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Abstract

We consider an application of combinatorial search to the op-
timization of topologies in series-parallel networks. We pro-
pose a recursive search over the space of decomposition trees,
in which partial solutions are obtained by exploring k-way
partitionings of expandable nodes. We present two comple-
mentary pruning techniques that bound the value of interme-
diate solutions from above and below, applying monotonic
operations to the contents of unresolved leaves. We also de-
velop a means to exploit the convexity of our objective func-
tion, so as to prevent the redundant recomputation of subcir-
cuit configurations. Finally, we evaluate our approach on a
parameterized benchmark suite of electrical circuits, demon-
strating over an order of magnitude improvement in perfor-
mance as compared to a baseline implementation.

Introduction
There exists a deep and widely-understood relationship be-
tween the subjects of combinatorial optimization and net-
work theory. Their affinity is perhaps best exemplified by
constraint networks (Dechter 2003), in which the values
of a finite set of variables (the nodes) interact by way of
connections (the edges) that restrict their mutual assign-
ments. Similar structures are employed in the neighboring
topics of boolean satisfiability (Zhang and Malik 2002) and
mixed integer-linear programming (Achterberg 2009). De-
spite subtle differences in how constraints and domains are
modeled, all of these formulations share a common trait: the
network serves as a static specification, its contents used by
search as a roadmap when exploring the space of solutions.

An entirely different perspective is taken in the lesser-
known subject of topological network design (Abd-El-Barr
2009; Gupta and Könemann 2011), where the objective is
to construct – rather than consume – a network. Unlike tra-
ditional graph problems that can be easily solved in poly-
nomial time (e.g., shortest paths, spanning trees, etc.), the
majority of network design problems are NP-hard. This has
led previous authors to adopt one of three methodologies:
exhaustive enumeration when optimally solving very small
problems, iterative refinement when (suboptimally) solving
problems of moderate size, and approximation algorithms
for some special cases (e.g., trees and acyclic graphs).
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In this paper, we consider a radically different algorithmic
foundation for the topological optimization of networks. Our
approach embraces the principles of advanced combinato-
rial search, where optimal solutions can be obtained without
resorting to brute-force enumeration. We argue that the op-
timization of networks in particular is a formidable problem
to tackle, due in part to how solutions are typically eval-
uated, and also due to the exponential explosion of candi-
date topologies. Our work focuses on a specific family of
series-parallel networks that commonly arise in electrical
and telecommunications systems. We propose a recursive
search over the space of decomposition trees, in which par-
tial solutions are obtained by exploring k-way partitionings
of expandable nodes. We present two complementary prun-
ing techniques that bound the value of intermediate solutions
from above and below, applying monotonic operations to the
contents of unresolved leaves. We also develop a means to
exploit the convexity of our objective function, so as to pre-
vent the redundant recomputation of subcircuit configura-
tions. Finally, we evaluate our approach on a new param-
eterized benchmark suite, demonstrating over an order of
magnitude improvement in performance as compared to a
baseline implementation.

Throughout this manuscript, key concepts are illustrated
using simple examples taken from the domain of electri-
cal circuits. Our rationale for this is threefold; first, it is
one of the earliest applications of network theory, with rele-
vant literature dating back more than a hundred years. Sec-
ond, the subject matter tends to be more readily accessible
to non-specialists, avoiding the kinds of in-depth expertise
that complex industrial applications (e.g., supply chain net-
works, hydrogen transmission pipelines, etc.) might other-
wise require. Third, we find that it encapsulates the essential
characteristics that make the topic of topological network
design a compelling case-study for practitioners in discrete
optimization.

Background
The focus of this work lies at the intersection of multi-
ple specialties, including graph theory, electronic design au-
tomation, network optimization, and combinatorial search.
Indeed, our approach builds upon a wealth of previous con-
tributions to these areas, which we briefly cover in the fol-
lowing sections.
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Figure 1: Some series-parallel graphs containing four edges.

Graph Theory
A network is said to be series-parallel if it can be reduced
to a single edge through repeated contraction, whereby any
degree-2 node is replaced by an edge, and any parallel edges
sharing common endpoints are collapsed into one (refer to
Figure 1 for a handful of examples). To the best of our
knowledge, the study of series-parallel networks as a serious
topic for discrete mathematics was first proposed in the late
19th century, motivated by the immense variety of configu-
rations observed in electrical circuits (MacMahon 1892).

In the decades that followed, the subject of series-parallel
networks continued to intrigue graph theorists. The classi-
fication of circuit structures (broken down by nullity and
rank) prompted one such investigation (Foster 1932). A sub-
sequent study developed rigorous recurrence relations that
proved the validity of MacMahon’s original sequences (Ri-
ordan and Shannon 1942). The case of graphs containing la-
beled edges was eventually addressed (Carlitz and Riordan
1956), resulting in a sequence of much larger values. The
relationships between series-parallel topologies and conflu-
ent networks & combinatorial pregeometries were explored
in two other seminal works (Duffin 1965; Brylawski 1971).
Finally, the presence of cut-nodes was used to characterize
series-parallel graphs into α- and π-networks (Moon 1987).

Notably, all of the works above focus exclusively on the
enumeration or categorization of topologies. Several studies
have instead considered optimization within a given series-
parallel topology (Takamizawa, Nishizeki, and Saito 1982;
Bein, Brucker, and Tamir 1985; Hassin and Tamir 1986;
Klinz and Woeginger 2004). However, the (arguably) more
challenging problem of optimizing across multiple topolo-
gies has so far been avoided by theoretical mathematicians.

Electronic Design Automation
The topic of optimization is front-and-center in modern elec-
tronics. While some attention has been given to applications
in analog circuitry (Liu et al. 2009; Barros, Guilherme, and
Horta 2010), most industrial models are instead designed us-
ing digital primitives (Lavagno et al. 2016). The computer-
aided design of integrated circuits is traditionally broken
down into two categories: the former deals with logical syn-
thesis (Hachtel and Somenzi 1996), such as technology map-
ping and equivalence verification. The latter deals with phys-
ical synthesis, including the placement of gates (Nam and
Cong 2007) and routing of wires (Hu and Sapatnekar 2001).

With modern designs containing billions of transistors,
the optimization strategies for these “mega-networks” are
limited to the realm of suboptimal search. Stochastic tech-
niques, such as simulated annealing and gradient descent,
remain the standard for many industrial place & route tools.

Network Optimization
Outside the context of circuits, network optimization is a
widely-celebrated topic that spans many areas. In operations
research (Bertsekas 1998), it includes a variety of NP-hard
problems such as traveling salesman, vehicle routing, etc.
These formulations tend to concentrate on variable assign-
ments within a fixed topology; i.e., the labeling of arcs be-
tween nodes in a fully-connected graph, or computing pair-
wise matches between vertices. Even approaches that do ex-
plore the generation of topologies – such as minimum span-
ning trees (Cheriton and Tarjan 1976), path optimization
(Dionne and Florian 1979), and multicommodity flows (Bal-
akrishnan, Li, and Mirchandani 2017) – often owe their suc-
cess to the specific subclasses of networks that they consider.

Real-world applications of network design are numerous,
extending to the optimization of transportation costs (Boyce
and Soberanes 1979), communication networks (Yang and
Ephremides 1997; Cheng 1998; Neely 2010), reliable sys-
tems (Neufeld and Colbourn 1985; Jan, Hwang, and Chen
1993; Coit and Smith 1996; Levitin et al. 1998; Liu and
Iwamura 2000; Brown et al. 2021), supply chains (Nagurney
2010; Eskandarpour et al. 2015), wireless networks (Pathak
and Dutta 2011), transmission pipelines (André et al. 2013),
water distribution networks (Zheng et al. 2013), and photo-
voltaic systems (Kurmanbay et al. 2020). Several of these
employ the same class of series-parallel networks that inter-
est us, yet their methodologies are limited to local search due
to computational intractability. A survey of topological net-
work design (Abd-El-Barr 2009) reinforces this view, citing
only exhaustive enumeration as a means of producing opti-
mal solutions.

Combinatorial Search
Of all the disciplines related to our work, perhaps the
most similar in spirit is the family of search strategies
commonly used in planning (Ghallab, Nau, and Traverso
2004), scheduling (Pinedo 2016), and constraint processing
(Dechter 2003). A key premise that permeates these fields
is the principle that optimal solutions to NP-hard problems
can typically be obtained without resorting to brute-force
enumeration. Powerful inference and pruning techniques –
including arc consistency, backjumping, branch-and-bound,
etc. – can be combined to make the tractable exploration of
solutions possible (Russell and Norvig 2020).

In many cases, a network will serve as the input to a
solver (e.g., a constraint network). These networks can even
represent digital circuits (Fattah and Dechter 1995). How-
ever, rarely will a network be the output, with the possible
exception of planning in hierarchical task networks (Erol,
Hendler, and Nau 1994; Nau et al. 2003). Here, partial order-
ings over primitive tasks are produced that honor conditional
dependencies among actions.

Progress in combinatorial search is routinely measured on
standardized benchmarks. The evaluation of our work relies
upon a parameterized suite, inspired by previous studies into
the packing of squares 1×1 to n×n (Korf, Moffitt, and Pol-
lack 2010) and the partitioning of numbers between 1 and
n (Korf 1998). In fact, our problem is closely related to this
latter formulation, as discussed in the following section.
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3 Ω 7 Ω

1 Ω 2 Ω 6 Ω

4 Ω 5 Ω

(a)

3 Ω 7 Ω

1 Ω 2 Ω 5 Ω

4 Ω 6 Ω

(b)

Figure 2: Two circuits composed of the resistors 1 Ω to 7 Ω.

Problem Definition
We define our network optimization problem as a tuple
〈S, f+, f‖, fT 〉, where S is a multiset of numeric labels, f+
and f‖ are monotone operators for series and parallel con-
nections (respectively), and fT is a target network value. The
objective is to construct a series-parallel networkN from all
the elements in S that minimizes the cost |f(N )− fT |, with
f(N ) being the value of network N .

Application to Electrical Circuits
To illustrate our formulation, we turn to a straightforward
application in the context of electrical circuits (Friedman
2013; Alexander and Sadiku 2016; Sinop et al. 2021), where
resistors in series combine additively, and resistors in paral-
lel combine reciprocally:

f+(S) =
∑
si∈S

si f‖(S) =

(∑
si∈S

1/si

)−1
In order to achieve a desired total resistance, raw compo-
nents – whose allowable values are invariably predetermined
by industry standards (for inventory simplification) – must
be creatively combined. For example, consider a simple 7-
resistor example where S = {1, 2, ..., 7} and fT =

√
7.

One solution (albeit suboptimal) is shown in Figure 2(a). In
this topology, we observe exactly three series connections,
whose local resistance values (in ohms) are 〈10, 9, 9〉 from
top to bottom. When these are combined in parallel, the total
resistance can be found to equal (1/10 + 1/9 + 1/9)−1 ohms,
or equivalently, 90/29 Ω. Given a target resistance of

√
7, the

absolute difference is approximately 0.4577.

Similarities to Number Partitioning
The circuit in Figure 2(a) can be viewed as a partitioning
over the elements in S:

P = {{3, 7}, {1, 2, 6}, {4, 5}}
Any partitioning of resistors can be translated into a valid
series-parallel circuit, and so our formulation bears some re-
semblance to the number partitioning problem (Korf 2009,
2011), which seeks to divide a set of n elements across k
partitions {S1, S2, ..., Sk} so as to minimize the maximum
subset sum. Our partitioning P turns out to be an optimal so-
lution for the case where k = 3, since the maximum subset
sum of 10 cannot be reduced.

Despite the superficial similarity between these problems,
we contend that the task of network optimization presents at
least two distinct challenges.

1 Ω

3 Ω

2 Ω

5 Ω

6 Ω

4 Ω

7 Ω

Figure 3: The optimal solution for fT =
√

7.

Sensitivity to Solution Structure
The first challenge relates to the sensitivity of the objective
function to small changes in solution structure. Number par-
titioning has been shown to exhibit weakest-link optimality
(Moffitt 2013), a property that allows the construction of
globally optimal complete solutions from locally suboptimal
partial solutions. Modern implementations exploit this by re-
laxing upper and lower bounds on solution quality during re-
cursive decomposition (Schreiber, Korf, and Moffitt 2018).

When applied to our running example, we observe that the
partitioning P contains two subsets whose sums are each
9, and thus do not influence the total solution cost of 10.
As a result, one can easily shuffle subset contents without
affecting solution quality, such as in the following alternate
(and also optimal) partitioning of the elements in S:

P
′

= {{3, 7}, {1, 2, 5}, {4, 6}}
Unfortunately, the same cannot be said for its series-parallel
circuit equivalent, illustrated in Figure 2(b). The total resis-
tance of this new solution can be found to equal (1/10+1/8+
1/10)−1 ohms, or equivalently, 40/13 Ω. Again, assuming a
target resistance of

√
7, the absolute difference is approxi-

mately 0.4312, demonstrating a small improvement in cost
over our initial circuit. This higher sensitivity has the po-
tential to require more computational effort (as compared to
number partitioning) when exploring the space of solutions.

Size of Solution Space
The difficulty described in the previous section is com-
pounded by a second major challenge: the solution space
of viable network topologies is overwhelmingly large. For
example, the recursively nested structures in Figure 3 have
no analogous counterpart in the (comparatively flatter) num-
ber partitioning formulation. Since the presence of branch-
ing subcircuits provides an increase in topological flexibility,
high-quality solutions tend to make liberal use of them. In-
deed, our circuit in Figure 3 is optimal; we leave it as an
exercise to the reader to verify that its total resistance is
127/48 Ω, a value that lies remarkably close to our target:

√
7 = 2.645751...

127/48 = 2.645833...

In Table 1, we compare the number of partitionings over n
labels to the number of series-parallel networks containing
n elements.1 For n = 30, we find that the number of viable
networks is nearly twenty orders of magnitude greater.

1These correspond to sequences A000110 and A006351, re-
spectively, in the OEIS database (Sloane 1991).
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n # of partitionings # of networks
10 1.159× 105 5.642× 108

20 5.172× 1013 1.774× 1024

30 8.467× 1023 1.414× 1042

Table 1: A comparison between the size of solution spaces.

Our Approach
In this section, we outline our basic approach to the topo-
logical optimization of series-parallel networks. It can be
characterized as exact (i.e., producing optimal solutions),
anytime (i.e., providing intermediate results), and fast (i.e.,
avoiding exhaustive enumeration).

Solution Representation

To encode solutions, we make use of decomposition trees
(Valdes, Tarjan, and Lawler 1982; Lengauer 1990), a recur-
sive structure that represents series and parallel connections
as alternating layers of intermediate nodes (with terminating
leaf nodes signifying individual elements). This mirrors an
approach taken in factored planning (Kelareva et al. 2007),
where a similar container specifies partitions of domains into
subdomains. They are also cosmetically comparable to the
AND/OR trees prevalent in optimization for graphical mod-
els (Dechter and Mateescu 2007; Marinescu and Dechter
2009), with the obvious exception that we use them to cap-
ture network topologies rather than search spaces.

The decomposition tree for our optimal solution presented
earlier is shown in Figure 4, using squares and circles to indi-
cate series and parallel connections, respectively. For partial
solutions, we permit leaves to contain element subsets; we
call these expandable nodes. Each subset represents a sub-
circuit whose structure has yet to be resolved.

Recursive Decomposition

Given a decomposition tree T , we select some expandable
node S0 ⊆ S and for every k > 1 explore all possible k-
way partitionings P(S0) over its elements. The resulting de-
composition tree T ′ for each partitioning is then expanded
(depth-first) until no expandable nodes remain; such leaf
nodes represent complete solutions. Hence, our approach
performs a recursive search over nodes that themselves rep-
resent recursive decompositions of the network elements.

1

3
2

5
6

4

7

Figure 4: The decomposition tree for a series-parallel circuit.

1,2,3,4,5,6,7

{1},{2,3,4},{5,6,7} {1,3},{2,4,5,6,7}

{1,3},{{2,5,6},{4,7}}

{1,3},{{{2,5},6},{4,7}}

{1,3},{{2,4,5},{6,7}}

Figure 5: Exploring the space of decomposition trees, with
the path to an optimal solution highlighted by nodes in dark.

Bounding Conditions
While an exhaustive search through the space of decompo-
sition trees (illustrated in Figure 5) produces optimal solu-
tions, it is nevertheless impractical; as discussed in previous
sections, the number of such trees is prohibitively large.

Fortunately, partial solutions may be pruned in two ways.
For any monotone operators f‖ and f+ such that f‖(S) ≤
f+(S) ∀S , we can first obtain a lower bound fL(N ) on the
value of any partial solution N by applying f‖ to the ele-
ments of each expandable node.2 If the value fL(N ) is suf-
ficiently large – i.e., larger than fT + c (where c is the cost
of the best known solution) – the partial solution may be
abandoned.

1 Ω 2 Ω 3 Ω 4 Ω 5 Ω 6 Ω 7 Ω

Example: Consider the partial solution above, in
which resistors 4 Ω through 7 Ω have been placed in
series. Even if the remaining elements 1 Ω through
3 Ω were all to be placed in parallel, the resulting total
resistance fL(N ) would still be 248/11 Ω. Hence, if a
solution of cost c is known such that c ≤ 248/11−

√
7,

this partial solution may be pruned. �

Similarly, we can also obtain an upper bound fU (N ) by in-
stead applying f+ to the elements of each expandable node.
One may safely backtrack from this solution if fU (N ) is
smaller than fT − c.

1 Ω 2 Ω 3 Ω 4 Ω 5 Ω 6 Ω 7 Ω

Example: Consider the partial solution above, in
which resistors 1 Ω through 4 Ω have been placed in
parallel. Even if the remaining elements 5 Ω through
7 Ω were all to be placed in series, the resulting total
resistance fU (N ) could not exceed 36/77 Ω. Hence, if
a solution of cost c is known such that c ≤

√
7−36/77,

this partial solution may be pruned. �

2This calculation involves a single traversal through the decom-
position tree, and thus exhibits a time complexity of O(n).
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1

3

2, 5, 6

4

7

(a)

1

3

4

2, 5, 6

7

(b)

Figure 6: Two distinct decomposition trees that contain the
same expandable node.

Exploiting Convexity with Tabulation
During the exploration of decomposition trees, it is in-
evitable that many subsets of network elements will be en-
countered at multiple expandable nodes. In this section, we
reveal two techniques that can significantly help to avoid re-
dundant recomputation of such subproblems.

Case #1: Singleton Expandables
Consider the two partial solutions in Figure 6, both of which
contain a solitary expandable node. In each tree, the subset
S0 = {2, 5, 6} must be recursively expanded so as to find
the best possible configuration. On the one hand, an optimal
subconfiguration for one tree is not guaranteed to be optimal
for the other; depending on the topology of the surrounding
network, the local value of f(S0) may need to be higher or
lower. Yet, many of the same solutions will be repeatedly
recomputed from scratch whenever subproblems are of suf-
ficient similarity.

Fortunately, our objective function |f(N ) − fT | happens
to be convex with respect to the value f(S0) of any indi-
vidual subcircuit S0 ∈ N . In other words, the global cost
of the network is guaranteed to increase or decrease mono-
tonically as a function of f(S0) when S0 is considered in
isolation. While convexity can be exploited in a variety of
ways (Bertsekas 2015), the approach we take is tailored to
our decomposition tree. As shown in Figure 7(a), when only
a single expandable node S0 remains in T , we perform a
simple binary search over its possible configurations – de-
noted C(S0) – sorted by their respective network values in a
dedicated lookup table.3

Example: Consider the partial solution in Figure 6(a).
For node S0 = {2, 5, 6}, its various configurations
C(S0) are given in Table 2(a).4 The entire top half of
these subcircuits can be rejected as candidates imme-
diately, since even the largest of these (42/13 Ω) would
lead to a global resistance value far less than the tar-
get. By continuing the binary search, we ultimately
select the subcircuit with resistance 52/7 Ω. �

3This requires some additional precomputation, and because the
number of configurations grows exponentially, the approach is re-
stricted to subset cardinalities below a certain maximum sizeM.

4Here and in future sections, we express decomposition trees
using infix notation – e.g., (1|3)+(((2|5)+6)|4|7) – to save space.
The symbols ‘+’ and ‘|’ refer to f+ and f‖, respectively.

|f
(N

)
−

f T
|

f(S0),S0 ∈ N
(a)

f
(S

1
),
S 1
∈
N f(N

)�
f
T

f(N
)�

f
T

f(S0),S0 ∈ N
(b)

Figure 7: Exploiting convexity via binary search for single-
ton expandables, or dual linear sweep for expandable pairs.

Case #2: Expandable Pairs
When exactly two expandable nodes S0 and S1 remain, our
task is more difficult: while |f(N )−fT |may be convex with
respect to f(S0) or f(S1) independently, the joint solution
space of both subproblems must be considered in tandem.
Even for this case, we can leverage convexity in the follow-
ing way: beginning with fL(S0) and fU (S1) we perform a
dual linear sweep over the space of pairwise configurations:
• If the value of resulting network f(N ) happens to be

smaller than our target fT , we consider a subcircuit for
S0 with the next higher value in our lookup table.

• Otherwise, we consider a new subcircuit for S1 instead,
taking the entry with the next lower value.

This technique – which mimics a landmark improvement to
algorithms for the knapsack problem (Horowitz and Sahni
1974) – reduces the number of candidate solutions from
|C(S0)| × |C(S1)| in the worst case to |C(S0)| + |C(S1)|,
essentially navigating a narrow corridor of potentially cost-
minimizing networks as shown in Figure 7(b).

2, 5, 6

7

1, 3, 4

Example: Consider the partial solution above. For
nodes S0 = {2, 5, 6} and S1 = {1, 3, 4}, their various
configurations C(S0) and C(S1) are given in Tables
2(a) and 2(b), respectively. The smallest resistance for
the former is 15/13 Ω, whereas the largest for the latter
is 8 Ω. Since a circuit composed of these configura-
tions exceeds the target, we would consider the next
lower subcircuit for S1 with resistance 19/4 Ω. �

Subcircuit Resistance Subcircuit Resistance
2|5|6 15/13 Ω 1|3|4 12/19 Ω

2|(5+6) 22/13 Ω 1|(3+4) 7/8 Ω
(2+6)|5 40/13 Ω (1+4)|3 15/8 Ω
(2+5)|6 42/13 Ω (1+3)|4 2 Ω
2+(5|6) 52/11 Ω 1+(3|4) 19/7 Ω
(2|6)+5 13/2 Ω (1|4)+3 19/5 Ω
(2|5)+6 52/7 Ω (1|3)+4 19/4 Ω
2+5+6 13 Ω 1+3+4 8 Ω

(a) C({2, 5, 6}) (b) C({1, 3, 4})

Table 2: Subcircuit configurations sorted by resistance.
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Algorithm 1: NETWORK-OPT

global vars (N , c)← (∅,∞) (the best network and its cost)
Input: A decomposition tree T , initially a singular node (S)
Parameter:M (maximum subset size for tabulation)
Output: A network N that minimizes |f(N )− fT |

1: if fL(T ) ≥ fT + c or fU (T ) ≤ fT − c then
2: return
3: end if
4: {S0,S1,S2, ...} ← EXPANDABLE-NODES(T )
5: if S0 = ∅ then
6: (N , c)← (T , |f(T )− fT |)
7: else if S1 = ∅ and |S0| ≤ M then
8: T ′ ← T ∪ BINARY-SEARCH(T ,S0) \ S0
9: NETWORK-OPT(T ′)

10: else if S2 = ∅ and max(|S0|, |S1|) ≤M then
11: T ′ ← T ∪ LINEAR-SWEEP(T ,S0,S1) \ S0 \ S1
12: NETWORK-OPT(T ′)
13: else
14: for P ∈ PARTITIONINGS(S0) do
15: T ′ ← T ∪ P \ S0
16: NETWORK-OPT(T ′)
17: end for
18: end if

The Complete Algorithm
The pseudocode for our topological network optimization
algorithm is shown above. The function NETWORK-OPT ac-
cepts a decomposition tree T as input, initialized to a single
expandable node containing the set of all network elements
S . If either the lower or upper bound on cost establishes this
network to be suboptimal, the solution is promptly aban-
doned (lines 1-3). Otherwise, a ∅-terminated list of expand-
able nodes is collected, and one of four cases is considered:
• If no expandable node remains, the solution is complete,

and is stored along with its associated cost (lines 4-6).
Due to our bounding conditions, this network is guaran-
teed to improve upon any previously found solutions.

• If exactly one expandable node remains (and is below
a given size), we perform a binary search over precom-
puted subcircuits to retrieve its replacement (lines 7-9).

• If exactly two expandable nodes remain (and are both be-
low a given size), we perform a dual linear sweep over
precomputed subcircuits to retrieve their replacements
(lines 10-12).

• For any other partial solution, we select a node to expand
and iterate over its viable partitionings. We resolve each
of these expansions with a recursive call (lines 13-18).

As noted in previous sections, precomputed subcircuits are
obtained from a dedicated lookup table that is generated
prior to search; we do not show that code here, but it follows
a simple exhaustive enumeration of decomposition trees that
closely resembles the approach above. All decomposition
trees are constructed incrementally (i.e., a singular structure
is maintained across all levels of search) to reduce runtime.5

5Source code (including visualization utilities) is available at
https://github.com/google/network-opt

Empirical Results
To evaluate the efficiency of our algorithm, we introduce a
benchmark suite containing parameterized electrical circuits
of increasing difficulty. For progressively larger values of n,
we assign S and fT as follows:

S = {V1, V2, ..., Vn} fT =
√
n

where Vi is the ith entry in the E12 series of preferred val-
ues for electronic components, established seventy years ago
as part of an international standard (IEC 60063) that has
since been adopted by multiple national committees. The
first decade of such numbers – designed to be equally spaced
along a logarithmic scale – is given below:

1.0 Ω 1.2 Ω 1.5 Ω 1.8 Ω 2.2 Ω 2.7 Ω
3.3 Ω 3.9 Ω 4.7 Ω 5.6 Ω 6.8 Ω 8.2 Ω

Note that for any non-square value of n (where our target fT
is irrational), the objective function |f(N ) − fT | is guaran-
teed to admit no “perfect” (i.e., zero-valued) solutions.

In order to demonstrate the relative superiority of our op-
timal solutions, we have also implemented an entirely sepa-
rate solver that uses stochastic local search to produce sub-
optimal networks. This process begins by constructing a
topologically randomized network, followed by iterative re-
finement through the repeated replacement of circuit sub-
structures: pairs of subcircuits of sizeM or smaller are se-
lected at random, and locally optimized using our dual linear
sweep. Whenever solution quality reaches a plateau, a ran-
dom restart is employed to reset the global circuit structure.
This solver is allowed to run for the same length of time as
it takes for our exact solver to complete its search.

The results are shown in Table 3. For each value of n,
we provide the costs of both the suboptimal & optimal so-
lutions, along with the optimal circuit itself and the runtime
for four different incarnations of our algorithm:6

• An exhaustively enumerative baseline (i.e., no pruning).
• A branch-and-bound version that uses fL(N ) and
fU (N ) to prune partial solutions.

• A version that exploits convexity with tabulation (we in-
clude the time needed to precompute lookup tables).

• Finally, a version that combines all techniques described
in this paper.

All solvers perform reasonably well for n = 5, as it is triv-
ially small. However, the benefits of our techniques become
abundantly clear at n ≥ 6; compared to the baseline, our
algorithm is up to 45× faster. Furthermore, it appears that
both of our key enhancements are required to achieve this
level of performance, whereas a slowdown of 3× or more is
observed when either technique is individually disabled. As
for solution quality, the cost of each optimal network tends
to be substantially smaller than that produced by the local
search implementation, often by a factor of 4× or more.

6All experiments were conducted on a Debian Linux worksta-
tion powered by a 2.20GHz Intel® Xeon® CPU and 32gb of RAM.
A timeout of one week was imposed on all solvers. For any exper-
iment using tabulation, the hyperparameterM was set to dn/2e.
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n Cost (Subopt.) Cost (Opt.) Optimal Circuit Runtime
Baseline Bounding Tabulation Combined

5 3.931×10−2 8.830×10−3 (1|((1.2|1.8) ... 0.008 sec 0.007 sec 0.006 sec 0.005 sec... +2.2))+1.5

6 3.161×10−3 1.005×10−3 ((1+1.8)|(2.2 ... 0.081 sec 0.038 sec 0.047 sec 0.024 sec... +2.7))+(1.2|1.5)

7 3.528×10−4 9.549×10−5 ((1+2.7)|((1.2|2.2) ... 1.292 sec 0.468 sec 0.243 sec 0.140 sec... +3.3)|1.5)+1.8

8 1.587×10−5 1.758×10−6 (1|2.2)+((1.2+1.5 ... 24.666 sec 7.023 sec 4.468 sec 1.727 sec... +1.8+(2.7|3.9))|3.3)

9 2.661×10−6 0 (“perfect”) (((((1|1.8)+4.7)|3.3) ... 10m 2m 1m < 1m... +1.5+2.7)|1.2|3.9)+2.2

10 2.343×10−8 5.058×10−9 (((1|(1.5+4.7)|2.7|5.6) ... 3hr 48m 47m 20m 7m... +((1.8|3.3)+2.2))|3.9)+1.2

11 3.101×10−9 2.763×10−10 (((1|2.7|3.3)+((((1.2|4.7|5.6) ... 103hr 54m 19hr 10m 6hr 34m 2hr 16m... +3.9)|6.8)+1.5))|2.2)+1.8

12 3.053×10−10 6.060×10−12 (1|2.7)+((1.2+(((1.5|8.2)+5.6) ... TIMEOUT TIMEOUT TIMEOUT 64hr 30m... |(2.2+4.7))+3.9)|(1.8+(3.3|6.8)))

Table 3: Results of our topological network optimization algorithm over electrical circuits containing the E12 series resistors.

At the time of this writing, the largest problem that we
are able to solve optimally is that of n = 12. Notably, the
resistance of that circuit (shown in Figure 8) rationally ap-
proximates the target to within eleven decimal places:

√
12 = 3.46410161513775...

12067164184/3483490245 = 3.46410161513169...

Special Cases
While our problem statement is crafted to be broadly appli-
cable, certain special cases are more likely to be encountered
in practice than others. Here, we cover two such variations,
and discuss strategies to ensure efficient performance.

Optional Exclusion of Network Elements
In real-world situations, one reasonable modification is to
relax the requirement that all network elements must partic-
ipate in the solution. For instance, a circuit created from a
strict subset of electrical components may produce a better
approximation than one which is forced to use all of them.

Perhaps surprisingly, it is possible to repurpose our origi-
nal formulation to accommodate this task. In order to enable
the optional exclusion of resistors, it is sufficient to introduce
a single 0-Ω resistor into the multiset S . This essentially
serves as a bare wire that allows the solver to “remove” any
subset of resistors via electrical shorting, whereby f‖(S) re-
solves to 0 for any S such that 0 ∈ S . As an illustrative

1.0 Ω

2.7 Ω

1.2 Ω 1.5 Ω

8.2 Ω

5.6 Ω

2.2 Ω 4.7 Ω

3.9 Ω

1.8 Ω

3.3 Ω

6.8 Ω

Figure 8: The optimal solution for n = 12.

example, the contributions of resistors 1-Ω and 3-Ω in the
following circuit have both been completely eliminated:

1 Ω

3 Ω

2 Ω

What makes this “0-Ω trick” unusual is that it opens the door
to a number of potentially degenerate topologies; e.g., ones
where the bare wire is placed at arbitrary depths, or where
the relative placement of shorted elements leads to the ex-
ploration of electrically redundant circuit structures:

1 Ω 3 Ω 2 Ω

These adverse effects can be mitigated by ensuring that the
solver honors two additional constraints:

• Any 0-Ω resistor should be placed at most one level deep.
• Any 0-Ω subcircuit should be at most one element wide

(i.e., should contain no nested series connections).

Duplication of Network Elements
Our choice of multiset (rather than a mere set) for S is delib-
erate; given sufficient inventory, there may be many copies
of the same network element available for use. Since dupli-
cates are interchangeable, their presence affords additional
opportunities for runtime reduction via symmetry breaking.

This can be easily achieved by ensuring that the
PARTITIONINGS() function avoids repeated elements in the
sequence it returns. By incorporating this adaptation, we
were able to produce the 15-element circuit in Figure 9 com-
prised entirely of 1-Ω resistors that approximates π to six
digits:

π = 3.141592653...
355/113 = 3.141592920...
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1 Ω

1 Ω 1 Ω 1 Ω 1 Ω

1 Ω

1 Ω 1 Ω 1 Ω 1 Ω

1 Ω1 Ω

1 Ω 1 Ω

1 Ω

Figure 9: A 15-element approximation of π.

Future Work
We believe that the study of topological network optimiza-
tion will continue to be an attractive area for future work. At
the very least, we are hopeful to see the set of optimal solu-
tions for our benchmark suite extended to n=13 and beyond.

One possible avenue of research is to broaden the appli-
cation of tabulation to the case of three or more expandable
nodes. It is not yet clear how this can be done while at the
same time taking advantage of convexity; perhaps a meta-
CSP – akin to the ones commonly employed in constraint-
based temporal reasoning (Tsamardinos and Pollack 2003)
– could more efficiently search the space of viable network
configurations, especially since series-parallel TCSPs can be
solved in polynomial time (Dechter, Meiri, and Pearl 1991).

Second, it may be necessary to abandon the expectation of
optimality entirely, and instead pursue algorithms capable of
producing high-quality (but suboptimal) solutions quickly.
For larger problems containing hundreds of components, the
framework of anytime heuristic search (Hansen and Zhou
2007) could potentially outperform the iterative refinement
techniques previously adopted in network design, assuming
that a useful admissible function is available.

Finally, it might be worth investigating search strate-
gies for more exotic circuit structures, e.g. electrical grids
(Boardman and Meckiff 1985) and power/ground networks
(Singh and Sapatnekar 2004). The reversible circuits found
in quantum computing (Saeedi and Markov 2013; Davis
et al. 2020) are also small enough that optimal solutions may
be within reach.

Conclusion
We have considered the topological optimization of series-
parallel networks. Despite the myriad of challenges involved
in this task, we have devised a set of search strategies that
significantly reduce the computational burden of construct-
ing optimal solutions. Our approach exploits the mono-
tonicity of network operators through the administration of
branch-and-bound pruning, as well as the convexity of our
objective function through tabulation and accelerated re-
trieval at the bottom-most levels of search. Together, these
techniques are shown to substantially improve the perfor-
mance of recursive decomposition, as demonstrated across
a new suite of parameterized benchmarks. While the effi-
ciency of our algorithm has been illustrated in the context
of one specific application – the configuration of electrical
circuits – it is also domain agnostic, and can be applied to
the design of any network that meets our criteria.
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Appendix: Proof of Optimality
Our dual linear sweep performs a piecewise traversal
through a two-dimensional Euclidean subspace. Each
coordinate (x, y) in this plane corresponds to some pair
(f(N0), f(N1)), where N0 ∈ C(S0) and N1 ∈ C(S1).
Rather than explore the entire space – i.e., all coordinates
in the cross product C(S0) × C(S1) – our technique
generates a sequence of pairs Q beginning at the coor-
dinate (fL(S0), fU (S1)) and ending at the coordinate
(fU (S0), fL(S1)). Transitions between intermediate coor-
dinates are determined conditionally:

(xi+1, yi+1) =

{
(xi + ε, yi) if f(N|xi, yi) < fT
(xi, yi − ε) otherwise

where ε is the distance to the next subconfiguration.
In order to guarantee the optimality of our approach,

we must ensure that at least one cost-minimizing pair is
represented somewhere in this sequence.

Theorem: There exists some coordinate (x, y) ∈ Q
for which |f(N|x, y)− fT | is minimal.

Proof: We assume the contrary, and consider some
other coordinate (f(N0), f(N1)) that satisfies the property:

|f(N|N0,N1)− fT | < |f(N|x, y)− fT | ∀(x, y) ∈ Q
For this to be true, one possibility is that f(N|N0,N1) ≥

fT . Since our algorithm considers all possible values for y,
we can define a nonempty set X that contains all x such that
y = f(N1) and (x, y) ∈ Q. Our conditional transition en-
sures that f(N|Xmax,N1) ≥ fT . Since (f(N0), f(N1)) /∈
Q, we can also infer that f(N0) > Xmax, and therefore:

f(N|N0,N1) > f(N|Xmax,N1) ≥ fT
implying that (f(N0), f(N1)) cannot be optimal.

A second possibility is that f(N|N0,N1) < fT . Since
our algorithm considers all possible values for x, we can
define a nonempty set Y that contains all y such that x =
f(N0) and (x, y) ∈ Q. Our conditional transition ensures
that f(N|N0,Ymin) < fT . Since (f(N0), f(N1)) /∈ Q, we
can also infer that f(N1) < Ymin, and therefore:

f(N|N0,N1) < f(N|N0,Ymin) ≤ fT
again implying that (f(N0), f(N1)) cannot be optimal.

Since these are the only two possibilities, we conclude (by
contradiction) that such a counterexample will not occur. �
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