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Embedding a modern language runtime as a component in a larger software system is popular these days.

Communication between these systems often requires keeping references to each others’ objects. In this

paper we present and discuss the problem of cross-component memory management where reference cycles

across component boundaries may lead to memory leaks and premature reclamation of objects may lead

to dangling cross-component references. We provide a generic algorithm for effective, efficient, and safe

garbage collection over component boundaries, which we call cross-component tracing. We designed and

implemented cross-component tracing in the Chrome web browser where the JavaScript virtual machine V8

is embedded into the rendering engine Blink. Cross-component tracing from V8’s JavaScript heap to Blink’s

C++ heap improves garbage collection latency and eliminates long-standing memory leaks for real websites in

Chrome. We show how cross-component tracing can help web developers to reason about reachability and

retainment of objects spanning both V8 and Blink components based on Chrome’s heap snapshot memory tool.

Cross-component tracing was enabled by default for all websites in Chrome version 57 and is also deployed in

other widely used software systems such as Opera, Cobalt, and Electron.
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1 INTRODUCTION

Most modern language runtime systems such as the V8 JavaScript virtual machine (VM) manage

application memory automatically with garbage collection. The garbage collector periodically

traces through objects on the managed heap to determine live objects and reclaim memory. While

VMs often manage their own heaps in isolation, they can also be embedded into larger software
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Fig. 1. Reference cycle across component boundaries

systems that are implemented in a different, often unmanaged, programming language. In our case,

V8 is embedded in the Blink rendering engine of Chrome which is implemented in C++.

In such heterogeneous software systems, efficient communication is often made possible by

allowing objects in one component to store direct pointers to objects in another component, which

we call cross-component references. An important example is the Blink implementation of the

document object model (DOM) representing HTML documents as C++ objects. The DOM C++ objects

are wrapped and exposed as objects to JavaScript, which allows scripts to manipulate webpage

content directly by mutating the objects of the DOM. When JavaScript application code accesses

properties on these wrapper objects, V8 invokes embedder (Blink) callbacks which make changes

to the underlying C++ DOM objects. Conversely, Blink objects can also directly reference JavaScript

objects. These cross-component references express liveness over component boundaries and can

create potential memory leaks if cycles are not handled carefully.

Figure 1 shows an example of the cycle problem. Let us assume two objects a and b in their

respective components A and B. (For full generality, these single objects could be replaced by

arbitrary subgraphs of objects.) Objects in those components can only be live if they are reachable

from the root set or through a reference by another live object. If A and B do not share any

information on their object graphs, they must conservatively assume that any incoming reference

from another component is a root; otherwise an object might be prematurely reclaimed resulting

in a dangling pointer and eventually in a program crash or security exploit. Treating references

from outside components as roots becomes a problem once a cycle is formed, e.g., through a and b

referring to each other through references rab and rba , respectively. Cycle creation is unavoidable

in the general case as objects might have independent requirements that force them to keep any

number of other objects in other components alive. In general, cycles can be arbitrarily large,

crossing the component boundary multiple times, and detection may require iterating all objects in

A and B in the worst case.

Cross-component cycles exhibit the same problems as reference-counting garbage collectors [Ba-

con and Rajan 2001; Christopher 1984], where objects form groups of strongly-connected com-

ponents that are otherwise unreachable from the live object graph. Cycles either require manual

breaking through the use of weak references or the use of some managed system that is able to

infer liveness by inspecting the system as a whole. Manually breaking a cycle is not always an

option as the semantics of the involved objects may require all their referents to stay alive, through

strong references.

While the cycle problem can be avoided by unifying the memory management systems of two

components, it may still be desirable to manage memory of components independently to preserve

separation of concerns, since it may be simpler to reuse a component in another system if there are

fewer dependencies. For example, V8 is used not only in Chrome but also in the Node.js server-side

framework, making it undesirable to add Blink-specific knowledge to V8.

Cross-component memory management is a challenge in several other systems, such as software

systems that embed popular scripting languages, in particular all popular web browsers have to

solve this problem on some level. We have found that system implementers may not be aware
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of the cross-component memory management problem or viable solutions to the problem until

late in integration. For example, NativeScript [NativeScript 2018] is a popular framework for

implementing native platform independent JavaScript applications for mobile devices embedding

V8 in the Android ART runtime1. The framework authors noticed that managing references across

components is complicated and may result in memory leaks or program crashes due to dangling

pointers [Slavchev 2014, 2017]. More recently, Cobalt [Cobalt Project Authors 2018] ś a high-

performance, small-footprint platform providing a subset of HTML5, CSS, and JavaScript used for

embedded devices such as TVs ś implemented cross-component tracing inspired by our system

to manage their memory. Another popular software system that suffered from complicated cross-

component memory management issues was the Flash player embedding the ActionScript virtual

machine [Mozilla Contributors 2011].

Despite the problem of cross-component references being present in many widely used software

systems, it is not discussed in detail in literature to the best of our knowledge. This highlights the

importance of our contributions:

(1) We present the cross-component memory management problem.

(2) We provide a generic algorithm that integrates naturally with trace-based garbage collection,

which we call cross-component tracing (CCT).

(3) We provide a concrete implementation based on Chrome’s V8 JavaScript VM and the Blink

rendering engine and demonstrate performance improvements over the previously used

cross-component memory management system in Chrome.

(4) We show that CCT increases the capabilities of memory tooling by providing precise retain-

ment information across component boundaries and apply it to Chrome’s DevTools.

The rest of the paper is structured as follows. In Section 2 we introduce the memory management

systems of V8 and Blink. In Section 3 we discuss object grouping, an approach previously used

by Chrome to manage cross-component references between the V8 and Blink heaps. We outline

limitations of object grouping that may result in memory leaks and long garbage collection pause

times. Section 4 introduces CCT, a tracing based cross-component memory management system

that provides effective, efficient, and safe garbage collection over component boundaries. We show

how CCT improves Chrome’s memory tooling. Section 5 discusses related work. We demonstrate in

Section 6 that CCT can reduce garbage collection pause times in various real-world web applications,

while introducing no significant overhead in total garbage collection time or memory consumption

and conclude the paper in Section 7.

2 CHROME MEMORY MANAGEMENT

In this section we give a brief overview of the memory management systems used in Chrome to

manage the JavaScript and the DOM memory.

2.1 V8 Garbage Collection

V8 is an industrial-strength open-source virtual machine for JavaScript. Any C++ application can

embed V8 using its public API. V8 is embedded into several software systems, including the

Blink rendering engine used in both Chrome and the Opera web browser, as well as Node.js, a

framework [Tilkov and Vinoski 2010] for server-side computing. JavaScript has only one thread,

often called themain thread, and each JavaScript context has its own private heap. Hence, allocations

in JavaScript require no synchronization and during collection the garbage collector needs to

synchronize only with the main thread.

1https://source.android.com/devices/tech/dalvik
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Fig. 2. Incremental marking in V8

V8 uses a generational garbage collection strategy with the heap separated into a small young

generation for new objects and a larger old generation for long living objects.

The young generation uses a semi-space strategy where new objects are initially allocated

in the young generation’s active semi-space using bump-pointer allocation inline in compiled

code [Clifford et al. 2014]. A young generation garbage collection is triggered when the active

semi-space becomes full and uses a parallel variant [Halstead 1984] of Cheney’s algorithm [Cheney

1970] with dynamic work stealing for collection2. Objects which have been moved once in the

young generation are promoted to the old generation.

The old generation uses bump pointer allocation on the fast path for pretenured allocations [Clif-

ford et al. 2015], also inline in generated code. Free old generation memory blocks are organized in

segregated free-lists and are used to refill the current bump-pointer span. A full garbage collection

is triggered when the size of live objects exceeds a limit determined by V8’s heap growing strategy.

A full collection collects both the old and young generation using a mark-sweep-compact strategy

with several optimizations to improve latency and memory consumption. V8 marks live objects

incrementally in many small steps to avoid long marking pauses, with a target pause time less

than 1ms. A Dijkstra-style write barrier [Dijkstra et al. 1978] is used to maintain a tricolor marking

scheme. When incremental marking nears completion, finalization marking steps are scheduled

to prepare for the full garbage collection pause, i.e. black allocation is enabled to avoid further

marking load, weak references are preprocessed, roots are scanned, etc. Figure 2 illustrates the

behavior of a full garbage collection, making use of incremental steps before invoking the actual

collector. Sweeping is performed concurrently to the main thread and in parallel by multiple threads.

After starting the sweeper threads, the young generation is evacuated since marking has already

obtained requisite liveness information. Live objects in the young generation are either copied to

the other semi-space or promoted to the old generation. Compaction is used to reduce memory

fragmentation in the old generation and is done in parallel to reduce the time spent where the main

thread is stopped. V8 takes advantage of idle time garbage collection scheduling [Degenbaev et al.

2016] to perform as much garbage collection work during idle time as possible.

2.2 Blink Memory Management

Chrome embeds the Blink rendering engine which is a fork of the WebKit3 rendering engine and is

mostly written in C++. Blink employs a mix of memory management strategies. Memory in Blink is

either completely unmanaged, managed via reference counting with manually broken cycles, or

fully managed using the Oilpan garbage collector [Ager et al. 2013].

While JavaScript only supports single-threaded execution, the Blink rendering engine is highly

multi-threaded. Oilpan provides thread-local heaps with infrastructure to keep thread-local refer-

ences and cross-thread references to either managed or unmanaged memory.

Oilpan implements a single generation mark-sweep-compact garbage collection strategy for

DOM objects and objects closely related to the DOM. Before using Oilpan, these objects were

2https://v8.dev/blog/orinoco-parallel-scavenger
3https://webkit.org
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Fig. 3. V8 and Blink: Cross-component references

reference-counted and often subject to memory leaks, one of the main motivations to move to a

tracing-based garbage collection system. Allocation is backed by pages that use bump-pointer style

allocation when possible and fall back to worst-fit allocation scheme based on free lists. At the start

of garbage collection, Oilpan conservatively [Boehm and Weiser 1988] scans the execution stack for

pointers into the managed heap. Garbage collection scheduling heuristics are tuned to start most

collections at the top level of the browser event loop where the execution stack is empty. If the

execution stack is empty, tracing has precise information for stack roots, and objects can be safely

moved. Otherwise, compaction is disabled. Oilpan marks the entire heap in a single, potentially

large, pause. After marking, Oilpan triggers incremental sweeping and compacts pages containing

container backing stores, such as backing stores for vectors and hash maps [Finne 2016]. Sweeping

is done either in idle time using idle tasks or lazily upon allocation if there is not enough space in

the free list.

While in principle Blink and V8 heaps are independent, in practice, a significant portion of

references are cross-component references that connect both systems. A collaboration between

both garbage collectors is required for effective reclamation of memory, reducing so-called floating

garbage [Jones et al. 2012].

2.3 Bindings: Connecting V8 and Blink using Cross-Component References

So far we considered V8 and Blink as separate components. The bindings layer of Blink uses the

V8 API to glue together V8 with the rest of Blink. This way Blink exposes some of its wrappable

C++ objects to JavaScript through wrapper JavaScript objects. The interfaces that are exposed are

specified in the web interface definition language (WebIDL)4. The actual C++ glue code is compiled

from the WebIDL description in an automatic fashion. As discussed in other work [Brown et al.

2017] this approach ensures that APIs are used as intended handling return values and error paths.

The bindings layer holds cross-component references to JavaScript objects using handles exposed

by the public API of V8. A handle is essentially an indirection; it is a structure consisting of a single

field that stores a pointer to the target object [Craciunas et al. 2008; Kalibera and Jones 2011]. The

indirection via a handle is required because V8 can move objects when compacting its heap. The

embedder, Blink in this case, can specify a handle to be either strong or weak. The V8 garbage

collector treats a strong handle as a root: the object pointed to by the handle is always kept alive

until the handle is explicitly destroyed by the embedder. Like weak references, a weak handle alone

does not keep the target object alive. A weak handle can have an embedder-supplied finalizer which

is invoked by the collector before the object is reclaimed. V8 also provides an API for iterating

strong and weak handles.

Cross-component references from V8 to Blink are implemented as direct references from

JavaScript objects to Blink objects. There is no need for an indirection through handles as no

backing stores (which Oilpan may compact) can be referenced directly. The V8 garbage collector

4Blink uses its own dialect of WebIDL as described in https://www.w3.org/TR/WebIDL-1/.
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Fig. 4. References between V8 and the Blink renderer

can differentiate between pointers on its managed heap and pointers to the embedder heap by

inspecting the type of the object. Additionally, each JavaScript object containing such a reference is

also referred to by a V8 handle. Figure 3 depicts such a scenario with cross-component references

from V8 to Blink and vice versa. In the following we simplify the object graphs by hiding handles

and object layout. On a high level the abstraction through V8’s handle system can be seen as a

remembered set [Ungar 1984] for maintaining cross-component references. For example, using

the remembered set Oilpan can perform local garbage collections by treating incoming cross-

component references as roots. Note that the cross-component references from V8 into Oilpan can

be found by iterating V8’s handles and following the corresponding references back into Oilpan.

Since neither JavaScript nor the WebIDL specification impose any restrictions on DOM com-

position, the resulting object graphs are fully general, potentially leading to the cycle problem as

described in Section 1.

3 OBJECT GROUPING

Recall that cyclic cross-component references from wrapper objects to wrappable objects and

vice versa tie their lifetime together: they can only live and die together. These references would

lead to memory leaks if either were considered as a root. To avoid this problem, cross-component

references from Blink to V8 are marked as weak roots, allowing the wrapper to be collected by

V8 if it is otherwise unreachable. In Figure 4, this is denoted by a dashed edge. As V8’s garbage

collector has no visibility into the references between Blink objects, it might collect a wrapper

even though it is still reachable from another wrapper through Blink references between their

respective wrappables. For an example see Figure 5 where b is reachable through the transition

a → a′ → b ′ → b.

Themajority of cross-component references fromV8 to Blink are references connecting JavaScript

objects to C++ objects representing nodes in the DOM. Furthermore, edges in the DOM are bidi-

rectional, which means any live node in the DOM tree will keep the whole DOM tree alive. This

bit of domain-specific knowledge makes it possible to group JavaScript wrapper objects by their

corresponding DOM trees, a technique called object grouping which was used in Chrome until

version 57. Since all lifetimes of a group must be the same, a group can either be a live group, if it

contains at least one live wrapper, or a dead group, otherwise. Once a group is dead it is collected

by V8. A program can also mutate the DOM tree, which results in DOM nodes moving between

groups, effectively invalidating already collected liveness information.

An example of object grouping is illustrated in Figure 5. The fictional DOM trees areд1 containing

the DOM nodes a′ and b ′, and д2 containing the DOM node c ′. Then the wrapper objects a and b

are grouped together in д1 using object grouping as their corresponding wrappables are contained

within the same DOM tree. Similarly, wrapper c forms its own group д2 since its wrappable c
′

is the only node in the DOM tree. Now, if o happens to be considered live by V8, then д1 is also

considered live because of the reference between o and a. Wrapper b will be kept alive even though

there is no connection on the V8 heap between a and b. In contrast, д2 and its objects ś only c in

this example ś will be collected upon a garbage collection if c is not itself in V8’s root set of objects.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 151. Publication date: November 2018.
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Fig. 5. Object grouping

Additional relationships between JavaScript objects due to references in Blink must be explicitly

modeled by introducing temporary JavaScript references between the involved objects. The refer-

ences are only temporary as there is no mechanism for tracking changes in the DOM object graph

and updating the references accordingly.

One last complication is that Blink can also keep references to JavaScript objects that aren’t

wrappers. If a cycle exists in the system that involves such references, it will not be automatically

detected by the object grouping algorithm but instead will result in a memory leak. An example is

Blink objects keeping references to callbacks in JavaScript5.

3.1 Limitations of Object Grouping

Object grouping has two major shortcomings which are (1) latency and (2) the complexity of

assigning object groups in environments where the fundamental assumption of a fully connected

graph does not hold, often resulting in premature collection of objects or memory leaks.

Performance. Object grouping has two primary performance problems. The first problem is that

establishing liveness of groups requires considering all objects, even those that are only part of dead

groups. Figure 6 illustrates that problem. In this example, even though all objects in V8 are dead,

object grouping still requires considering all cross-component references from Blink to V8 to build

up the groups д1 and д2. This issue cannot be mitigated as the key in object grouping is assigning

each object, dead or alive, to a group. Note that this is not the same as holding a subtree live through

a single reference that gets discovered in a tracing garbage collector, as this problem still exists on

top of creating groups for dead objects. The second problem is that object grouping information is

only correct as long as JavaScript is not mutating the DOM graph. Correctness is achieved when

groups are created and processed during the finalization pause of the garbage collector. Creating

and establishing liveness of the groups is bounded in the number of cross-component references,

i.e., the total number of nodes in all DOM trees. Additionally, entries into other subgraphs of

the JavaScript heap are only discovered once groups have been fully processed. To mitigate this

issue, once a heuristic determines that the heap is close to being fully marked, object grouping is

repeatedly performed between incremental marking steps.

Code Complexity. Object grouping was designed around the property of fully-connected groups

that live and die together. Graphs that involve keeping references from DOM objects that aren’t part

of a DOM tree to JavaScript require temporary references to be correctly represented. In practice,

the majority of objects are part of the DOM tree. However, for references between DOM objects

5https://crbug.com/501866
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Fig. 6. Limitations of object grouping: Considering dead objects and groups
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that are not part of the DOM tree, and references to JavaScript objects that are not a wrapper, the

garbage collector must be able to fully describe the entire system at any point in time. Maintaining

this global knowledge is not feasible in practice, as manifested in several Blink bugs where wrappers

were either collected prematurely6, or memory leaked7.

4 CROSS-COMPONENT TRACING

In this section we first discuss an abstract setting of components and an algorithm with building

blocks for computing precise liveness of objects across components. The generic algorithm can

be used as a sketch for other systems that require cross-component memory management. We

conclude this section by relating those general concepts back to V8 and Blink. More precisely we

show how CCT is implemented in V8 and Blink and how it improves Chrome’s memory tooling.

Similar to solving the problem of reference cycles in garbage collected systems, the algorithm

relies on tracing to compute liveness, correctly handling reference cycles across component bound-

aries. We assume that the component that triggers collection is managed by a garbage collector and

refer to its tracing infrastructure as master tracer. We refer to the system that assists this garbage

collector in another component as remote tracer. The remote tracer must at least have a mechanism

to trace its heap, either because it too is garbage collected or a tracing mechanism can be built.

Cross-component tracing can be seen as tracing that ignores component boundaries. Figure 7

illustrates this by using the same example as introduced for object grouping in Figure 5 with the

difference that all references are used for tracing instead of object grouping. During tracing, the

6https://crbug.com/329103
7https://crbug.com/501866
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master tracer will eventually find object a through the other live object o. It then announces ra,a′

to the remote tracer, which uses tracing to find all transitively reachable objects a′ and b ′, with its

references ra′,a and rb′,b which are passed back to the master tracer. The master tracer continues

tracing from ra′,a and rb′,b and finds a new live object in b. The master tracer announces reference

rb,b′ to the remote tracer which can ignore it as it has already been visited. Since there are no other

references to trace, tracing is now finished. Note that since there are no objects pointing to either c

or c ′ other than themselves, c is discovered as being dead and collected. c ′ may be still reachable

through some unrelated references in the remote heap.

4.1 Generic Algorithm

The complete generic algorithm is depicted in Figure 8. The algorithm shows cross-component trac-

ing across two components where a garbage collection is initiated by amaster tracer (MasterTracer;

line 1) and assisted by a remote tracer (RemoteTracer; line 32). The master tracer and remote tracer

mark only objects on their own heaps. The algorithm can be extended to several remote tracers that

all handle their own corresponding heaps (see end of this section). We refer to cross-component

references through the is_remote() predicate. Any object for which is_remote() holds is in fact

a reference on another heap.

Both the master and the remote tracer maintain their own local marking work lists

(MarkingWorkList; lines 2 and 33), a data structure to store objects that were discovered during

tracing and require tracing of their fields. At the start of the marking phase (mark_live_objects();

line 14) the master tracer marks its own roots (line 15) and initiates marking the roots on the remote

tracer (line 16), effectively filling both marking work lists with initial objects. It is sufficient to con-

sider only roots in the remote heap that can transitively reach objects which have cross-component

references. Note that this set of roots can be a subset of the actual roots. The consequences of the dif-

ferent root sets are discussed after the algorithm description. The marking phase (lines 17-19) then

alternates tracing through the master and remote heap. Advancing marking for the master tracer

drains its marking work list (lines 22-29) with an algorithm that gets an object, iterates its internal

references, and handles them as follows. If the reference is a cross-component reference (line 26),

i.e. the is_remote() predicate is true, it is announced to the remote tracer (line 27). Otherwise, if

the object was not yet marked, it is marked and put on the marking work list (line 29). The remote

tracer’s marking method (lines 45-53) works exactly the same. advance_marking(deadline) takes

as progress condition a deadline that can be e.g. real time, number of bytes, or number of objects.

mark_live_objects() advances marking with inf (i.e. infinity) meaning that it marks until the

given work list is empty. Both tracers exchange references to objects via their respective work lists,

and tracing continues until no more unprocessed objects are available on the marking work lists.

As noted above, it is possible to scan only the roots necessary for cross-component tracing or the

full root set. The algorithm guarantees that unmarked objects on the master’s heap are unreachable

and can be reclaimed. Unmarked objects on the remote heap are only unreachable if the full remote

root set was scanned.

As an optimization, the described cross-component garbage collection can be supplemented with

faster local garbage collections. During a local garbage collection each component conservatively

treats the references from the other component as root references, which may introduce reference

cycles and memory leaks. Performing a cross-component garbage collection once in a while is

sufficient to break the cycles.

The following extensions are possible but have been omitted from the text for clarity.
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1 MasterTracer {

2 MarkingWorkList work_list;

3

4 mark_roots ():

5 // Root marking logic.

6

7 mark(object):

8 // Marks the object and returns true on

9 // success and false otherwise.

10

11 mark_and_put(object):

12 if mark(object): work_list.put(object)

13

14 mark_live_objects ():

15 mark_roots ()

16 RemoteTracer.mark_cct_roots ()

17 while !work_list.empty():

18 advance_marking(inf)

19 RemoteTracer.advance_marking(inf)

20

21 advance_marking(deadline):

22 while !work_list.empty() &&

23 !deadline_reached(deadline):

24 obj = work_list.get()

25 for child in obj:

26 if is_remote(child):

27 RemoteTracer.mark_and_put(child)

28 else:

29 mark_and_put(child)

30 }

31

32 RemoteTracer {

33 MarkingWorkList work_list;

34

35 mark_cct_roots ():

36 // Mark roots for CCT.

37

38 mark(object):

39 // Marks the object and returns true on

40 // success and false otherwise.

41

42 mark_and_put(object):

43 if mark(object): work_list.put(object)

44

45 advance_marking(deadline):

46 while !work_list.empty() &&

47 !deadline_reached(deadline):

48 obj = work_list.get()

49 for child in obj:

50 if is_remote(child):

51 MasterTracer.mark_and_put(child)

52 else:

53 mark_and_put(child)

54 }

Fig. 8. Generic cross-component tracing algorithm

Unlimited Number of Components. The algorithm can be extended to support unlimited number

of components. The main differences are: remote objects need to be communicated to their corre-

sponding tracer; and termination needs to consider a fix point across all components where objects

are processed until all marking work lists are empty.
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1 // Incremental extension.

2 MasterTracer {

3 start():

4 mark_roots ()

5 RemoteTracer.mark_roots ()

6

7 incremental_step(deadline):

8 advance_marking(deadline)

9 RemoteTracer.advance_marking(deadline)

10 }

11

12 // Concurrent extension.

13 MasterTracer/RemoteTracer {

14 start():

15 mark_roots ()

16 start_thread(run)

17

18 run():

19 while !wait_for_new_objects_or_terminate ():

20 advance_marking(inf)

21 }

Fig. 9. Cross-component tracing extensions

Moving Collectors. The generic algorithm relies on references pointing directly to objects. Support-

ing components that rely on moving garbage collectors, e.g. for compaction, is possible by referring

to objects through an indirection such as handles.

Incremental Marking. The extension to support incremental marking is depicted in Figure 9. Marking

is started (line 3) by marking the roots in both heaps. Note that root marking in the remote heap

is optional at start time if it is performed later when incremental marking finalizes. Afterwards

both heaps are processed in alternating order with given deadlines (line 7) interleaved with regular

program execution. General infrastructure to support incremental marking, e.g., write barriers

and stepwise tracing logic of objects, is also required. The algorithm is opportunistic, i.e., any

unprocessed object left on the marking work lists while marking incrementally will be processed

during the finalization of this garbage collection phase which has to invoke mark_live_objects().

Concurrent Marking. The extension to support concurrent marking is depicted in Figure 9. Similar

to incremental marking, the start of concurrent marking needs to mark roots (line 14) (at least for

the master heap). Additionally, threads are started that trace and mark the corresponding heap on

another thread. The runner includes a barrier to wait for new objects (line 19) that bails out when

all tracers, remote and master, are done with processing their objects. Similarly to incremental

marking, general infrastructure to support concurrent marking is required andmarking is performed

opportunistic.

4.2 V8 & Blink: Implementation of Incremental Cross-Component Tracing

We now provide an overview of how the generic algorithm with the incremental marking and

moving collectors extensions map onto V8 and Blink as described in Section 2 and give an overview

of various implementation-specific details.

V8 serves as master tracer initiating the garbage collection based on heap-sizing heuristics [De-

genbaev et al. 2016; White et al. 2013] that consider the current size of the V8 and Blink managed

heaps. The generic methods advance_marking and incremental_step(deadline) directly map

to the existing incremental marking code in V8. V8’s mark_roots considers all references from
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1 DEFINE_CROSS_COMPONENT_TRACING ( t yp eo f (a′ ) ) {

2 v i s i t o r −>t raceWrapper s ( ra′,b ) ;

3 v i s i t o r −>t raceWrapper s ( ra′,a ) ;

4 }

5 DEFINE_CROSS_COMPONENT_TRACING ( t yp eo f (b′ ) ) {

6 v i s i t o r −>t raceWrapper s ( rb′,a ) ;

7 v i s i t o r −>t raceWrapper s ( rb′,b ) ;

8 }

9 DEFINE_CROSS_COMPONENT_TRACING ( t yp eo f (c ′ ) ) {

10 v i s i t o r −>t raceWrapper s ( rc′,c ) ;

11 }

Fig. 10. Explicit tracing definitions

the native execution stack as well as internal and external (API) global references as roots. The

knowledge of which references are cross-component references is present in the hidden class of

an object which describes its shape [Chambers et al. 1989]. The same hidden class is used by V8’s

garbage collector to determine which slots in an object are JavaScript references.

Blink already ships with its own garbage collector Oilpan. Cross-component tracing reuses some

Oilpan infrastructure but all data structures are kept separate. As a result Oilpan garbage collections

may interleave with incremental cross-component tracing. An example for shared infrastructure

is the location of mark bits which is fixed for each object. Cross-component tracing adds one

additional bit in that existing space. In contrast to an explicit tri-color abstraction for the marking

state only the black and white colors are encoded in the object header. The gray color indicates

that the object is in the marking work list and it is useful for recovering from marking work list

overflow. Cross-component tracing does not limit the size of the marking work list, so it does not

need the gray color.

Oilpan is currently implemented as stop-the-world garbage collector which is incompatible with

the incremental extension of cross-component tracing as it lacks infrastructure to keep the marking

state consistent during application execution. Similar to V8, a Dijkstra-style write barrier [Dijkstra

et al. 1978] was added to cross-component tracing in Blink to keep the marking state consistent.

This barrier is only active when tracing across component and not used during regular Oilpan

garbage collections.

In Blink only objects related to the DOM can have cross-component references to V8. This

set of objects is significantly smaller than the whole Blink heap. Additionally, Blink guarantees

that the native execution stack does not contain references that exclusively retain such DOM

objects, i.e., live objects with cross-component references are always reachable through the heap.

This is possible because Blink enforces connecting those objects to the heap upon construction

through a mix of best practices and debug assertions that fail upon violating this invariant. For

cross-component tracing mark_cct_roots thus only considers global variables that can reference

objects related to the DOM. As discussed in Section 4.1, therefore only objects on the V8 heap

can be reclaimed since not all roots of the Blink heap were scanned. This is a trade-off between

restricting usage of C++ and increasing complexity of the garbage collection implementation.

Since the object layout of C++ objects is known at compile time, there is no need for implementing

a dynamic lookup mechanism for tracing a specific object. Instead, classes are annotated in source

code with definitions on how such objects should be traced. Figure 10 illustrates the definitions

required for the example in Figure 7, c.f. [Bartlett 1989]. Explicitly specifying which references

need to be traced is beneficial as it allows the implementation to only consider subgraphs of the

heap managed by Oilpan that contain objects that might contain references to V8 objects.
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1 <html>

2 <body onload= " run ( ) " >

3 <div>

4 <b id= "msg " >He l l o ! < / b>

5 < / div>

6 < / body>

7 < /html>

(a) HTML source

1 c l a s s Leak { } ;

2 function run ( ) {

3 l e t l e a k = new Leak ( ) ;

4 function l i s t e n e r ( ) { c on so l e . l og ( l e a k ) ; }

5 l e t node = document . ge tE l ementBy Id ( "msg " ) ;

6 node . a d dEv en t L i s t e n e r ( " debug " , l i s t e n e r ) ;

7 }

(b) JavaScript source

Fig. 11. A typical memory leak that happens when the web developer forgets to unregister an event listener.

All objects in the environment of the listener closure cannot be garbage collected.

The new_object methods on both V8 and Blink are implemented on top of buffers to avoid

crossing the component boundary for single references. Moreover, all Blink to V8 references are

implemented on top of handles to allow V8 to compact its heap (essentially moving objects) which

as described before can be seen as remembered set.

Safety. Safety is ensured by two properties: (a) tracers visiting all references that can transitively

reach objects with cross-component references; and (b) write barriers ensuring that newly added

references during execution are also visited.

For (a) if tracers, master and remote, visit all objects reachable from both root sets then all

cross-component references are reached per definition and no objects can be prematurely collected.

In our implementation of the master tracer in V8 this holds. For our implementation in Blink we

optimize the time spent in tracing by reducing the number of objects that need to be visited. We

statically infer through C++ type information which objects can reach objects with cross-component

references and only consider those objects during visitation and root scanning, as described in

Section 4.2.

For (b), a fundamental problem with incremental and concurrent garbage collection systems is

making sure that write barriers are never skipped accidentally. In case of a Dijkstra write barrier this

means executing the barrier right after an object has been inserted into the object graph through a

write to an existing object. This can be achieved with compiler support by emitting the write barrier

code after each write. However, adding the write barrier in an existing C++ application without

changing compilers is difficult as every write needs to be intercepted, whether it is explicit through

assignment or implicit through copy or move construction within container data structures. We

propose a solution to this problem that is correct by construction by providing GC-aware smart

pointers to users of DOM code in Blink. Similar to existing smart pointers in the C++ standard

library those pointers are used to intercept writes to an object. More specifically, the smart pointer

overrides assignment, copy construction, and move construction to invoke the write barrier when

needed. Reads are not intercepted. As long as object references are encapsulated in such a smart

pointer, the graph is held in a consistent state through incremental cross-component tracing. We

enforce the use of smart pointers using the C++ type system and only accepting managed objects as

parameters on the internal tracing methods.

4.3 Debugging and Tooling

So far we discussed memory leaks caused by reference cycles across component boundaries. As

we have shown, browser developers can fix such leaks by implementing CCT. There is another

class of memory leaks which browser developers cannot control ś memory leaks on the JavaScript

application level. Figure 11 shows an example of JavaScript level memory leak, where an event

listener closure captures an object in its environment. The DOM specification requires JavaScript
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object Leak (JS)

environment of listener() (JS)

HTMLElement (DOM)

HTMLDocument (DOM)

HTMLDocument (JS)

Window (JS)

(a)

object Leak (JS)

environment of listener() (JS)

EventListener (DOM)

HTMLElement (DOM)

HTMLDivElement (DOM)

HTMLBodyElement (DOM)

HTMLHtmlElement (DOM)

HTMLDocument (DOM)

HTMLDocument (JS)

Window (JS)

(b)

Fig. 12. Retaining path of the leaked object in Chrome DevTools. Path (a) is an approximation based on object

grouping. Path (b) is the precise retaining path based on CCT. The JavaScript objects are shown as white

nodes. DOM object are shown as gray nodes.

developers to manually remove unused event listeners. Forgetting to remove event listeners is a

common source of memory leaks. In general, bugs in JavaScript code can result in leaks of JavaScript

and DOM objects. To the garbage collector these leaking objects are indistinguishable from live

objects. Browser developers cannot fix these leaks but they can provide tools that help JavaScript

developers to find and debug them. Chrome provides a heap snapshot tool as part of DevTools8

which captures and visualizes the object graph of the JavaScript heap and parts of the Blink heap.

Using DevTools, a JavaScript developer can reason why a particular object is not garbage collected

by inspecting the retaining path of that object.

The heap snapshot tool captures JavaScript objects and references between objects precisely

but until CCT it had only rudimentary support for handling the Blink heap. The tool relied on

object grouping and on heuristics to capture DOM objects, which resulted in capturing a subset of

the objects and approximating references between them. Lets consider the example in Figure 11.

Figure 12 compares the retaining paths using object grouping and using CCT for the leaked object.

The EventListener object does not appear in the path shown in Figure 12a, and the path goes from

HTMLDocument directly to HTMLElement bypassing all intermediate nodes because all objects in

the same object group are considered connected with each other. For CCT the path in Figure 12b

is precise and more actionable because it shows where exactly the event listener is attached in

the DOM tree. Precise capturing of DOM objects was implemented by specializing the generic C++

visitation mechanism of CCT. To the best of our knowledge, Chrome DevTools is the only system

that can visualize precise object graphs spanning JavaScript and C++ objects. Besides debugging

8https://developer.chrome.com/devtools
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memory leaks the precise retainment information across components allows developers to reason

about general memory usage of their system.

Recent studies have shown that the number one reason for Chrome to crash is webpages running

out of memory [Hablich and Payer 2018]. Hence, precise memory tooling is becoming increasingly

important. Others have shown how to debug JavaScript memory leaks based on heap snapshots

where webpage developers provide scripts that exercise interesting application scenarios [Vilk and

Berger 2018]. CCT may improve their work by precisely capturing the DOM object graph.

4.4 Trade-offs

So far we have proposed a novel design that enables effective and efficient reclamation of garbage

across component boundaries. We now discuss the trade-offs we have chosen and potential im-

provements.

Compared to object grouping, we see numerous benefits of CCT. Having a clear interface defining

explicitly the dependencies between single objects offers a clean separation of components. CCT

only requires a view of each single object through tracing which is a local property, whereas

object grouping required a global view of the system to avoid leaks through cycles between groups.

CCT also allows for incremental garbage collection without considering the global state, which

object grouping requires by iterating all cross-component references. This advantage is clear in the

performance results shown in Section 6.

The key for correctness is enforcing the use of of GC-aware smart pointers through the C++ type

system. The current design also allows for a future implementation improvement by implementing

the concurrent cross-component tracing extension. Even though DOM mutation is specified to

be entirely single-threaded, marking can be performed concurrently without interfering with the

main thread. Atomic accessors can be encapsulated in the smart pointers, while the barrier ensures

consistency of marking information.

5 RELATED WORK

In this section we outline how cross-component references are managed in other software systems.

We start out with other web browsers and renderers that similarly to Chrome face the challenge

of managing cross-component references between JavaScript and the DOM heap. Afterwards we

provide an overview of systems that embed virtual machines and allow references to and from the

managed heap. We then take a look into garbage collection in general as well as for C++ specifically

and distributed garbage collection systems.

5.1 Other Web Browsers and Renderers

Other popular web browsers implement the setup of the DOM and JavaScript similarly to Chrome

and contain a JavaScript virtual machine which allocates JavaScript objects on a managed heap.

In each of these systems the DOM is implemented using regular C++ which allocates objects on a

separate C++ heap. We did not find any documentation about how Microsoft’s Internet Explorer

manages cross-component references. The Opera web browser and Electron, a framework for

building cross-platform Desktop apps, use Blink and V8 and therefore use incremental cross

component garbage collection with their application-specific modifications.

The Gecko rendering engine powers Firefox and uses reference counting to manage C++ memory.

To collect cycles that might come either from cyclic data structures such as the DOM tree or

references from JavaScript, Gecko implements a cycle collector [Mozilla Contributors 2017]. The

implementation is based on work by Bacon and Rajan [2001] without implementing concurrent

collection. On a high level, the cycle collectormaintains a set of potentially dead objects and regularly

detects cycles within this set that then can be deleted. Objects are added to this set whenever their
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reference count decreases and removed if it increases. To maintain short pause times, the cycle

detection itself can be executed incrementally. Various optimizations are implemented to keep the

size of the set of potentially dead objects small, e.g., liveness information is propagated from the

JavaScript garbage collector, and knowledge about the DOM tree structure is used to add or remove

all nodes belonging to a given DOM tree.

The WebKit9 rendering engine powers Safari and uses reference counting to manage C++ memory.

JavaScript wrappers maintain a reference count to their wrapped C++ objects, and the JavaScript

engine’s garbage collector Riptide [Pizlo 2017] is responsible for maintaining these reference counts.

The relationships between C++ objects are expressed using constraints, and Riptide computes a fix-

point of those constraints while marking objects. While Riptide itself is concurrent and incremental,

the fix-point of the constraints expressing relationships between C++ objects and their wrappers is

computed in the atomic pause of the garbage collection cycle.

Additionally to browsers there also exist other HTML renderer implementations such as e.g.

Cobalt [Cobalt Project Authors 2018]. Cobalt aims at providing a minimal HTML implementation

to run web applications in embedded environments such as TVs. The most recent version of Cobalt

uses V8 with its cross-component tracing API without the incremental marking extension and its

own DOM implementation.

5.2 Language Interoperability

While virtual machines can run in isolation they are often integrated into larger software systems to

provide additional capabilities. Communication between those systems requires holding references

of some sort across component boundaries. We are not aware of any other work that allows tracing

over component boundaries. The existing solutions default to explicit manual memory management

on the component boundaries.

NativeScript [Slavchev 2017] is a popular framework using JavaScript to provide native appli-

cations for mobile devices embedding V8 in the Android ART runtime. JavaScript objects may

reference Java objects and vice-versa. Reference cycles are broken manually which is error-prone

and may lead to either memory leaks or dangling pointers.

JavaConnect [Brichau and Roover 2009] and JNIPort [Geidel 2018] integrate a Java VM into a

Smalltalk VM using their respective foreign function interfaces. Cross-component references are

roots upon construction and must be explicitly destroyed from Smalltalk using finalizers.

In general, virtual machines provide foreign function interfaces (FFIs) to hold references into

other components. For example, for Java, Java Native Interfaces [Oracle Corporation 2018] and

JavaConnect [Brichau and Roover 2009] as well as JNIPort [Geidel 2018], allow embedding a JVM

into C/C++ and Smalltalk, respectively. These libraries require explicit management of references

though.

5.3 Garbage Collection

The idea of dividing managed heaps into different sub parts that can be traced individually is present

in other work with a pure focus on improving temporal performance by providing better locality

when processing objects [Chicha and Watt 2006; Oancea et al. 2009; Shuf et al. 2002]. Unlike CCT,

none of these systems aims at providing safe memory management across component boundaries.

Garbage collection of the DOM requires handling C++ objects. As of today, there exist many

different garbage collectors for C++ [Boehm and Weiser 1988; Detlefs 1990, 1992; Edelson 1992].

These collectors position themselves in the garbage collection trade-off space by either being

9https://webkit.org
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reference counted, trace based, or some hybrid. Furthermore, the collectors are either conservative

or precise [Jones et al. 2012].

CCT as presented in this paper relies on tracing and precise stack scanning for JavaScript objects.

For C++ the system relies on the fact that garbage collections are performed at the top of the event

loop where the native execution stack is empty.

CCT in Blink makes use of custom types that developers need to inherit from and extend for

tracing. As others have already noted [Boehm et al. 1991], this avoids wrongly classifying memory

as pointers when tracing through object payloads.

Our incremental extension of CCT uses a Dijkstra-style write barrier [Dijkstra et al. 1978].

5.4 Distributed Tracing Garbage Collection

On a high level cross-component memory management is related to distributed garbage collection.

However, the environments, i.e., the problem space and their constraints, differ in subtle ways as

discussed below.

One of the main differences to traditional distributed garbage collection is that cross-component

memory management as described in this paper handles components within a single process,

avoiding the problem of network latency and reliability. Additionally, we did not impose any

requirements on fault tolerance on the involved components.

Similar to distributed garbage collection [Plainfossé and Shapiro 1995], CCT also requires to

synchronize on a global marking state to ensure consistency when reclaiming objects. However,

CCT as presented in this paper differs from existing approaches by avoiding complex consistency

protocols [Hughes 1985; Ladin and Liskov 1992] or pointer tracking methods [Hudson et al. 1997]

that allow for precise reclamation of objects on their local heaps, independently of the global state.

Instead, we rely on the fact of having all cross-component references present in a remembered set

representation that can be shared in address space among all components. Additionally, we avoid

complex synchronization mechanisms by relying on a marking scheme that just moves forward,

i.e., objects that were once considered as live stay live during the current garbage collection cycle.

Similar to distributed garbage collected system, local garbage collections for individual heaps

are still possible with the presented approach. In this case a separate set of mark bits is built up in

isolation and any incoming cross-component references are considered as roots.

6 EXPERIMENTS

We compare four different cross-component memory management systems in Chrome to under-

stand their impact: incremental object grouping (OGI), non-incremental object grouping (OGN),

incremental cross-component tracing (CCTI), non-incremental cross-component tracing (CCTN).

The non-incremental configurations perform cross-component garbage collection work only during

finalization of V8 garbage collection. The OGI configuration builds object groups twice: once in

an incremental marking step and again in the finalization phase. Construction of object groups in

the incremental step is triggered when the marking work list becomes empty. Newly discovered

unmarked objects that belong to a live object group are then added to the marking work list and

incremental marking continues. Finalization of garbage collection starts when the marking work

list becomes empty again. CCTN performs tracing through Blink only in the finalization phase and

CCTI interleaves incremental Blink tracing steps with incremental marking steps of the V8 heap.

We consider the OGI configuration as a baseline since it was the default configuration in Chrome

before cross-component tracing. OGNwas used in Chrome until early 201510. Starting from Chrome

version 57, the CCTI configuration is the new default configuration.

10https://codereview.chromium.org/1012593004
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6.1 Setup

We use Chrome version 57.0.2987.0 with a local patch that adds run-time flags for switching between

browser configurations and fixes to reduce variability in garbage collection scheduling. We run the

benchmarks on a Linux workstation with two Intel Xeon E5-2690 V3 12-core 2.60 GHz CPUs and

64GB of main memory.

6.2 Benchmarks

We evaluate each browser configuration on a set of popular webpages using Chrome’s Telemetry

performance testing framework [Google 2018]. Telemetry runs scripted webpage interactions in

Chrome and records all server responses in order to enable predictable replay of these interactions

in our test environment, effectively eliminating all unpredictable network traffic. We use official

real-world website benchmark sets of Chrome [V8 Project Authors 2017] that mimic common

user interactions like infinite scrolling, social network browsing, news webpage browsing, media

webpage browsing etc.

The used workloads with URLs and their workload definition can be found in the Chrome’s

Telemetry repository11. Overall we run the following 16 workloads and webpage combinations:me-

dia:imgur, media:pinterest, media:tumblr, media:youtube, news:cnn, news:flipboard, news:hackernews,

news:nytimes, news:reddit, news:google, news:twitter, scroll:discourse, scroll:facebook, scroll:flickr,

scroll:tumblr, and scroll:twitter.

6.3 Metrics

We are interested in measuring garbage collection latency, garbage collection throughput, and

browser memory usage. We have two metrics for latency: the average pause time of garbage

collection finalization and the minimum mutator utilization (MMU) [Cheng and Blelloch 2001].

Finalization is the longest phase in a garbage collection cycle. This is because we can arbitrarily

decrease the duration of an incremental marking step by controlling the amount of work performed

in the step, but we have no control over the duration of finalization.

The MMU metric measures the impact of multiple consecutive garbage collection steps on the

application. It is computed by sliding a time window of fixed size over the execution trace and

finding the worst-case window where the most of the time is taken up by garbage collection. The

fraction of the time left to the application in this worst-case window is the value of the MMU. Thus,

the MMU equal to 1 is the best possible result and the MMU equal to 0 is the worst possible result.

Wemeasured the MMU for window sizes from 1ms to 1000ms and have chosen to present 16.67ms

and 50ms time window sizes as they represent the duration of one frame in a 60 frame-per-second

animation and the suggested response time for Chrome’s RAIL model12, respectively.

We estimate garbage collection throughput using the total garbage collection time which includes

incremental steps and the finalization phase.

By running each webpage 10 times for each configuration we obtain 10 samples per metric.

We consider the OGI configuration as the baseline and compare other configurations to the OGI

baseline using the Wilcoxon rank sum test [Hollander et al. 2013]. We report the results with 95%

confidence intervals.

6.4 Results

Figure 13 shows how garbage collection finalization pause times compare to the OGI baseline. The

pause times are normalized relative to the OGI baseline. A confidence interval that includes the

11Telemetry: https://chromium.googlesource.com/chromium/src/+/master/tools/perf/benchmarks
12RAIL performance model: https://developers.google.com/web/fundamentals/performance/rail
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Fig. 13. Finalization pause of garbage collection compared to the OGI baseline
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Fig. 14. Total garbage collection time compared to the OGI baseline

point 1.0 represents a result that is not statistically significant. Otherwise, the result is statistically

significant and is either an improvement (the confidence interval is below 1.0) or a regression

(confidence interval is above 1.0).

The CCTI configuration improves the pause times of 6 out of 16 webpages. Eight webpages do

not show any statistically significant difference, and in two webpages the pause times increase. The

improvement is the largest on media:youtube, where the average pause time decreases from 16ms

to 10ms. On scroll:tumblr the average pause time increases from 10.3ms to 11.4ms, which is caused

by Blink marking work discovered during finalization of garbage collection. The problem is that

garbage collection transitions to finalization too early because the heuristics for starting finalization

do not take into account the amount of remaining Blink marking work. We intend to improve the

heuristics in future. As expected the CCTN and OGN configurations make the finalization pause

times larger.
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Fig. 15. Difference in MMU between a configuration and the OGI baseline with 16.67ms time window
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Fig. 16. Difference in MMU between a configuration and the OGI baseline with 50ms time window

Figure 14 compares the total garbage collection times between the configurations. The news:twitter

page shows a statistically significant increase in total garbage collection time in the CCTI configu-

ration: from 444ms to 480ms. This relatively small increase is expected and represents the trade-off

of CCTI configuration.

Theminimummutator utilization is small for manywebpages, as shown in Figure 17. Normalizing

the MMU results relative to the OGI baseline might be misleading, sometimes suggesting huge

improvements. We therefore report in Figure 15 and Figure 16 the difference between the MMU of a

specific configuration and the OGI baselineMMU. A statistically significant result has the confidence

interval that does not include 0.0. The CCTI configuration improves eight and six webpages with

increases in MMU by 1% − 3% for the 16.67ms and 50ms time windows, respectively. The MMU

change in CCTN and OGN configuration is mostly within the noise except for media:tumblr in

CCTN configuration for the 16.67ms window. That workload is bimodal with MMU values around

3% in some runs and 13% in other runs. This suggests that there is non-determinism either in the

webpage code or in Chrome that affects garbage collection scheduling.

Besides garbage collection times and MMU, we measured Chrome memory usage when running

the benchmarks but we did not observe significant difference for all configurations. The memory
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(a) 16.67ms time window
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(b) 50ms time window

Fig. 17. MMU of the OGI baseline

usage was within 5% of the OGI baseline. The underlying memory leaks described in bug reports13.

are fixed though which should yield in better real-world memory usage.

7 CONCLUSION

In this paper we introduced the cross-component memory management problem that arises when

embedding a virtual machine into another software system. Implementers face a choice: Design

the system in a way where cycles are either avoided or are safely reclaimed. Avoiding cycles can

be achieved by shifting the cross-component boundary until the object graph in one component

is simple enough to provide a proof that cycles do not exist. In practice, this may be difficult

and too restrictive, and implementers are left with providing general infrastructure to handle

cross-component cycles.

We introduced such a general infrastructure with cross-component tracing (CCT), a garbage

collection strategy that allows efficient, effective, and safe garbage collection over software com-

ponent boundaries based on tracing. We showed that tracing over component boundaries is key

to collect reference cycles which may otherwise result in memory leaks. We presented a generic

algorithm for CCT that can be used as a guideline for other systems that require cross-component

memory management and implemented CCT in Chrome’s JavaScript engine V8 and its embedder

the rendering engine Blink. When garbage collection is performed in V8, references between the

JavaScript heap and the C++ Blink heap are traced in both directions to compute the precise transitive

closure of all live objects spanning both components. To perform tracing efficiently, we integrated

tracing through Blink’s C++ heap into the incremental marking phase of the V8 garbage collector

to keep pause times low which required incremental marking infrastructure like write barriers

and step-wise visitation of objects in C++. We demonstrated in various real-world experiments

that incremental CCT reduces pause times and improves mutator utilization in comparison to the

previous (incremental) object grouping system of Chrome. CCT also eliminated memory leaks that

are possible with object grouping. We also demonstrated how web developers can benefit from

CCT by visualizing precise liveness and retainment information across V8 and Blink component

boundaries in Chrome’s heap snapshot memory tool. Incremental CCT replaced object grouping in

13https://crbug.com/501866
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Chrome and has been enabled by default since version 57. CCT is also deployed in other widely

used software systems such as Opera, Cobalt, and Electron.

We would like to conclude this paper with the observation that CCT comes with significant

implementation overhead. Ultimately, implementers need to weigh off the effort of either avoiding

cycles by enforcing restrictions or implementing a mechanism to reclaim cycles such as CCT.
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