cruzado et al. [49] presented how to use MABs
for producing a variant of the classical KNN recommender. They
propose the use of the exploratory nature of the MABs for selecting
neighbors with Thompson-Sampling.

More related to our work, MABs have also been used for prefer-
ence elicitation. Kohli et al. [28] presented a stochastic multi-armed
bandit for exploring user preferences online, with an application to
news articles, while minimizing user abandonment. More recently,
Christakopoulou et al. [13] presented several bandit methods such
as Thompson Sampling and UCB for the elicitation task.

Other ranking tasks have also benefited from the use of MABs.
For instance, Losada et al. [35, 36] presented their use for pooling
in the construction of evaluation datasets for Information Retrieval.
On the other hand, Radlinski et al. [43] use MABs for learning
diverse rankings of web documents based on user clicks, contrasting
with greedy ranking approaches that show redundant information.
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3 DIVERSIFICATION OF THE ELICITATION
PROCESS WITH MULTI-ARMED BANDITS

When using an RS, a feedback-loop exists between ratings collected
and future recommendations [40]. If items are recommended with-
out considering diversity, recommendations may unintentionally
become less diverse over time. This can be counteracted by ensur-
ing long-tail items are present in recommendation lists to obtain a
fuller understanding of users’ preferences.

The lack of diverse items is exacerbated when we address pref-
erence elicitation with classical active learning approaches. By
using classical algorithms, we reduce the variety of choices in the
elicitation process by driving the elicited preferences away from
representing the full breadth of a user’s interests. Systems that use
active learning to explore the user’s profile must explicitly optimize
exploring more diverse items, as these are items that the user is less
likely to have rated. Exploit-only approaches lead to popular items
in questions, resulting in the RS missing the users’ more varied and
distinctive preferences. In this context, diversification during the
elicitation process aims to maximize the informativeness of elicited
items for a broader understanding of the user.

3.1 Diverse Preference Elicitation

While past work has shown that entropy-reduction techniques are
often best for recommendation accuracy [14], as discussed above
there is also value in presenting diverse options. We hypothesize
that having an elicited profile that is diverse in user’s topics and
tastes would help the subsequent recommendation algorithm to
produce more diverse results, and avoid popularity bias inherent to
most of them. With that goal in mind, we present DPE, a Diversified
Preference Elicitation model based on Multi-Armed Bandits. In this
context, diversity refers to the user’s perceived diversity. It can be
considered at two levels. First, item diversity: how varied the items
presented to the user are among themselves. Second, topic diversity:
how the items presented are topically different, i.e. from different
categories of interests. Both aspects are important to have a better
understanding of user preferences. Therefore, we include both as
objectives for our preference elicitation algorithm. As previously
commented, we will work here with absolute preferences, leaving
the formulation of a pairwise variant to future work. Specifically,
the user will be presented with one item at a time, being asked to
express their absolute preference over it.

In particular, we propose the use of Thompson Sampling Multi-
Armed Bandits with Gaussian Priors [3]. Algorithm 1 presents the
outline of our model, which works as follows. For each user u (in
the set of all users U) we run a different bandit. In our bandit,
each arm a € A represents an item topic. An item topic can be
defined differently depending on the application domain; it can
correspond with genres of movies, types of food cuisines in restau-
rant recommendation, or types of items in an e-commerce context.
Moreover, an item could belong to more than one topic, e.g., a movie
being both adventure and sci-fi. The arms are modeled by Normal
Distributions whose parameters we initialize equally [24].

The elicitation process consists of running as many time steps
t as desired elicited items e. In each iteration, an arm is selected
by sampling from the Gaussian distributions of each topic, and
selecting that (next_topic) which has highest sampled value. By
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Algorithm 1: Diverse Preference Elicitation (DPE)

forall u € U do
forall a € A do
Ila(o) «— 05
kq(0) « 0;
end
Plu] « {}
foreacht=1,2,....edo
forall a € A do
‘ Draw sample 6, from N (pq(t — 1), m%

end
next_topic «— arg max, 6g;
forall i € next_topic do
‘ 8; « score®™ (i, P[u));
end
next_item < arg max; ;;
r(t) « rewards (next_item, r (u, next_item));

forall a | next_item € ado

Ha(t=1)-kaq(t=1)+r(t) .
Ha(t) « a2

ka(t) «— ka(t-1)+1;
end
Plu].add(next_item);

end
end

selecting an arm, the bandit is deciding which topic to ask prefer-
ences over. With a topic having been selected, an item belonging
to that topic is selected as the elicitation item (next_item). To se-
lect next_item, all items i in that topic are ranked according to
how diverse they are with respect to the existing user profile P[u].
This ranking is a second diversification component, promoting
item-to-item diversity in the elicitation process. In the algorithm,
scoredi"(i, P) can be selected from alternatives that we present next.
After obtaining a preference from the user for the selected item,
a reward r(t) € {0,1} is computed and every arm a (topic) to
which next_item belongs is updated by computing the posterior
Pr(fig|r(t)) o Pr(r(t)|fa) - Pr(fiq). In our experiments, we use
the normalized rating value as the reward, but other reward func-
tions could be explored. In the case of our algorithm, the bandit’s
exploration can be adjusted by tuning the initial value of k4(0):
The higher this value, the lower the variance of the Gaussian dis-
tribution and, therefore, the less exploration the algorithm would
perform. Our hypothesis is that the MAB framework would natu-
rally cope with exploitation of topics that the user likes the most
versus exploration among all possible tastes, obtaining a broader
and more complete user profile. Moreover, we complement the the-
matic exploration with the item-to-item diversification to reduce
redundancy in the user profile, obtaining more value from answers.

3.2 Arm ranking strategies

For selecting an item once we pull a topic, we rank all items in
the arm and pick the first. The sorting criterion can be chosen
differently. Here we use it to promote item-to-item diversity of
elicited items. However, the potential to use other arm ranking
policies is that they can be adjusted to any elicitation scenario. For
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instance, given cold-start users without any existing background
knowledge, popular items naturally have a higher chance of being
recognized by the user. Under our framework, we may use item
popularity as an arm ranking strategy to get a topically diverse
preference seed set, and then flip to another policy to promote item-
to-item diversification. On the other hand, if we are in a preference
validation setting, the implicit preferences inferred by the system
can be used to rank the items. In preference revision, we could
choose to prioritize older preferences to be revisited. Next, we
present three scoring strategies:

3.2.1 Hellinger distance. This symmetric f-divergence is used to
compute similarities between probability distributions in terms of
the Hellinger integral [21]. It is the probabilistic equivalent to the
Euclidean distance:

swreHellinger(i) Plu]) =

1 i ._ —
=Pl 2, VE\/Z (r(@i) =r(@.1)* ()

vel

3.2.2 Intra-List Distance. ILD is a distance based on intra-list simi-
larity [59] that tries to capture the diversity of a list. ILD measures
the cosine distance of the new item to every existing item, averag-
ing over the size of the user’s profile. The higher the ILD value, the
more profile diversity would be contributed by a new item:

Zocy T(0:1) -1 (0,j)

1_
JPT \[Soerr (0,07 - y[Soers (0, )
@)

3.2.3 Oracle. This is an oracle arm sorting strategy that ranks
the items according to the actual rating that the user would give
the item (independently of elicited items). Knowing this rating
beforehand would only be possible for validation settings over
inferred preferences. However, we present this method as an oracle-
based strategy, not pursuing item-to-item diversification, to see a
non-diversified upper-bound of topic-only diversification:

score? e (i P[u]) = r(u, i)

scoreH‘D(i,P[u]) = ﬁ

®)
4 EXPERIMENTAL METHODOLOGY

In this section, we present our experimental design. In particular,
we answer to the following research questions:

RQ1) Does diversification of the elicitation process reduce recom-
mendation accuracy when compared to existing accuracy-
optimized recommendation methods?

RQ2) Does diversification of the elicitation process produce more
diverse and unexpected recommendations?

By answering these questions we will have a better understand-
ing of the merits of diversifying the elicitation process. In particular,
we will analyse the trade-off between accuracy and diversity when
diversifying at an earlier stage in the recommendation process.

4.1 Datasets

One of the objectives of this study is to assess the effect of topi-
cal diversification. We evaluate our approach on two widely used
datasets where topic information is available: The Movielens 20M
dataset [19] relying on movie genre information, and the Amazon
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Product Review 2014 dataset [20] where items are classified by type
on the e-commerce platform. Both datasets have items rated by
users with graded preferences, and every item may belong to one
or more categories. Following common practice, we filter out users
with few ratings — in this case, removing those with fewer than
100 ratings, given that our evaluation elicits up to 75 preferences
per user. We also note that as we use the same recommender algo-
rithm for all elicitation strategies, this filtering affects all methods
equally. Table 1 presents a summary of the characteristic of the
final collections. Importantly, these datasets are quite different, not
only in domain but also in terms of sparsity: There are on average
600 ratings per item in the Movielens dataset, while only 3.3 in the
Amazon dataset, the latter being much more challenging for RSs.

Table 1: Summary of the statistics of the datasets.

Dataset Users Items  Ratings Cat. nger;%s Rf:;’;%s I?;:l‘s
Movielens 51,869 26,654 15,970,206 20 308 600  2.04
Amazon 29,598 2,018,050 6,786,371 25 229 33 1.09

4.2 Evaluation Methodology

One important challenge in evaluating preference elicitation algo-
rithms is how to obtain item ratings from users. Following common
practice, we use an offline evaluation protocol based on naturally
acquired ratings with known but held-out user profiles. This allows
us to study how the number of questions asked of each user affects
performance, and report it for any particular budget of questions
answered. We vary the number of elicited items from 5 to 75. The
actual preferences are obtained directly from the held-out ratings
from the user. Specifically, the procedure we follow is:

(1) At each time step, the elicitation algorithm takes as input
the training data (i.e. the items in the training split for the
user), and any answers previously collected.

(2) The recommendation algorithm produces a recommendation
list for the user based on the output of the elicitation process.

(3) The quality of the recommendations is evaluated using dif-
ferent metrics allowing us to plot the curves of performance
for different numbers of elicited items.

(4) Then, the elicitation algorithm decides the next item to
present to the user as a preference elicitation question.

We restrict our experiments to use the same recommendation al-
gorithm with all the elicitation methods. In this way, we isolate the
merits of the elicitation models without considering the influence
of the chosen recommendation algorithms. For the recommender,
we use the recent WSR algorithm [56]. The recommendation algo-
rithm is tasked with ranking all items in the test split for which
there is no rating on the training split for the user. Comparing
performance of different elicitation strategies using a single, con-
sistent and reasonably strong recommender algorithm allows us to
robustly separate the recommender algorithm from the preference
data upon which recommendations are based. We expect similar
relative performance given any recommender algorithm.

4.2.1 Standard Evaluation. Our first evaluation follows the Testltems
approach [5]. We produce an 80%-20% training-test split, taking 80%
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of each user’s ratings as training for running the elicitation process
and 20% for evaluation. Importantly, the elicitation algorithms are
blind to the non-elicited preferences for each given user, even when
those are present in the training set. That is, for example, when
computing the neighbors of the given user, the algorithm would
only see the ratings of the user over items already elicited, not her
full training profile. The WSR has a single parameter, the neighbour
size parameter k. Following standard practice [52, 55], for each
algorithm we select the optimal value of k € {5, 10,20,...,100}
that maximizes overall nDCG@100 performance (see Section 4.4)
in terms of total area under the curve.

We observe that this evaluation approach has both benefits and
drawbacks: By mimicking online preference elicitation based on
existing user data, TestItems provides the ability to reliably repeat
the elicitation with many experimental variants at minimal cost,
and is thus commonly used [13, 51]. On the other hand, any offline
evaluation protocol lacks some realism in that it only allows an-
swers over items previously rated by the user [18]. This scenario
matches that of preference validation and preference revision tasks.
As we are using the same methodology for all methods, the relative
merits of the elicitation algorithms are compared fairly. We also
observe that this limitation is likely to affect absolute values of the
metrics for each method, therefore absolute values reported should
be considered with caution. However, our goal is to evaluate the
relative performance of the algorithms compared.

4.2.2  AvailablePreferences: Evaluation with Leftovers. One of the
key weaknesses of the standard TestItems approach, when used for
preference elicitation, is that many items in the training split are
never used: The split contains answers to questions the elicitation
system may ask. If the system does not choose to ask the user about
any particular item, the rating for that item is, in effect, wasted data
— we term such unused rated items leftovers.

This leads us to a variant of the TestItems approach that we
term AvailablePreferences. We start by observing that leftovers still
indicate user preferences. As mentioned earlier, recent work has
shown that missing ratings strongly affect the robustness of offline
evaluation [55]. While robust metrics and deeper cut-offs mitigate
the effect of missing ratings, for evaluating preference elicitation
algorithms it is possible to use leftovers for comparison between
different methods asking the same number of questions. In particular,
we propose to compute the results for the different metrics by
including the leftover preferences as relevance judgments, together
with those in the test set used by TestItems. We also remark that
this does not affect the recommendation process: the exact same
system output is produced under both evaluation methodologies.

4.3 Baselines

Although the diversification of the elicitation process has not been
addressed before to the best of our knowledge, we constructed base-
lines as variants of existing approaches for result diversification.
As a first baseline we use the Greedy method from [13]. In that
work, the authors compare several algorithms for non-diversified
preference elicitation, finding that two algorithms (UCB and Greedy)
performing best depending on the number of elicitation questions.
We use the simpler Greedy approach as a baseline: At each time
step, it solicits the relevance of the item with highest estimated
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relevance by a recommendation algorithm that uses the previously
elicited items, i.e., the top item in the recommendation list.

As a second baseline, we adapt a standard post-hoc diversifica-
tion, namely MMR [9]. Our adapted version, Greedy+MMR, diver-
sifies recommendations generated by WSR over the elicited profiles
obtained by the Greedy method. For MMR, we used a = 0.5, which
equally weights diversity and relevance. One could modify a to
favor either relevance or diversity. If we were to use & = 1, this
would correspond to the Greedy baseline. Alternatively, we could
opt for optimizing diversity, which would reduce accuracy further,
as we will see in the results.

4.4 Evaluation Metrics

Following the advice from [55], we use Precision and Normalised
Discounted Cumulative Gain (nDCG) for recommendation accuracy.
Further, we present two metrics for item and topic diversity.
Precision @k measures the percentage of relevant items in the top-
k recommendations for the user (Ll]j). We consider relevant items
for the user (R,,) as those with ratings at least 4. We report P@k,
the averaged value across all the users.
|LE N Ry @
k
nDCG @k uses graded relevance (rating values), weighting items
by their position p in the recommendation list, with discounting
function D(p). It is formulated as follows:
Y1 G(uk, p)D(p)
Yot IG(u k. p)D(p)
where G(u, k, p) is the gain obtained by recommending the item
LK[p] to the user u and IG(u, k, p) is the maximum possible gain
at that position for the ideal ranking of size k. As in the case of
precision, we report nDCG@k averaged across all users. We used
the trec_eval implementation for computing Precision and nDCG
with the default discount function and the ratings as gain values.
Serendipity@k. For measuring diversity, this metric reflects popu-
larity bias, and evaluates how the recommendations provide value
to the user. It is related to the unexpectedness metric formulated in
[39], and to Konstan and Ekstrand’s formulation?. Intuitively, the
metric reflects how unexpected it is to find an item in the recom-
mendation list for a user. It is computed by counting how much
more probable it is to find item i at position p of the recommenda-
tion list (L) for the user u relative to how probable it is to find that
item for a random user.

P,@k =

nDCG, @k =

®)

k
- 1 .
serendipity, @k = % PZI max (PrL,’j (p] (u) - PrL,’j ip] (u, 0) -r(u, i)

(6)
Here Pri(u) = %, i.e., the probability of an item i for user u is
proportionally inverse to the position of the item in the recommen-

dation list. The metric compares how the probability differs from

the overall probability for all the users: Pr;(U) = W. For

instance, a non-personalized recommendation strategy based on
popularity alone would have a score of 0. Moreover, as we weight
the difference in probability by the rating that the user assigns to
the item (r(u, i)), a method that recommends diverse non-relevant

https://www.coursera.org/specializations/recommender-systems, accessed May 2020
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items, even if they are long-tail items, would also score 0. There are
alternative definitions for serendipity [16], although they require
assumptions on expected recommendations, and these assumptions
could cause the metric to be biased to specific approaches. We
report serendipity@k averaged over all users.

Topdiv@k. We also define a new metric for measuring how top-
ically diverse a recommendation list is. As not every user in the
collection has the same degree of interest in different categories,
we measure this topical diversity with respect to each user’s prefer-
ences. For doing so, we measure the Kendall’s 7 rank correlation
between the distribution of user topical interests on the rating
matrix and its distribution on the recommendation list:

topdiv, @k = 7(T(Ry), T(LK)) )

where 7 (X) is the probability distribution of relevant items on
the categories. Specifically, 7 (X) [a] is the percentage of the rele-
vant items from X that belong to the topic a. We report topdivi@k
averaged over all users.

5 RESULTS AND DISCUSSION

In this section we analyse both the effect of the evaluation protocol,
and the merits of DPE for preference elicitation.

5.1 Comparison of Methodologies

Figure 1 shows our results on the Movielens 20M dataset. When
using the standard TestItems approach, we see two effects.

Shallow vs. Deep Metrics. We see that at a shallow cut-off of 10,
the Greedy baseline achieves the best performance both in terms
of accuracy (graded and ungraded) and diversity. However, Val-
carce et al. [55] found that deeper cut-offs are more reliable for
offline evaluation, even when looking for optimal performance on
lower cut-offs. We see that the relative merits change significantly
when observing the same metrics at 100 cut-offs. First, in terms of
graded relevance, the Greedy baseline is surpassed by DPE for most
question counts. This effect is even more significant in the case of
P@100 and both diversity-sensitive metrics, serendipity@100 and
topdiv@100. As noted in section 4.2.2, this is the expected behavior
of offline evaluation with the missing ratings effect.

Testltems vs. AvailablePreferences. Next, we analyze performance
when using the TestItems versus the AvailablePreferences methodol-
ogy. Recall that AvailablePreferences reduces the number of missing
user preferences by adding the leftovers of the elicitation process
as relevance judgments when computing metrics. We remind the
reader that the comparison is fair between algorithms asking the
same number of questions. When using this protocol, we see that
the performance curves change dramatically. In particular, for every
cut-off and metric, the Greedy baseline performs much worse than
DPE. This pattern is not unexpected: Like many other elicitation
methods, Greedy tries to maximize recommendation performance,
and RSs are known to be biased to popularity. Therefore the Greedy
approach is recreating the feedback-loop problem with each elicited
item overspecializing the user profile to popular items. When evalu-
ating on a small proportion of the relevance judgments, it performs
well because popular items would also be more frequent in the
test data. However, many relevant and non-popular items from
the user preferences would not be recommended when using the
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Figure 1: Results on the Movielens 20M dataset, comparing the TestItems and AvailablePreferences methodologies across eight

different metrics.

Greedy baseline because it is unable to identify users’ infrequent
tastes. This apparent yet unreliable accuracy of popularity-biased
recommendations has been identified before by Cafiamares and
Castells [8]. When using AvailablePreferences, we use the most in-
formation possible about the user’s relevance preferences. Note that
AvailablePreferences provides the same number of test items for all
algorithms, but the leftovers from each elicitation algorithms will
be different. It could be suspected that the leftovers from some mod-
els are easier to guess (i.e., more popular items) than from others.
This could favor the recommendation performance of algorithms
not eliciting those items. However, that possible bias can be easily
excluded by observing the serendipity of the recommendations.
As shown in the serendipity@k results, we see that DPE does not
benefit from recommending popular items present in the test split.
Rather the opposite is the case: it recommends less popular items
substantially more often than baselines.

Moreover, we observe than when there are fewer missing prefer-
ences in the evaluation, the order of systems for the shallow cutoff

136

is more similar to that at a deeper cutoff in the TestItems method-
ology. This finding confirms the need for the new methodology
for preference elicitation and, at the same time, corroborates the
suggestions of Valcarce et al. [55] of using deep cut-offs for having
a more robust evaluation to mitigate the missing ratings effect.
There are another two important observations regarding the
evaluation protocol. First, topdiv should only be considered at the
100 cut-off, because the number of categories in the collections
is larger than 10: It is not possible to obtain a perfect score with
a cutoff smaller than the number of categories. Second, when us-
ing AvailablePreferences, it is perhaps counter-intuitive that the
metric values do not monotonically increase as more preferences
are collected. This is caused by fewer “leftover” ratings in the test
set as more preferences are elicited. In other words, the shape of
the learning curve as the number of preference questions changes
comes from the evaluation corpus not being fixed. Thus, how the
value changes for a single algorithm is not meaningful. Rather, the
comparison between different methods is a fair comparison, as for
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Figure 2: Results for the Amazon dataset for 100 cutoff under AvailablePreferences methodology.

each the number of preferences is used for computing the different
metrics.

5.2 MAB:s for elicitation diversification

We analyze now the performance of DPE under the AvailablePref-
erences methodology on both the Movielens and Amazon datasets
(Figures 1 and 2 respectively). When we consider the relevance-only
metrics, we see that the DPE surpasses the Greedy baseline per-
formance for all relevance metrics. Interestingly, we observe that
the performance is quite stable with the number of elicited ratings,
meaning that the ranking quality increases enough to compensate
for the reduction of “leftover” relevance judgments, contrary to the
Greedy method. Regarding the accuracy of the different arm ranker
alternatives, the oracle-based strategy (DPE-Oracle) performs very
well, as may be expected (because it always selects highly liked
items). However, the broader exploration of the item-to-item diver-
sification approaches of the other ranking alternatives produces
a broader knowledge of the user preferences, resulting in better
recommendations than with the oracle.

Regarding diversity, DPE-ILD is also the best alternative for the
serendipity of the recommendations. Interestingly, DPE-Oracle out-
performs the Hellinger method despite only applying topic level di-
versification on the Movielens dataset (Figure 1) and both Hellinger
and ILD in the Amazon dataset (Figure 2). This shows the important
role that thematic diversification plays in ranking diversification.
The low serendipity values of the Greedy baseline show that it
tends to rank relevant items more equally for every user. This result
confirms the tendency of that approach to produce more recommen-
dations biased towards popularity. On the other hand, concerning
topdiv, DPE-Hellinger performs better than DPE-ILD when few
items are elicited. In this case, as expected, the DPE-Oracle approach
performs best, as it is applying only topic diversification over the
most liked user items. Again the baselines achieve the worst values
as they are not considering topical diversification.

Analyzing post-hoc diversification with MMR, we see an un-
balanced behavior: MMR performs well with few elicited items,
suggesting that when the recommendation algorithm lacks enough
information, diversification increases the chance of stumbling upon
user interests. However, at a certain point, the post-hoc diversifi-
cation starts to introduce too many non-relevant items from the
bottom of the ranking, quickly degrading accuracy. A similar pat-
tern can be observed in the diversity metrics.

Finally, consider the differences among datasets. We can see that
performance on the Amazon dataset is, as expected, much lower.
Those numbers are due to the difficulty of the dataset given the high
sparsity (fewer than four ratings per item on average). In general,
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however, the same trends hold. This is an important result: our
proposal can improve the baselines figures even in such difficult
situations where popularity should have a great advantage.

5.3 Summary

Our results show that our approach for tackling diversification of
the preference elicitation process performs well. We see that diver-
sifying the elicitation does not harm recommendation accuracy,
but to the contrary improves accuracy (RQ1). We also see that a
diversified elicited profile contributes to more unexpected and di-
verse recommendations (RQ2). Moreover, the results of our methods
could be further improved by adjusting the exploration-exploitation
trade-off of DPE by tuning the k,(0) parameters as we only used
default initialization. These results also open the possibility to reg-
ulate diversification by selecting alternative arm ranking strategies
to promote either item-to-item or topical diversity [47].

Finally, our experiments demonstrate how previous entropy re-
duction approaches to preference elicitation are favored by the
sensitivity of the TestItems offline approach to the missing ratings
problem. This problem is reduced by using AvailablePreferences,
using the whole set of available user preferences for evaluation.

6 CONCLUSIONS

In this paper, we jointly addressed preference elicitation and di-
versification tasks. With this new approach, we obtain a broader
representation of the user, resulting in better recommendations.
Results show how a broader view of user interests results in impor-
tant improvements over the state of the art methods not only in
diversity, but also in terms of accuracy of the recommendations. We
have also proposed a new evaluation methodology for preference
elicitation to reduce the undesired effect of missing ratings, which
tends to favor methods that over-weight popularity.

As future work, we will test alternative bandit configurations
and arm ranking strategies. For instance, very frequently there are
relationships among item categories that can be exploited, and may
suit hierarchical MABs alternatives. Moreover, popular items may
play a role in system validation, so the complete removal of popular
items must be considered with caution. A greedy-like arm ranker
strategy for combining both topical diversity and entropy reduction
is worth exploring when more popularity is needed.
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