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Abstract

Model compression is essential for serving large deep neural nets on devices with
limited resources or applications that require real-time responses. As a case study,
a state-of-the-art neural language model usually consists of one or more recurrent
layers sandwiched between an embedding layer used for representing input tokens
and a softmax layer for generating output tokens. For problems with a very large
vocabulary size, the embedding and the softmax matrices can account for more
than half of the model size. For instance, the bigLSTM model achieves state-of-
the-art performance on the One-Billion-Word (OBW) dataset with around 800k
vocabulary, and its word embedding and softmax matrices use more than 6GBytes
space, and are responsible for over 90% of the model parameters. In this paper, we
propose GroupReduce, a novel compression method for neural language models,
based on vocabulary-partition (block) based low-rank matrix approximation and
the inherent frequency distribution of tokens (the power-law distribution of words).
The experimental results show our method can significantly outperform traditional
compression methods such as low-rank approximation and pruning. On the OBW
dataset, our method achieved 6.6 times compression rate for the embedding and
softmax matrices, and when combined with quantization, our method can achieve
26 times compression rate, which translates to a factor of 12.8 times compression
for the entire model with very little degradation in perplexity.

1 Introduction
Deep neural nets with a large number of parameters have a great capacity for modeling complex
problems. However, the large size of these models is a major obstacle for serving them on-device
where computational resources are limited. As such, compressing deep neural nets has become a
crucial problem that draws an increasing amount of interest from the research community. Given
a large neural net, the goal of compression is to build a light-weight approximation of the original
model, which can offer a much smaller model size while maintaining the same (or similar) prediction
accuracy.

In this paper, we focus on compressing neural language models, which have been successfully
applied in a range of important NLP tasks including language modeling (e.g., next word prediction)
and machine translation. A neural language model often consists of three major components: one
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or more recurrent layers (often using LSTM), an embedding layer for representing input tokens,
and a softmax layer for generating output tokens. The dimension of recurrent layers (e.g., LSTM),
which corresponds to the hidden state, is typically small and independent of the vocabulary size
of input/output tokens. In contrast, the dimension of the embedding and the softmax layers grow
with the vocabulary size, which can easily be at the scale of hundreds of thousands. As a result, the
parameter matrices of the embedding and softmax layers are often responsible for the major memory
consumption of a neural language model. For example, DE-EN Neural Machine Translation task has
roughly a vocabulary size around 30k and around 80% of the memory is used to store embedding
and softmax matrices. Furthermore, the One Billion Word language modeling task has a vocabulary
size around 800k, and more than 90% of the memory footprint is due to storing the embedding and
softmax matrices. Therefore, to reduce the size of a neural language model, it is highly valuable to
compress these layers, which is the focus of our paper.

There have been extensive studies for compressing fully connected and convolutional networks [19,
4, 6, 5, 24, 26, 8]. The mainstream algorithms from these work such as low-rank approximation,
quantization, and pruning can also be directly applied to compress the embedding and softmax
matrices. However, it has been reported in previous papers that these algorithms, though efficient for
CNN compression, are not able to achieve a good compression rate for word embedding matrices.
For instance, [8] proposed a very successful quantization method for CNNs, but for language models
the compression rate is less than 3 times.

One important aspect that has not been well explored in the literature is that the embedding matrix
has several specific properties that do not exist in a general weight matrix of CNNs. Each column of
the input embedding and softmax matrix represents a token, which implies that on a given training or
test set the parameters in that column are used with a frequency which obeys Zipf’s law distribution.

By exploiting these structures, we propose GroupReduce, a novel method for compressing the
embedding and softmax matrices using block-wise, weighted low-rank approximation. Our method
starts by grouping words into blocks based on their frequencies, and then refines the clustering
iteratively by constructing weighted low-rank approximation for each block. This allows word
vectors to be projected into a better subspace during compression. Our experiments show that
GroupReduce is more effective than standard low-rank approximation methods for compressing these
layers. It is easy-to-implement and can handle very large embedding and softmax matrices.

Our method achieves good performance on compressing a range of benchmark models for language
modeling and neural machine translation tasks, and outperforms previous methods. For example,
on DE-EN NMT task, Our method achieves 10 times compression rate on the embedding and
softmax matrices without much degradation of performance. Results can be further improved to 24
times compression rate when combined with quantization scheme. On One Billion Word dataset,
our method achieves 6.6 times compression rate on the embedding and softmax matrices that are
originally more than 6GB. When combined with quantization scheme, our method achieves more
than 26 times compression rate while maintaining similar perplexity.

2 Related Work

2.1 Model Compression for CNN

Low-rank matrix/tensor factorization. To compress a deep net, a natural direction is to approxi-
mate each of its weight matrices, W , by a low-rank approximation of the matrix using SVD. Based
on this idea, [19] compressed the fully connected layers in neural nets. For convolution layers, the
kernels can be viewed as 3D tensors. Thus, [9, 4] applied higher-order tensor decomposition to
compress CNN. In the same vein, [7] developed another structural approximation. [11] proposed
an algorithm to select rank for each layer. More recently, [26] reconstructed the weight matrices by
using sparse plus low-rank approximation.

Pruning. Algorithms have been proposed to remove unimportant weights in deep neural nets. In
order to do this, one needs to define the importance of each weight. For example, [14] showed that
the importance can be estimated by using the Hessian of loss function. [6] considered adding `1 or `2
regularization and applied iterative thresholding approaches to achieve very good compression rates.
Later on, [5] demonstrated that state-of-the-art CNNs can be compressed by combining pruning,
weight sharing and quantization.
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Quantization. Storing parameters using lower precision representations has been used for model
compression. Recently, [8] showed that a simple uniform quantization scheme can effectively reduce
both the model size and the prediction time of a deep neural net. [15] showed that non-uniform
quantization can further improve the performance. Recently, several advanced quantization techniques
have been proposed for CNN compression [25, 3].

2.2 Model Compression for RNN/LSTM

Although model compression has been studied extensively for CNN models, less works have focused
on the compression for recurrent neural nets (RNNs), another widely-used category of deep models
in NLP applications. Since RNN involves a collection of fully connected layers, many of the
aforementioned approaches can be naturally applied. For example, [8] applied their quantization and
retraining procedure to compress a LSTM (a popular type of RNN) language model on Penn Tree
Bank (PTB) dataset. [23] applied a matrix/tensor factorization approach to compress the transition
matrix of LSTM and GRU, and tested their algorithm on image and music classification problems
(which does not need word embedding matrices). [18, 16] proposed pruning algorithms for LSTM
models compression.

Among the previous work, we found only [8, 16] tried to compress the word embedding matrix in
NLP applications. [8] showed that the quantization-plus-retraining approach can only achieve less
than 3 times compression rate on PTB data with no performance loss. [16] showed that for word-level
LSTM models, the pruning approach can only achieve 87% sparsity with more than 5% performance
loss. This means roughly 26% parameters over the original model since this approach also needs
to store the index for non-zero locations. Very recently, [13] compressed the word embeddings
computed by the word2vec algorithm and applied to similarity/analogy task and Question Answering.
Just before submitting this work, we found another very recent paper [20] applying compositional
coding to compress the input embedding matrix of LSTM. However, as they explicitly mentioned in
OpenReview2, their algorithm is not able to compress the softmax (output) layer matrix. As a result,
the overall compressed model from this approach is still large. One main issue of the approach is that
multiple words share the same coding, which makes these words indistinguishable in the output layer
during inference.

These previous results indicate that compressing embedding matrices in natural language tasks is a
difficult problem—it is extremely challenging to achieve 4 times compression rate without sacrificing
performance. In this paper, we will show that instead of only treating the embedding or the softmax
parameters as a pure matrix, by exploiting the inherent structure of natural languages, GroupReduce
algorithm could achieve much better compression rates.

3 Proposed Algorithms

We now introduce a novel algorithm for compressing both the embedding and the softmax layer, two
major components in a neural language model as discussed earlier. Assume the word embedding
matrix has size N -by-D, where N is the vocabulary size and D is the embedding dimension. We
will use A ∈ RN×D to denote the embedding matrix (either input or softmax layer), and each row of
A corresponds to the embedding vector of a word, i.e., the vector representation of the word.

Our goal is to compress the embedding matrix A so that it uses less memory while achieving similar
prediction performance. For a typical language model, especially the one with a large vocabulary
size, the large memory size of the model is mostly due to the need to store the input and output
word embedding matrices. In Table 1, we show an anatomy of memory consumption for several
classic models trained on the publicly available datasets. We can see that for three out of four
setups, embedding matrices contribute more than 75% of the overall memory usage. For example, in
bigLSTM model that achieved start-of-the-art performance on OBW, more than 90% of memory is
used to store two (input and output) word-embedding matrices. Thus, for deep neural net models
alike, the main challenge to serve them on-device is to store tremendous memory usage of word
embedding matrices. As such, it is highly valuable to compress these word embedding matrices.

Given a word embedding matrix A, a standard way to compress A while preserving the information
is to perform low-rank approximation over A. A low-rank approximation can be acquired by using

2https://openreview.net/forum?id=BJRZzFlRb
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(a) Frequency (b) eigenvalues (c) reconstruction error

Figure 1: Illustration on Penn Treebank (PTB) dataset with the vocabulary size to be 10k and the
model’s embedding dimension to be 1500. (a): log of word frequency vs rank of the word. One word’
rank is defined as the log of number of words that occurs less than it. We can clearly observe the
power law distribution of the word frequency; (b) x-axis shows the rank of approximatiion, and y-axis
shows the eigenvalues. Here eigenvalues for two embedding matrices are from the input embedding
layer and softmax layer; we can see the eigenvalues are very large. (c) low-rank reconstruction error
based on singular value decomposition for the two embedding matrices. This in other way shows that
the vanilla SVD may not work well for the embedding matrix.

Table 1: The size of each layer in the model. The number in parenthesis shows the ratio respective to
the entire model size.

Models vocabulary size dimension model size input layer softmax layer LSTM cell
PTB-Small 10k 200 17.7MB 7.6MB(42.9%) 7.6MB(42.9%) 2.5MB(14.2%)
PTB-Large 10k 1500 251MB 57MB(22.7%) 57MB(22.7%) 137MB(54.6%)

NMT: DE-EN 30k 500 148 MB 68 MB (45.9%) 47MB(31.8%) 33MB(22.3%)
OBW-BigLSTM 793k 1024 6.8GB 3.1GB (45.6%) 3.1GB(45.6%) 0.6GB(8.8%)

singular value decomposition (SVD), which achieves the best rank-k approximation:

A ≈ USV T , (1)
where U ∈ RN×k, V ∈ RD×k where k < min(D,N) is the target rank, and S is a diagonal matrix
of singular values. After the rank-k low-rank approximation, the memory footprint for A reduces
from O(ND) to O(Nk +Dk).

There are two issues for using vanilla SVD to compress an embedding matrix. First, the rank of the
SVD is not necessarily low for an embedding matrix. For example, Figure 1(b) shows that all the
eigenvalues of the PTB word embedding matrices are quite large, which leads to poor reconstruction
error of low-rank approximation in Figure 1(c). Second, the SVD approach considers A as a regular
matrix, but in fact each row of A corresponds to the embedding of a word, which implies additional
structure that we can further exploit under the language model case.

3.1 The Word Frequency Matters

One important statistical property of natural languages is that the distribution of word frequencies
can be approximated by a power law. That means a small fraction of words occur many times, while
many words only appear few times. Figure 1(a) shows the power-law distribution of word frequency
in the PTB datasets.

In the previous compression methods, none of them takes the word frequency into consideration
when approximating the embedding matrix. Intuitively, to construct a good compressed model
with low-rank approximation under the limited memory budget, it is important to enforce more
frequent words to have better approximation. In this paper, we considered two strategies to exploit
the frequency information in low-rank approximation: weighted low-rank approximation and block
low-rank approximation.

3.2 Improved Low-rank Approximation by Exploiting Frequency

Weighted low-rank approximation. Firstly, we introduce a weighted low-rank approximation to
compress the embedding matrix A. This will be used to replace original SVD and serves as the basic
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Figure 2: Illustration of our method. Given an embedding matrix A in (a), we first group the words by
their frequency (step (b)), and then perform weighted-SVD inside each group as shown in Eq.2(step
(c)). Finally we refine the clustering by considering the low-rank reconstruction error of words as in
Eq.5(step (d)).

building block of our proposed algorithm. The main idea is to assign a different weight for each
word’s approximation and penalize more for the higher frequency words when constructing low-rank
approximation. Mathematically, for the i-th word’s frequency to be qi, we want to approximate the
embedding A by minimizing

min
U∈RN×k,V ∈RD×k

N∑
i=1

D∑
j=1

qi(Aij − UiV
T
j )2 (2)

where k is the reduced rank; Aij is i-th word’s j-th feature; U ∈ RN×k, V ∈ RD×k; Ui and Vj are
i-th and j-th row of U and V respectively. Note that here we do not require U, V to be orthonormal.

Although it is known that weighted SVD with element-wise weights does not have a closed-form
solution [22], in our case elements in the same row of A are associated with the same weights, which
leads to a simple solution. Define Q = diag(

√
q1, . . . ,

√
qN ), then the optimization problem of (2) is

equivalent to
min

U∈RN×k,V ∈RD×k
‖QA−QUV T ‖2F . (3)

Therefore, assume all the qi are nonzeros, we can solve (2) by conducting low-rank approximation
of QA. Assume [Ū , S̄, V̄ ] = svd(QA), then (U∗, V ∗) = (Q−1Ū S̄, V̄ ) will be a solution of (2).
Therefore solving Eq.(2) is easy and the solution can be immediately computed from SVD of QA.

Block low-rank approximation. As can be seen from Figure 1(b), the embedding matrix is in
general not low-rank. Instead of constructing one low-rank approximation for the entire matrix, we
can consider block-wise low-rank approximation–each block has its own approximation to achieve
better compression. A similar strategy has been exploited in [21] for kernel approximation (symmetric
PSD matrix). Mathematically, suppose we partition the words into c disjoint blocks V1, · · · ,Vc, and
each Vp contains a set of words. For each block Vp and its corresponding words’ embedding AVp in
A, we can generate a low-rank approximation with rank kp as AVp ≈ Up(V p)T for AVp . Then block
low-rank approximation for A is represented as:

A = [AV1 , AV2 , · · · , AVc ] ≈ [U1(V 1)T , U2(V 2)T , · · · , U c(V c)T ]. (4)

The challenges for Eq (4) is on how to construct the clustering structure. Intuitively, we want similar
frequency words to be grouped in the same block, so we can assign different ranks for different
blocks based on their average frequency. For higher frequency words’ clusters, we can provide more
ranks/budget for better approximation. Meanwhile, we want to make sure the approximation error
to be small for words under the same memory budget. Therefore, in this paper we consider two
factors, word frequency and reconstruction performance, when constructing the partition. Next, we
will explain how to construct the partition.

Block weighted low-rank approximation. To take both matrix approximation as well as frequency
information into account when forming the block structure in Eq (4), we propose to refine the blocks
after initializing the blocks from frequency grouping to achieve lower reconstruction error. In the
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Table 2: PTB-small with 10 blocks and 5 times compression rate. We add the proposed strategies
one-by-one to see the effectiveness of each of them using the perplexity as the performance metric.

vanilla SVD Weighted-lowrank block lowrank block lowrank with dynamic rank refinement
189.7 179.8 155.3 129.2 127.5

refinement stage, we move the words around by simultaneously learning a clustering structure as well
as low-rank approximation inside each cluster for the word embedding matrix.

Mathematically, given an embedding matrix A, we first initialize the blocks by frequency grouping,
and then jointly learn both the clustering V1,V2, · · · ,Vc and low-rank embeddings for each block
Up, V p simultaneously by minimizing the following clustering objective:

min
{Vp}cp=1,{Up}cp=1,{V p}cp=1

c∑
p=1

‖QVpAVp −QVpUp(V p)T ‖2F , (5)

where QVp = diagj∈Vp(
√
q1, . . . ,

√
qj). Intuitively, the inner part aims to minimize the weighted

low-rank approximation error for one cluster, and outer sum is searching for the partitions so as to
minimize the overall reconstruction error.

Optimization: Eq.(5) is non-convex. In this paper, we use alternating minimization to minimize the
above objective. When fixing the clusters assignment, we use weighted SVD to solve for Up and
V p for each AVp . To solve for Up and V p, as mentioned above in Eq(2), we can perform SVD over
QVpAVp to obtain the approximation. The time complexity is the same with traditional SVD on AVp .

To find the clustering structure, we first initialize the clustering assignment by frequency, and then
refine the block structure by moving words from one cluster to another cluster if the moves can
decrease the reconstruction error Eq (5). To compute the reconstruction error reduction, we will
project each Ai into each basis V p and see how much reconstruction error will improve. So if

‖Ai − V p(V p)TAi‖ > ‖Ai − V p̄(V p̄)TAi‖, (6)

then we will move i-th word Ai from the p-th cluster to the p̄-th cluster. By this strategy, we will
decrease the restructure error.

The overall algorithm, GroupReduce is in Algorithm 1. Figure (2) illustrates our overall algorithm.
First, we group the words into c blocks based on frequency. After that, we perform weighted lowrank
approximation Eq (2) for each block, and then solve Eq (5) to iteratively refine the clusters and obtain
block-wise approximation based on reconstruction error.

There are some implementation details for Algorithm 1. After initial grouping, we assign different
ranks to different blocks based on the average frequency of words inside that cluster—the rank kp
for block p is proportional to the average frequency of words inside that cluster. Suppose the block
with smallest frequency is assigned with rank r, then the rank of cluster p is fp

fc
r, where fc is the

average frequency for the block with least frequency words. r is related to the budget requirement.
This dynamic rank assignment can significantly boost the performance, as it assigns more ranks to
high-frequency words and approximates them better.

In Table 2, we compare the effectiveness of different strategies in our algorithm. We test on PTB-
Small setting with statistics shown in Table 1. Every method in the table has the same compression
rate, and we report perplexity number. We compare using vanilla SVD, weighted SVD, weighted
SVD for each block (10 blocks), assigning different ranks for different blocks, and refining the blocks.
We can see that all the operations involved can improve the final performance and are necessary for
our algorithm. The overall memory usage to represent A after our algorithm is O(Nk+ ckD), where
N is the vocabulary size; c is the number of clusters; k the average rank of each cluster.

4 Experiments
4.1 Datasets and Pretrained Models
We evaluate our method (GroupReduce) on two tasks: language modeling (LM) and neural machine
translation (NMT). For LM, we evaluate GroupReduce on two datasets: Penn Treebank Bank (PTB)
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Algorithm 1: GroupReduce: Block-Wise Low-Rank Approximation for Neural Language Model
Shrinking
Input: Embedding matrix A; number of clusters c; the smallest rank r; the maximal number of

iterations tmax; minimal size of the candidate set mmin;
Output: Compact representation Ā

1 Initialize clusters of words as V1,V2, · · · ,Vc by clustering on the frequency of words;
2 Compute the desired rank for each cluster based on the average frequency for that cluster and r;
3 for p = 1, · · · , c do
4 Compute the rank-kp weighted lowrank for each sub-matrix AVp as AVp ≈ Up(V p)T ;
5 for t = 1, · · · , tmax do
6 M = [];
7 for i = 1, · · · , N do
8 Compute the reconstruction error for i-th word Ai, ei = minp=1···c‖Ai − V p(V p)TAi‖22 ;
9 Find the cluster with smallest reconstruction error gi : minp=1···ce

i
p;

10 if gi 6= πi (πi is the original cluster index for i-th word) then
11 put i into the candidate set M ;

12 Choose the top m words in M that with least reconstruction error;
13 move m words (we choose 10% in the paper) into clusters with smallest reconstruction error;
14 if m < mmin then
15 Stop and output;
16 for p = 1, · · · , c do
17 if Cluster Vp changes then
18 Compute the rank-kp weighted lowrank from Eq (2) for each sub-matrix AVp as

AVp ≈ Up(V p)T ;

19 Output: Ā = [U1(V 1)T , · · · , U c(V c)T ]

and One-billion-Word Benchmark (OBW). OBW is introduced by [2], and it contains a vocabulary
of 793,471 words with the sentences shuffled and the duplicates removed. For NMT, we evaluate
our method on the IWSLT 2014 German-to-English translation task [1]. On these three benchmark
datasets, we compress four models with the models details shown in Table 1. All four models use a
2-layer LSTM. Two of them (OBW and NMT) are based on exiting model checkpoints and the other
two (based on PTB) are trained from scratch due to the lack of publicly released model checkpoint.

We train a 2-layer LSTM-based language model on PTB from scratch with two setups: PTB-Small
and PTB-Large. The LSTM hidden state sizes are 200 for PTB-Small and 1500 for PTB-Large, so are
their embedding sizes. For OBW, we use the "2-LAYER LSTM-8192-1024" model shown in Table 1
of [10]. For NMT, we use the PyTorch checkpoint provided by OpenNMT [12] to perform German
to English translation tasks. We verified that all these four models achieved benchmark performance
on the corresponding datasets as reported in the literature. We then apply our method to compress
these benchmark models.

For experiments using BLEU scores as performance measure, we report results when the BLEU
scores achieved after compression is within 3 percent difference from original score. For experiments
using plexplxity (PPL) as measure such as PTB dataset, we target 3 percent drop of performance too.
For OBW dataset, since it has larger vocaburary size, we report results within 10 percent difference
from original PPL. For each method in Table 3, 4, 5 and 7, we tested various parameters and report
the smallest model size of the compressions fulfilling above criteria.

Note that the goal of this work is to compress an existing model to a significantly-reduced size while
maintaining accuracy (e.g., perplexity or BLEU scores), rather than attempting to achieve higher
accuracy. It is possible that there are models that could achieve higher accuracy, in which case our
method can be applied to compress these models as well.
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Table 3: Embedding compression results on three datasets comparing our method GroupReduce
with Low-rank and Pruning. Compression rate is compared to both input embedding and softmax
layer. For example, 10x means approximated embedding uses 10 times smaller memory compared to
original input layer and softmax layer.

Model Metric Original Low-rank Pruning GroupReduce
PTB-Small Embedding Memory 1x 2x 2x 5x

PPL(before retrain) 112.28 117.11 115.9 115.24
PPL(after retrain) – 113.83 113.78 113.78

PTB-Large Embedding Memory 1x 5x 3.3x 10x
PPL(before retrain) 78.32 84.63 84.23 82.86

PPL(after retrain) – 80.04 78.38 78.92
OBW-bigLSTM Embedding Memory 1x 2x 1.14x 6.6x

PPL(before retrain) 31.04 39.41 128.31 32.47
PPL(after retrain) – 38.03 84.11 32.50

NMT: DE-EN Embedding Memory 1x 3.3x 3.3x 10x
BLEU(before retrain) 30.33 29.63 26.47 29.62

BLEU(after retrain) – 29.96 29.40 29.96

4.2 Comparison with Low-Rank and Pruning

We compare GroupReduce with two standard model compression strategies: low-rank approximation
and pruning.These two techniques are widely used for language model compression, such as [16,
18, 17] We compress both input embedding and softmax matrices. For the low-rank approximation
approach, we perform standard SVD on the embedding and softmax matrices and obtain the low-rank
approximation. For pruning, we set the entires whose magnitude is less than a certain threshold to
zero. Note that storing the sparse matrix requires to use the Compressed Sparse Row or Compressed
Sparse Column format, the memory usage is thus 2 times the number of non-zeros in the matrix
after pruning. After approximation, we retrain the rest of parameters by SGD optimizer with initial
learning rate 0.1. Whenever, the validation perplexity does not drop down, we decrease the learning
rate to an order smaller. As shown in Table 3, GroupReduce can compress both the input embedding
and softmax layer 5-10 times without losing much accuracy. In particular, GroupReduce compress
6.6 times on the language model trained on OBW benchmark, which saves more than 5 GB memory.

Notice that GroupReduce achieves good results even before retraining. This is important as retraining
might be infeasible or take a long time to converge. We experimented with different learning rates
and retrained for 100k steps (about 3 hours), but we observe that all the retraining scheme of OBW-
bigLSTM model after approximation do not lead to significant improvement on accuracy. One
reason is that to retrain the model, we need to keep the approximated embedding matrices fixed
and re-initialize other parameters, and train these parameters from scratch as done in [20]. On
OBW-bigLSTM, it will take more than 3 weeks for the retraining process. It is not practical if the
goal is to compress model within a short period of time. Therefore, performance before retraining is
important and GroupReduce in general obtains good results.

4.3 Comparison with Quantization

As noted in the related work, quantization has been shown to be a competent method in model
compression [8]. We implement b-bit quantization by equally spacing the range of a matrix into 2b

intervals and use one value to represent each interval. For example, 4-bit quantization will transform
original matrix into matrix with 16 distinct values.

We need to point out that quantization is not orthogonal to other methods. In fact, GroupReduce
can be combined with quantization to achieve a better compression rate. We firstly approximate
the embedding or the softmax matrices by GroupReduce to obtain low rank matrices of each block,
and then apply 4 or 8 bits quantization on these low rank matrices. After retraining, quantized
GroupReduce could achieve at least 24 times compression for both input embedding and softmax
matrix in OBW as shown in Table 4.
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Table 4: Embedding compression results on three datasets comparing our method Quantized
GroupReduce with traditional Quantization. 10x means approximated embedding uses 10 times
smaller memory compared to original input embedding layer and softmax layer.

Model Metric Original Quantization Quantized GroupReduce
PTB-Small Embedding Memory 1x 8x 40x

PPL(before retrain) 112.28 132.5 146.59
PPL(after retrain) – 112.94 112.45

PTB-Large Embedding Memory 1x 8x 40x
PPL(before retrain) 78.32 116.54 88.67

PPL(after retrain) – 80.72 80.68
OBW-bigLSTM Embedding Memory 1x 4x 26x

PPL(before retrain) 31.04 32.63 34.43
PPL(after retrain) – 33.86 33.60

NMT: DE-EN Embedding Memory 1x 8x 24x
BLEU(before retrain) 30.33 27.96 29.08

BLEU(after retrain) – 30.19 29.81

Table 5: Compression rate of overall model compression using Quantized GroupReduce. Compression
rate shown in the column 4-6 is compared to the corresponding part of the model.

Models Original PPL/BLEU PPL/BLEU after approximation input layer softmax layer LSTM cell Overall Compression

NMT: DE-EN 30.33(BLEU) 29.68(BLEU) 24x (45.9%) 24x(31.8%) 4x(22.3%) 11.3x

OBW-BigLSTM 31.04(PPL) 33.61(PPL) 26x (45.6%) 26x(45.6%) 2x(8.8%) 12.8x

4.4 Overall Compression

Results above have shown GroupReduce is an effective compression method when the frequency
information is given. We need to point out that part of the model (e.g., LSTM cells) cannot leverage
this information as the transition matrices in LSTM cell do not correspond to the representation
of a word. To have an overall compression of the model, we adopt simple quantized low-rank
approximation of LSTM cells. To be more specific, we firstly compute low-rank approximation of
LSTM matrix by SVD to obtain 2 times compression, and quantize the entries of low-rank matrices
by using only 16 bits. In total the model would be 4 times smaller. However, we found out for OBW-
bigLSTM model, LSTM matrix does not have a clear low-rank structure. Even slight compression of
LSTM part will cause performance significantly drop. Therefore, we only apply 16-bit quantization
on OBW-bigLSTM to have a 2 times compression on LSTM cells. Overall compression rate is
shown in Table 5. With the aid of GroupReduce, we can achieve over 10 times compression on both
language modeling and neural machine translation task.

4.5 Selection of the Number of Clusters
In our method, the number of clusters to use is a hyperparameter that we need to decide. We
experimented with different cluster numbers on the PTB-Large setup with 6.6 times compression
(e.g., using only 15% of the memory compared to the original matrices) of both input embedding and
softmax matrix, and the results are shown in Table 6. Basically our method is robust to the number
of clusters. In the following experiments with the PTB and IWSLT dataset, we set the number of
clusters to be 5. On the OBW datset, as the vocabulary size is larger so we set the number of clusters
to be 20.

4.6 Comparison with Deep Compositional Coding

Since deep compositional coding [20] can only compress input embedding matrix, to demonstrate the
effectivenss of GroupReduce, we implement the method and compare it to GroupReduce on only
approximating input embedding matrix. We evaluate results based on NMT:DE-EN and PTB-Large
setups. Again, after compressing each model, we retrain the model for the rest of its parameters
and keep the input embedding fixed. We use SGD with learning rate 0.1 as the start, and lower the
learning rate an order whenever validation loss stops decreasing. Results are summarized in Table
7. As shown in the table, GroupReduce can compress twice better than deep compositional coding.
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Table 6: GroupReduce with different number of clusters. Results are evaluated on PTB-Large setup
with 6.6 times compression rate on both input embedding and softmax layer.

Number of Clusters 5 10 20 30
PPL(before retrain) 81.79 80.52 82.88 83.1
PPL(after retrain) 78.44 78.5 78.52 80.1

Table 7: Comparison of input embedding compression results on two datasets. Note that the numbers
in the table is the compression rate based on only input embedding not overall model size.

Model Metric Original Deep Compositional Coding Quantized GroupReduce
PTB-Large Embedding Memory 1x 11.8x 23.6x

PPL(before retrain) 78.32 81.82 80.20
PPL(after retrain) – 79.58 79.18

NMT: DE-EN Embedding Memory 1x 16.6x 33.3x
BLEU(before retrain) 30.33 28.90 28.89

BLEU(after retrain) – 30.00 30.16

More importantly, GroupReduce can be applied to both input and softmax embedding which makes
overall model not just input embedding smaller.

5 Conclusion

In this paper, we propose a novel compression method for neural language models to achieve at
least 6.6 times compression without losing prediction accuracy. Our method leverages the statistical
property of words in language to form block-wise low-rank matrix approximations for embedding and
softmax layers. The experimental results show our method can significantly outperform traditional
compression methods such as low-rank approximation and pruning. In particular, on the OBW dataset,
our method combined with quantization achieves 26 times compression rate for both the embedding
and softmax matrices, which saves more than 5GB memory usage. It provides practical benefits
when deploying neural language models on memory-constrained devices. For the future work, we
will investigate different retrain schemes such as training the block low-rank parameterization of the
model end-to-end.
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