
000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

ECCV

#100
ECCV

#100

Semantically-Agnostic Unsupervised Monocular
Depth Learning in Dynamic Scenes
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1 Google Research 2Robotics at Google 3Waymo LLC

Abstract. We present a method for jointly training the estimation of
depth, egomotion, and a dense 3D translation field of objects, suitable
for dynamic scenes containing multiple moving objects. Monocular pho-
tometric consistency is the sole source of supervision. We show that this
apparently heavily-underdetermined problem can be regularized by im-
posing the following prior knowledge about 3D translation fields: They
are sparse, since most of the scene is static, and they tend to be constant
through rigid moving objects. We show that this regularization alone is
sufficient to train monocular depth prediction models that exceed the
accuracy achieved in prior work, including semantically-aware methods.

1 Introduction

Learning to predict depth from monocular video became a well-established tech-
nique in the past few years. Remarkably, the required supervision often amounts
to only the video itself: Consecutive frames are different veiwpoints of the same
scene, and the correct depth and egomotion thus are ones that allow correct
reprojection of one frame onto the other.

Dynamic scenes violate the “same scene” assumption above, and result in
failure cases in methods that rely on it. Various approaches to addressing this
challenge have been proposed. Godard et al. propose a method to identify a

Depth Object motion map Motion map

Fig. 1. Depth prediction (for each frame separately) and motion map prediction (for
a pair of frames), shown on a training video from YouTube. The total 3D translation
map is obtained by adding the learned camera motion vector to the object motion
map. Note that the object motion map is mostly zero, and nearly constant throughout
a moving object. This is a result of the motion regularizers used.
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2 H. Li et al.

specific type of object motion, namely where the observing car follows another
car at roughly the same speed, so that the followed car appears static in the
observing car’s camera frame [5]. While this is a very special case of object
motion, it is also a very common one, and addressing it resulted in significant
improvements in the depth prediction accuracy. However dynamic scenes can
exhibit many other common forms of motion, such as pedestrians crossing the
road in front of a car.

Other methods [2, 6] utilize semantic information provided by an auxiliary
pre-trained segmentation or detection model, to identify moving objects. Hav-
ing such a pre-trained model as a prerequisite hinders the usefulness of these
approaches, and requires knowing in advance the nature of all moving objects
that can appear in the scene.

In this work we overcome the limitations of the methods above, by utilizing
prior knowledge that is less restrictive than in Ref. [5], and at the same time free
of semantics. Given a dense map describing 3D translation of each pixel relative
to the scene (henceforth “translation field”), we assume that:

– Most pixels belong to the background or to static objects, so their translation
value must be zero.

– A moving (rigid) object manifests as a blob of pixels, all moving all the same
velocity (and hence having the same translation).

We thus expect the translation field to be sparse and piecewise constant. A key
contribution of this work is a regularization method that casts the translation
field into the desired profile. As we show, our method achieves state of the art
depth metrics, without requiring auxiliary semantic information, and
while allowing more general object motion patterns than objects that move at
the same velocity as the camera.

2 Method

Given a pair adjacent video frames (Ia and Ib), a network predicts a depth
map D(u, v) at the original resolution from a each frame separately. The two
depth maps are concatenated with Ia and Ib in the channel dimension and are
fed into a motion prediction network. The latter predicts a 3D translation map
Tobj(u, v), where (u, v) are image-space coordinates, at the original resolution for
the moving objects and a 6D motion vector Mego = [Rego, Tego] for the camera,
where Rego is a 3D rotation matrix and Tego is a 3D translation vector. The
object motion relative to the camera is defined as rotation Rego followed by a
translation T (u, v) = Tobj(u, v) + Tego. We apply a number of regularization
losses on the predictions.

Motion Regularization The regularization Lreg,mot on the motion map Tobj(u, v)
consists of the group smoothness loss Lg1 and the L1/2 sparsity loss:

Lreg,mot = Lg1[T (u, v)] + λL1/2[T (u, v)] (1)
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Unsupervised Monocular Depth Learning in Dynamic Scenes 3

where λ is a balancing coefficient. Lg1 minimizes changes in the moving areas,
encouraging T (u, v) to be nearly constant throughout a moving object:

Lg1[T (u, v)] =
∑

i∈{x,y,z}

∫∫ √(
∂uTi(u, v)

)2
+
(
∂vTi(u, v)

)2
dudv

The L1/2 sparsity loss on T (u, v) is defined as:

L1/2[T (u, v)] = 2
∑

i∈{x,y,z}

〈|Ti|〉
∫∫ √

|Ti(u, v)| /〈|Ti|〉 + 1dudv (2)

where 〈|Ti|〉 is the average of |Ti(u, v)| over the (u, v) space. The coefficients
are designed in this way so that the regularization is self-normalizing. In ad-
dition, it asymptotes to L1 for small T (u, v), and its strength becomes weaker
for larger T (u, v). We visualize its behavior in the appendix. Overall, the L1/2

regularization is better at inducing sparsity than the L1 regularization.

3 Experiments

We evaluated our method on three datasets: Cityscapes [3], Waymo Open Dataset [8],
and KITTI [4]. Cityscapes has many dynamic scenes, with multiple vehicles and
pedestrians moving through them. Indeed, our method was able to improve prior
benchmarks on Cityscapes, even methods that use semantic queues from aux-
iliary models (by most metrics; see Table 1). Lastly, we trained the model on
YouTube videos showing street footage from a camera held by a walking person.
Qualitative results of the latter are shown in Fig. 1 and in the Supplementary
Material.

Method Uses semantics? Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Struct2Depth [2] Yes 0.145 1.737 7.28 0.205 0.813 0.942 0.978
Gordon [6] Yes 0.128 0.959 5.23 0.212 0.845 0.947 0.976

Pilzer [7] No 0.440 6.04 5.44 0.398 0.730 0.887 0.944

Ours No 0.119 1.29 6.98 0.190 0.846 0.952 0.982

Table 1. Depth estimation test error for models trained and evaluated on Cityscapes
using the standard split. The depth cutoff is always 80m. Our model uses a resolution
of 416×128 for input/output. For the red metrics, lower is better; for the green metrics,
higher is better. The evaluation uses the code and methodology from Struct2Depth [2].

The Waymo Open Dataset is currently one of the largest and most diverse
publicly released autonomous driving datasets. Its scenes are not only dynamic
but also comprise nighttime driving and diverse weather conditions. Unaware of
previously published monocular depth estimation benchmarks on this dataset,
we compare our method to benchmarks we obtained from running public code
of prior methods. As Table 2 shows, our method outperforms the latter.

KITTI is the most popular benchmark, albeit being poor in dynamic scenes,
which makes it a less than ideal test bed for out method. As Table 3 shows, our
method is on par with state of the art methods.
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4 H. Li et al.

Method Uses samantics? Abs Rel Sq Rel RMSE RMSE log

Open-source code from [2] Yes 0.180 1.782 8.583 0.244

Open-source code from [6] Yes 0.168 1.738 7.947 0.230

Ours No 0.162 1.711 7.833 0.223

Table 2. Performance on the Waymo Open Dataset. Even though our approach doesn’t
require masks, it outperforms prior work.

Method Uses samantics? Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Struct2Depth [2] Yes 0.141 1.026 5.291 0.2153 0.8160 0.9452 0.9791
Gordon [6] Yes 0.127 1.33 6.96 0.195 0.830 0.947 0.981

Bian [1] No 0.137 1.089 5.439 0.217 0.830 0.942 0.975
Godard [5] No 0.128 1.087 5.171 0.204 0.855 0.953 0.978

Ours No 0.130 0.950 5.138 0.209 0.843 0.948 0.978

Table 3. Depth estimation test error, for models trained and evaluated on KITTI
using the Eigen Split. The depth cutoff is always 80m. Our model uses a resolution of
416 × 128 for input/output.
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Unsupervised Monocular Depth Learning in Dynamic Scenes 5

Supplemental Material

In Figures 3 and 4, we present depth and 3D motion learned with our unsuper-
vised approach on a collection of YouTube videos and scenes from the Cityscapes
dataset. In many of them, there are vehicles and people moving around. The col-
lection of YouTube videos were recorded with hand-held monocular cameras by
people walking around in diverse environments, and the camera intrinsics were
unknown to us. Figure 5 provides additional visualizations of the learned 3D
motion maps on the Waymo Open Dataset. Figure 6 contains an additional
visualization of our motion module.

RGB Depth 3D Object Motion Map
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Fig. 2. Qualitative results of our unsupervised monocular depth and 3D object motion
map learning in dynamic scenes across all datasets: Cityscapes, KITTI, Waymo Open
Dataset and YouTube.
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Fig. 3. This figure shows the learned object motion maps (right column) and disparity
maps (middle column) for RGB frames (left column) in a collection of YouTube videos
taken with moving cameras. The last two examples show static scenes, where the object
motion maps are mostly near zero.
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Fig. 4. This figure shows the learned object motion maps (right column) and disparity
maps (middle column) for RGB frames (left column) in the Cityscapes dataset.



315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

ECCV

#100
ECCV

#100

8 H. Li et al.

RGB Depth Background Motion Map Object Motion Map Global Motion Map

Fig. 5. This figure shows RGB images, disparity maps, and the 2D-appearance flows
projected from 3D motion maps on the Waymo Open Dataset. Here, we colorize based
on flow direction with intensity corresponding to flow magnitude. Using our depth and
background motion estimate, we can derive 2D appearance flow of static parts of the
scene (middle). We can use the same procedure to visualize our object motion field and
their global composite (right), respectively.
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Fig. 6. Overall training architecture. A depth network is independently applied on two
adjacent frame images, Ia and Ib, to produce the depth maps, Da and Db. The depth
maps together with the two original images are fed into the motion module, whose
details are shown on the right hand side. This module is applied twice, reverting the
places of the first and second images, i.e., the input image Ia is switched with Ib, and
the input depth Da is switched with Db. A composite of regularization losses is imposed
on the network predictions. At inference time, only the depth network is used. Given
two input images, the 3D motion map can also be obtained at inference.


