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ABSTRACT 
Despite the ubiquity and rapid growth of mobile reading activities, 
researchers and practitioners today either rely on coarse-grained 
metrics such as click-through-rate (CTR) and dwell time, or 
expensive equipment such as gaze trackers to understand users’ 
reading behavior on mobile devices. We present Lepton, an 
intelligent mobile reading system and a set of dual-channel sensing 
algorithms to achieve scalable and fine-grained understanding of 
users’ reading behaviors, comprehension, and engagement on 
unmodified smartphones. Lepton tracks the periodic lateral 
patterns, i.e. saccade, of users’ eye gaze via the front camera, and 
infers their muscle stiffness during text scrolling via a Mass-
Spring-Damper (MSD) based kinematic model from touch events. 
Through a 25-participant study, we found that both the periodic 
saccade patterns and muscle stiffness signals captured by Lepton 
can be used as expressive features to infer users’ comprehension 
and engagement in mobile reading. Overall, our new signals lead 
to significantly higher performances in predicting users’ 
comprehension (correlation: 0.36 vs. 0.29), concentration (0.36 vs. 
0.16), confidence (0.5 vs. 0.47), and engagement (0.34 vs. 0.16) than 
using traditional dwell-time based features via a user-independent 
model.  
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1  INTRODUCTION 
Mobile reading is experiencing rapid growth in the era of 
smartphones [59]. According to a recent survey, the time people 
spend on the mobile reading activities, such as reading articles on a 
social media app, reading email messages, or chatting with friends 
via instant messaging, is around 2 hours per day in the United 
States in 2016 [46], accounting for 15% of waking activity time 
[46]. Despite the enormous progress, reading non-pleasure 
contents on mobile devices for work or learning is still challenging. 
Recently, Neilson discovered that comprehension drops from 
39.18% to 18.93% after switching from desktop screens to mobile-
sized screens [40]. Indeed, compared to media consumption 
channels such as watching videos [54], the passive nature of 
mobile reading and the distracting environment often lead to 
declined attention and increased non-linear reading patterns [33].  
Understanding users’ read behaviors is a crucial first step towards 
improving mobile reading. However, most practitioners today still 
rely heavily on coarse-grained metrics such as click-through-rate 
(CTR) [21][56] and dwell time to investigate reading behaviors on 
mobile devices. Such approaches have been proven to be 
inadequate [17][21][56] due to the sparsity and ambiguity of the 
click and dwell signals. For example, extended dwell time may be 
caused by desirable content, increased difficulty, or external 
distractions.   
We present Lepton (Figure 1), an intelligent mobile reading system 
and a set of dual-channel sensing algorithms, to achieve scalable 
and fine-grained understanding of users’ reading behaviors on 
unmodified smartphones. Lepton tracks the periodic lateral 
patterns, i.e. saccade, of users’ eye gaze via the front camera and 
infers users’ muscle stiffness during text scrolling via a Mass-
Spring-Damper (MSD) based kinematic model from touch events. 
Overall, Lepton combines a robust periodic saccade tracking 
channel via the front camera and a muscle stiffness tracking 
channel from text scrolling events to monitor and understand 
mobile reading.  
This paper offers three major contributions: * 

 We propose a set of robust features on top of periodic saccade 
patterns of eye gaze from noisy gaze estimations of the front-
facing camera in a smartphone. 

 We use a kinematic model of hand-arm dynamics (MSD 
model) to quantify users’ muscle stiffness during scrolling 
operations and then infer users’ attention in reading.  

 By combining rich features from both the periodic saccade 
tracking channel and muscle stiffness tracking channel, the 
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new features can significantly improve the accuracies in 
predicting users’ comprehension and engagement in reading.  

2  RELATED WORK 
Reading is a process of translating signs and symbols into meanings 
and incorporating the new information into existing cognitive and 
affective structures [49]. Reading in digital formats was first 
prototyped by Alan Kay in 1968 [28], and received an increasing 
attention in recent decades. With the rise of mobile devices, mobile 
reading (the digital reading behavior based on handhold reading 
devices) has expanded in popularity [59].  
Mobile reading has both pros and cons. It provides flexibility and 
interactivity when compared with reading in print. Besides reducing 
the size and weight of books and having scalable font size, mobile 
reading also supports active searching [41], and recording reading 
process [52]. Although digital reading was reported to be efficient in 
the lab environment [52], the more diversified usage environments 
and smaller screens can induce new challenges, such as declined 
attention and increased non-linear reading patterns [33][40]. We 
believe the rich sensors on smart phones and tablets provide an 
exciting opportunity to better understand and improve mobile 
reading. 
Comprehension and engagement are critical indicators of successful 
reading. Comprehension is a process where a reader builds mental 
representations of text information [36][45] and reading engagement 
is a multidimensional construct consisting of users’ cognitive, 
affective, behavioral characteristics during reading.  
Many efforts have been explored to understand reading, including 
theoretical analysis [16][32][44][45][47], self-report questionnair-
es, clickstream analysis (e.g. CTR), and dwell time [1][56][21]. 
Unfortunately, all existing approaches have inherent limitations. 
For example, although theoretical models were essential for 
researchers to understand reading activities for desktop computers, 
but their impacts on mobile reading are limited due to the lack of 
proper theory and enabling technologies for scalable and fine-
grained analysis. Offline measurements, such as self-report 
questionnaires, lack the ability to understand the moment-by-
moment decisions of a reader during reading [19]. The sparsity and 
ambiguity of dwell time and CTR tracking also make them 
inadequate to understand reading. Verbal self-report (a.k.a. think 

aloud) is capable of tracking continuous and direct signals during 
reading, however, its reliability and validity are still under debate 
[1][5].  
With the improvements in sensing technology, activities during 
reading, such as eye gaze movements [48], scrolling motions [12], 
screen-touching motions [42], and physiological signals [31] can be 
detected easier and more accurately, implying better opportunities 
to understand reading.  
Eye-gaze Tracking 
With the help of eye tracking technology, researchers have 
discovered a strong relationship between eye movements and 
cognitive processes.  
Eye movements during reading are usually interpreted by low-
level visual information comprising the basic characteristics such 
as saccades, fixations, return sweep, and blinking. A saccade is a 
rapid movement of eyes and a fixation is the 200-300ms relatively 
still of eyes between two saccades [11]. Such eye movement 
features were used to interpret the cognitive process [30], 
comprehension [48][7][35], proficiency [4][14][27][58], and 
engagement [41] in reading. Please refer to the survey by Rayner 
[48] on low-level visual information in reading. Unfortunately, 
robust gaze tracking requires either on-body electrooculography 
(EOG) sensors [31][10][11] or remote IR-based eye trackers 
[6][8][35][52]. Such equipment is both expensive and difficult to 
carry around in mobile environments.  
In comparison, gaze tracking via a webcam is convenient but the 
accuracy is much lower when compared with dedicated eye 
trackers [34][55]. Inspired by SwitchBack [34], which tracked the 
periodic return sweep of gaze via a front camera to estimate the 
reading position, we propose a set of robust features on top of 
periodic saccade patterns of eye gaze. Such features can be 
extracted from noisy gaze estimations via front cameras of 
smartphones and can be used to analyze both low level reading 
behaviors and higher-level comprehension and engagement in 
reading. 
Pointing & Scrolling 
Although the computer mouse has a smaller throughput than eye 
gaze [43], some researchers showed that the mouse cursor could 
still serve as a good proxy for low-level visual information such as 
gaze [21][25][13][50]. For example, Chen [13] showed that the 

 
Figure 1. The architecture of Lepton: the visual channel (top) tracks the periodical patterns of users’ eye gaze via the embedded front-facing 
camera of a smartphone. The kinematic touch channel (bottom) analyzes users’ scrolling touch behavior via a Mass-Spring-Damper (MSD) model. 
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staying of a mouse cursor within an area of interest indicated 
locations of gazes with more than 75% accuracy; Huang [25] 
visualized the Euclidean distance between mouse cursors and gaze 
coordinates on a search engine page and showed a strong 
correlation between mouse cursors and gaze coordinates.  
Mouse motion can also be used to infer users’ affections [29][53] 
and subjective preferences [39]. SenticMouse [29] leveraged a 
pressure sensor on a mouse to predict users’ affection 
(correlation>0.75) during image browsing. Claypool [15] found a 
strong correlation between mouse motions and reading 
engagement. Moustress [53] predicted users’ stress with around 
70% accuracy from common mouse activities, such as clicking, 
dragging, and steering. Inspired by Sun et al. [53] and Hill [24], 
which used mass-spring-damper (MSD) system to understand the 
dynamics of human arm motion when doing two-dimensional 
tasks, we apply this model to understand finger scrolling motions 
on smartphones. Other than the 2D mouse movements analyzed in 
Moustress, scrolling events on smartphones provide us more 
informative features such as scrolling pressure and touch size. We 
used both simple features such as the number of scrolls as in [15] 
as well as MSD features to predict users’ reading comprehension 
and engagement.  
Touch-screens are ubiquitous on digital reading devices nowadays 
[8]. Many studies have been conducted to understand or interpret 
scrolling activities [3][12][20][57]. Among them, Grusky [20] used 
scrolling to reveal the online viewport locations so as to 
understand reading. Campbell [12] classified different habits of 
scrolling among users. With compared to existing research on text 
scrolling, Lepton takes into account a new set of muscle stiffness 
features from an MSD model. Lepton also revealed a strong 
correlation between muscle stiffness features, reading 
comprehension, and engagement.  

3  DESIGN OF LEPTON 
Lepton uses a periodic saccade tracking channel and a 
kinematic/muscle stiffness tracking channel to understanding mobile 
reading, especially for metrics such as comprehension and 
engagement.  

3.1  Periodic Saccade Tracking 
Traditional eye-gaze features are derived from the first-order 
statistics of gaze fixations and saccades, e.g. the mean and standard 
deviation of the durations of the fixations and the lengths of 
saccades [48]. Gaze fixations and saccades are usually collected 
from commercial eye trackers. In Lepton, we intentionally chose a 
low-cost, low-resolution alternative – i.e. using the front cameras 
of smartphones as the sensing channel of eye gaze during reading. 
Although webcam-based gaze tracking has been explored by the 
research community for more than one decade, this approach is 
still inferior to dedicated gaze trackers in both accuracy and signal-
noise ratio (SNR). As a result, most tried and true features from 
first-order statistics of gaze do not work well for camera-based 
gaze tracking. In comparison, the robust features of periodic 
saccade in Lepton were inspired by two observations in mobile 
reading: 1) Although the estimations of gaze fixations are noisy 
and inaccurate from webcam-based techniques, there is a strong 
periodic lateral movement pattern caused by line-by-line reading; 
2) the small screen of mobile devices can afford to display fewer 

words per line, leading to more return sweeps of eye gaze. Such 
return sweeps can be clearly discovered even from noisy gaze 
estimations (Figure 2). In summary, although camera-based gaze 
tracking generates less accurate estimations of gaze fixations, the 
strong periodic lateral movement pattern and the frequent return 
sweeps of eye gaze allow us to have robust and accurate 
estimations on which line the reader is looking at during mobile 
reading. Inspired by the observations above, we propose the 
periodic saccade pattern-based eye gaze features in Table 1.  

 
Figure 2. The framework for getting periodic saccade patterns. Top to 
Bottom: the process begins with horizontal (x-axis) gaze signals; through 
preprocessing, LivePulse algorithm and merging consecutive shorts, the 
final periodic saccade patterns were achieved.  

Feature Definition 

PR 
Predicted periodic lateral patterns divided by number 

of lines in reading material 

STDX Standard deviation of x-axis of gazes 

STDY Standard deviation of y-axis of gazes 

rMSLL 
The square root of the mean squared adjacent 

predicted line lengths’ differences 

rMSLD 
The square root of the mean squared adjacent 

predicted line durations’ differences 

M1ADLL Mean of absolute deviation of predicted line lengths 

M1ADLD Mean of absolute deviation of predicted line durations 

M1ADLY 
Mean of absolute deviation of line mean Y-axis of 

gazes 

MADLL Median of absolute deviation of predicted line lengths 

MADLD 
Median of absolute deviation of predicted line 

durations 

MADLY 
Median of absolute deviation of line mean Y-axis of 

gazes 

STDLL Standard deviation of predicted line lengths 

STDLD Standard deviation of predicted line durations 

STDLY Standard deviation of line mean Y-axis of gazes 
Table 1. Periodic saccade pattern based eye gaze features. 
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Qualcomm Snapdragon SDK [22] to accelerate the speed of gaze 
estimation. Our algorithm can achieve a rate of 20 frames per 
second on a Google Nexus 5X. The battery can last around 3 hours 
with gaze tracking on. 
In our research, we run our text reading interface in portrait mode. 
To illustrate gaze estimations, we define the top-left corner as the 
origin. The x-axis increases from left to right and the y-axis 
increases from top to bottom. When a user is reading, the 
horizontal axis (x-axis) of her gazes will appear in a zig-zag 
periodic saccade pattern as she finishing reading a line and her 
gaze sweeping back to read another line [34]. 
Figure 2 illustrates the workflow of extracting the periodic saccade 
patterns from a user’ gaze movements. Our algorithm takes a 
stream of a reader’s horizontal gaze estimations (x-axis values) as 
input and goes through four steps, i.e. 1) preprocessing; 2) 
detecting peaks/valleys; 3) removing false peaks/valleys; and 4) 
merging consecutive short patterns.  
During the preprocessing stage, Lepton will interpolate, scale and 
detrend the gaze signals. An Infinite Impulse Response (IIR) low-
pass filter (2.5 Hz cutoff frequency) is used to remove gaze 
jittering. During the peak/valley detection stage, all local 
maximums and minimums of eye gaze are labeled as potential 
peaks and valleys. Then we use the LivePulse [23] algorithm, 
which is proven to be efficient in separating noises from stronger 
signals [23], to remove most of the false peaks and valleys. Lastly, 
the consecutive short return sweeps are merged since our reading 
materials are paragraph-based – it is unlikely to have multiple 
short return sweeps in a paragraph. The gaze pattern between two 
selected valley points is marked as a periodic saccade pattern, 
representing a user starting a line (the first valley), reaching its end 
(the middle peak), and sweeping the gaze back to the beginning of 
the next line (the second valley). 
The rationale behind our periodic saccade pattern is – we are 
replacing the noisy gaze fixations with more robust “line 
fixations”. Furthermore, gaze fixations require accurate coordinate 
estimations and calibrations, while the periodic saccade patterns 
only rely on the “zig-zag” regularity of gaze trajectories and are 
calibration-free. 
We propose 14 robust features on the top of the periodic saccade 
patterns (Table 1). These features include descriptive statistics and 
temporal characteristics of the patterns. 
Since the number of periodic saccade patterns equals to the 
number of lines, we defined two metrics to evaluate the accuracy 
of detecting periodic saccade patterns: A) the number of lines read 
by a reader, and B) the existence of non-linear reading actions such 
as reread and skip. 
A. The number of lines 
We can use the number of valley-to-valley periodic saccade 
patterns to estimate the number of lines read by a user.  
B. Non-linear actions (reread & skip) 
We propose two methods, 1) X-line-counting method, and 2) Y-only 
method, to detect the existence and location of the non-linear 
reading actions (skip/reread).  
The X-line-counting method first estimates the number of periodic 
saccade patterns, and then compares it with the actual number of 
lines in the current page. If the ratio between the estimated line 
number and the actual line number is larger than a given 

threshold, it has a reread action in this page. Similarly, there exists 
a skip action if the ratio is smaller than a given threshold. We used 
grid search on training data to determine the optimal cut-off 
threshold for reread and skip action detection.  
 

 
Figure 3. A reader’s vertical gaze shape (y values) when (a) reading 
consecutively from top to bottom, (b) reading from top to bottom but 
rereading a set of paragraphs, (c) reading from top to bottom but 
skipping a set of paragraphs.  

Another approach to detect reread/skip activities is to use vertical 
(y-axis) gaze signals based on the following observations: 1) when 
a reader reads line by line, the vertical axis (y-axis) of gazes follows 
an increasing step shape within a fixed viewport of the reading 
material (Figure 3.a); 2) When the reader rereads, her vertical gaze 
location plunges, and then follows the increasing step shape 
(Figure 3.b); and 3) When she skips, the vertical gaze data shoots 
up, and then follows the increasing step shape (Figure 3.c) . For the 
Y-only method, the vertical gaze data is passed through an outlier 
removal algorithm, a Finite Impulse Response (FIR) filter, and a 
sliding window action classifier to predict the reread and skip 
actions. The outlier removal algorithm aims to remove the 
occasional peaks of y-gaze signals caused by eye blinking (Figure 
3). Then, a simple FIR average filter is used to remove the signal 
noise. Lastly, we use a sliding window action classifier (Figure 4) to 
predict the existence of non-linear reading actions. In this 
classifier, we define a y value at time t as 𝐟(𝐭), and we classify a 
sample as reread/skip if there is at least one window having the 
slope direction change. 

 
Figure 4. Sliding window reread action classifier. We classify a sample 

as reread if there is at least one window which has: 
𝐟(𝐭𝐦𝐢𝐝)ି𝐟(𝐭𝐢)

𝐭𝐦𝐢𝐝ି𝐭𝐢
< 𝟎 <

 
𝐟൫𝐭𝐣൯ି𝐟(𝐭𝐦𝐢𝐝)

𝐭𝐣ି𝐭𝐦𝐢𝐝
 where 𝐭𝐦𝐢𝐝 − 𝐭𝐡𝟏 < 𝐭𝐢 < 𝐭𝐦𝐢𝐝 − 𝐭𝐡𝟐 and 𝐭𝐦𝐢𝐝 + 𝐭𝐡𝟐 < 𝐭𝐣 <

𝐭𝐦𝐢𝐝 + 𝐭𝐡𝟏. 

3.2  Muscle Stiffness Tracking 
Besides eye movements, we also extract users’ muscle stiffness 
during text scrolling to infer comprehension and engagement in 
reading. Muscle activity/tension can be affected by cognitive and 
emotional states. Researchers have discovered that such muscle 
changes can be detected by mass-spring-damper (MSD) system via 
two-dimensional mouse steering and target acquisition tasks 



 

[53][24]. However, it is still unclear whether an MSD model is 
applicable to reading activities on mobile devices. Taking the 
advantage of the rich sensors in smartphones, we propose to track, 
understand and use the muscle stiffness of readers via an MSD 
model and then infer their comprehension and engagement in 
reading. 
In mobile reading, an MSD system consists of a mass (m) 
representing the reader’s arm and finger(s), attached to a spring 
component (spring constant k), and a viscous damper (damping 
coefficient c) representing the muscle elements of the arm and 
finger(s). During reading, the mass oscillates at a rate related to the 
tension of the spring, and the oscillation decays exponentially 
based on the friction of the damper. Therefore, the damping 
frequency (ω) and damping ratio (ζ) of each MSD dimension can 
describe the scrolling motions of such dimension. We adopt the 
correlation between the parameters and muscle stiffness in [53]: 

𝛚 ∝ √𝐤 and 𝛇 ∝
𝐜

√𝐤
. The MSD model takes the force from the 

finger(s) and arm as input, and then outputs the scrolling 
characters such as trajectory.  
Since we aimed to predict muscle stiffness by the observed 
scrolling characteristics, we use linear predictive coding (LPC) to 
invert the input (muscle stiffness) and output (scrolling characters) 
of the MSD model. LPC model predicts future signals based on the 
linear combination of the observed signals in the past: 

𝐱ො𝐧 = ෍ 𝐚𝐢𝐱𝐧ି𝐢

𝐩

𝐢ୀ𝟏

 

where 𝐱ො𝒏  is the predicted signal value, 𝐱𝐧ି𝐢  is the previous 
observed values, 𝐚𝐢 is the predictor coefficient, and 𝐩 is the order 
of the predictors [26] (p=4 in our design). We leverage the Least 
Square Fitting to estimate 𝐚𝐢.  
LPC takes the input of the observed scrolling change along each 
dimension, e.g. the list of the displacements on the x-axis, and 
produces a sequence of coefficients that defines the characteristic 
polynomial of the MSD system. We then take the complex root (𝐫) 
of the predicted polynomials, which reveals the damping 
characteristics of the MSD model in this case: damping frequency 

𝛚 = |𝕴(𝐫)|, damping ratio 𝛇 =
|𝕽(𝐫)|

‖𝐫‖
 [53]. Figure 5 shows the 

higher-level workflow from touch events to the estimation of the 
damping frequency and ratio. 
 

 
Figure 5. The illustration figure of extracting damping frequency and 
damping ratio features of a scrolling’s horizontal dimension. 

Besides displacements on horizontal (X) and vertical (Y) scrolling 
dimensions as in [53], displacements on three more dimensions 
were included: touch-size (S), touch-pressure (P) and touch-

orientation ratio (R). Therefore, each scrolling extracted 2 MSD 
features ×5 dimensions. We then aggregate all scrolling features 
within an article/page reading into a feature vector via the 
descriptive statistics, such as mean and max. 

4  EXPERIMENT 
Our experiment consisted of two tasks. In the first task, we 
quantified the detection accuracy of the periodic saccade patterns. 
In the second task, we studied the performance of 1) saccade 
pattern-based gaze features, 2) MSD-based kinematic features, and 
3) traditional dwell-time features on predicting comprehension and 
engagement in reading. 

 
Figure 6. Sample participants our experiment.  

4.1  Participants and Apparatus 
25 subjects (9 females) ranging from 19 to 35 years old (µ = 26.32, σ 
= 3.96) were participated in this study. All participants had 
experiences with news reading on smartphones. None of the 
participants had dyslexia or emotional disorder.  
We used a Google Nexus 5X smartphone in our study. The reading 
materials were displayed in portrait mode with a 15px display font 
size. Each screen can show 25 lines of text and each line has 11 
words on average. 
4.1.1  Task 1 
In this task, we quantify the performance of: 1) estimating the 
number of lines read by a reader, and 2) predicting the existence of 
non-linear reading actions, i.e. skip and reread, based on the 
techniques descripted in section 3. 

 
Figure 7. The interfaces of three condition design in task 1. In the 
normal condition, the participants read each line once, and line by line 
in a sequence. In the reread condition, participants read a randomly 
highlighted section twice. In the skip condition, participants skip a 
randomly grayed-out section when reached. 

We investigated a total of three reading conditions, i.e. normal, 
reread, and skip in our study. In the normal condition, the 
participants were required to read the given article line by line in 
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sequential order, only once for each text line (Figure 7 left). In the 
reread condition, participants were required to read a randomly 
highlighted section twice (Figure 7 middle) once they reach that 
paragraph. In the skip condition, participants were required to skip 
a randomly grayed-out section (Figure 7 right). 
Each participant read one article per condition. The articles were 
chosen from New York Times, with comparable lengths (µ=588.5 
words, σ=35.43) and difficulties (average Flesch-Kincaid reading 
ease = 29.03, σ = 8.10). 
In this task, since Y-only method was applied in detecting non-
linear reading actions, we chose a flipping-page design to avoid the 
possible confounding changes of vertical gaze by scrolling. Each 
article was divided into 3 pages (23~25 lines in each page). A 
flipping-page button was placed at the bottom right of each page. 
Participants clicked the flipping page button to continue to the 
next page (or stop after finishing with the article). 
4.1.2  Task 2 
In this task, our goal was to investigate whether lateral saccade 
pattern-based features and muscle stiffness features can be used to 
predict the comprehension and engagement in reading. 
We used a scrolling-page design in this task. Each participant read 
3 news articles in three different topics, including gaming, 
astronomy, and fitness. The articles in use had comparable lengths 
(µ=500.33, σ=58.29) and difficulty (average Flesch-Kincaid reading 
ease = 33.3, σ = 6.59). Each article had around 59 lines on a single 
scrollable page.  

4.2  Procedure 
The whole study lasted around one hour for each participant. After 
completing a background survey, participants went through two 
reading tasks in sequential order. There was a 10 min training and 
warm-up session before each task. After finishing each article, 
participants answered three short-answer questions to measure their 
comprehension. The questions included both literal and inferential 
contents. Then they reported the reading engagement including 
concentration level, confidence of understanding, and engagement 
after reading each article. We used a within-subject design in which 
both reading tasks and the orders of conditions were randomized. 

4.3  Design and Analysis 
4.3.1  Task 1 
The data from one participant was discarded due to corruption. In 
total, we had 24 subjects × 3 conditions × 1 article × 3 flipping 
pages = 216 page level samples. We had two evaluation metrics 1) 
predicting number of lines read in a page; and 2) predicting the 
nonlinear reading actions. 
We used the mean absolute error, mean absolute percentage error, 
root mean squared error and correlation to evaluate the number of 
lines. Precision-recall curve was used to analyze the prediction 
algorithm. 
4.3.2  Task 2 
The participants were instructed to read each article according to 
their reading habit. They may scroll, skip, or reread the article 
whenever they desired (Figure 6).  
We used the accuracies in comprehensive questions to measure the 
comprehension in reading. We used self-reported concentration, 
engagement, and confidence of understanding to understand users’ 
reading engagement on a 7-point Likert scale.  

We used the forward-stepwise feature selection method to 
investigate the features from different channels and their effects on 
reading comprehension and engagement. Based on the selected 
features, the gains of reading comprehension and engagement were 
evaluated by 1) the root mean square error and R2 value of linear 
fitting, and 2) the correlation coefficients of leave-one-subject-out 
user-independent validation.  

5  RESULTS 
5.1  Task 1 – Predicting the number of lines 
We compared two baselines, i.e. SwitchBack [34] and ReadAllLines, 
with our periodic saccade detection algorithm in Lepton. We 
reproduced the SwitchBack algorithm based on descriptions in [34]. 
We did a parameter sweep to derive best thresholds for SwitchBack. 
The other baseline (ReadAllLines) assumed that each user would 
read each and every line once on each page.  

  SwitchBack 
ReadAll
Lines 

Periodical Pattern 
Detection 

Mean absolute error 4.91 5.68 3.56 
Mean absolute 

percentage error 
0.2 0.31 0.16 

Root mean squared error 6.66 7.66 4.65 

Correlation 0.7 0.15 0.83 
Table 2. Line detection results via SwitchBack (baseline 1), read all lines 
once (baseline 2) and periodical pattern detection methods. 

As shown in Table 2, our proposed method achieved the highest 
correlations (0.83) and the lowest errors (e.g. mean absolute 
percentage error = 0.16) when compared with SwitchBack and 
ReadAllLines.  

5.2  Task 1 – Detecting non-linear actions  
We calculated the precision and recall of each action (reread, skip, 
normal) versus all other actions. We compared our proposed 
methods (X-line-counting and Y-only) with a baseline. The baseline 
compares the actual dwell time with an expected dwell time 
threshold derived from a cutoff speed: a page reading action was 
treated as a skipping action if the dwell time is shorter than a cutoff 
threshold for skip actions. Similarly, an action was treated as a 
reread action if the dwell time is longer than a cutoff threshold for 
reread. By trying cut-off speeds ranging from 100 to 500 words per 
minute (wpm), we found that the optimal cutoff threshold for reread 
to be 150wpm and the optimal cutoff threshold for skip to be 
250wpm. The precision-recall curves were shown in Figure 8. 
According to the area under curve (AUC) for reread and skip (Table 
3), we found that X-line counting method outperforms both baseline 
and the Y-only method in our study.  
In summary, both results in tasks 1 confirmed the accuracy and 
robustness of the features from periodic saccade patterns in mobile 
text reading. 

5.3  Task 2 – Comprehension and engagement 
We investigated three channels of features: traditional, periodic 
saccade patterns (gaze), and muscle stiffness (kinematic) (Table 4) 
on predicting the comprehension and engagement in mobile 
reading.  
We used the forward step-wise feature selection method to select 
significant features from the three channels. According to Table 5, 



 

the gaze channel and the kinematic channel had significant 
features on different aspects of reading. We found that PR, 
MADLL, and MADLD were the significant features from the gaze 
channel. In the kinematic channel, the features related to vertical 
scrolling movement and scrolling pressures were significant. 
When a reader focuses or engages with reading, the increased 
muscle stiffness of the reader lead to an increased MSD damping 
ratio. The damping frequency increases when users are focusing. 
The finger scrolling pressure increases with decreased variance 
when the reader reads interesting articles. 

 
Figure 8. Reread and Skip condition precision-recall curve. 

Method Reread Skip 

Baseline 0.69 0.79 

Y-only 0.58 0.31 
X-line-

counting 
0.73 0.88 

Table 3. Area under curve (AUC) for reread and skip conditions. 

We updated the three sets of selected features (each included 3 
features) to better predict users’ comprehension and engagement: 
1) all three features from the traditional channel; 2) The meanCY, 
meanCP, and stdCP features from the kinematic channel; and 3) 
the PR, MADLL, and MADLD features from the gaze channel.  

Sources 
Feature Group 

(Count) 
Examples 

Traditional 
(TF) 

Dwell time (1) Page duration. 

Speed Related (2) 
Reading speed on word 

and character levels. 

Kinematic 
(SF) 

MSD related (40) 
Statistical features related 
to five dimensions of MSD 

parameters. 
Scroll trail related 

(5) 
Number of scrolls, mean 
duration of scrolls, etc. 

Gaze (GF) 
Periodic lateral 

pattern based (14) 
Details in Table 1. 

Table 4. Three sources of features: traditional, gaze and kinematic, for 
predicting reading comprehension and engagement. 

With the selected features, we evaluated the root mean square 
error and R2 value of from a liner model. In Table 6, we found that 
the combination of three sets worked the best for predicting 
reading engagements and comprehension. 
We also evaluated the correlation coefficients in user-independent 
linear regression models via leave-one-subject-out validation. In 
Table 7, we found that the features in kinematic and gaze channel 
helped improve the correlation coefficients than TF on predicting 

concentration (0.36 vs. 0.16), confidence (0.5 vs. 0.47), engagement 
(0.34 vs. 0.16) and comprehension (0.36 vs. 0.29). 

Features 
Concentra

-tion 
Confidence  

Engageme
nt 

Comprehen-
sion 

mean CY  1.62** - 2.10** - 

min WY  2.07** - - - 

min WX 2.15** - - - 

mean CP - - 1.20* 0.78* 

std CP -2.44** -3.05* - - 

mean WR - - - 6.94*** 

max WR  2.90* - - - 

MAD lineDur  - -1E-03** - - 

MAD lineLen  - - -3E-04* - 
Table 5. The correlation and corresponding p-values of the features 
selected for reading engagement and comprehension via forward step-
wise method, where *: p-value <0.05; **: p-value <0.01; ***: p-value 
<0.001. 

Features 
Concentra-

tion 
Confidence 

Interesting-
ness 

Comprehe-
nsion 

TF (3) 1.00(0.11) 1.07(0.33) 1.46(0.09) 0.86(0.17) 

SF (3) 0.96(0.19) 1.22(0.14) 1.41(0.14) 0.90(0.09) 

GF (3) 1.03(0.05) 1.22(0.13) 1.47(0.07) 0.91(0.07) 

TF+SF 0.92(0.28) 1.04(0.39) 1.36(0.23) 0.85(0.22) 

TF+GF 1.00(0.14) 1.04(0.39) 1.44(0.14) 0.86(0.20) 

SF+GF 0.96(0.21) 1.17(0.23) 1.39(0.20) 0.89(0.15) 

TF+SF+GF 0.92(0.30) 1.02(0.44) 1.36(0.26) 0.84(0.26) 
Table 6. The root mean square errors (the smaller the better) and the 
corresponding R2 value (the larger the better) for reading concentration, 
confidence, engagement and comprehension via tradition features (TF), 
scrolling features (SF) and gaze features (GF). 

6  DISCUSSIONS 
When designing Lepton, our major goal is to achieve scalable 
understanding of mobile reading activities. Such a goal has at least 
two implications in design: 1) we choose support rather than 
change existing reading behaviors among mobile users. For 
example, we assume that users will read an article in portrait 
mode; 2) We choose not to include additional sensors (e.g. gaze 
trackers, and EEG headbands) or hardware modifications to 
existing smartphones. Such changes will prevent us from 
deploying Lepton in large scale; 3) We choose to complete all the 
sensing and inference algorithms on device. Otherwise 
intermittent Internet connections may break Lepton. Even so, 
turning on the front camera during reading may still raise 
concerns from privacy-sensitive users.  

6.1  Periodic Saccade Tracking 
There are two advantages for the periodic saccade tracking 
channel in Lepton. First, it achieves a good balance in both 
accuracy and robustness when compared with alternative 
approaches such as dwell time and camera-based gaze fixation 
tracking; Second, this periodic saccade tracking channel is 
calibration free. It relies on the periodic changes of lateral gaze 

(a) Reread (b) Skip 



 

movement rather than absolute locations of gaze fixations. 
Essentially speaking, our approach replaces word-level fixation 
tracking to line-level periodic saccade tracking. Robust line-level 
reading process tracking can help us to have a deeper 
understanding of mobile reading activities in large scale.  

Features 
Concentr

-ation 
Confidence 

Engageme
nt 

Comprehen
-sion 

TF (3) 0.16 0.47 0.16 0.29 

SF (3) 0.29 0.16 0.24 0.19 

GF (3) -0.17 0.21 0.13 0.05 

TF+SF 0.36 0.49 0.33 0.36 

TF+GF 0 0.49 0.18 0.25 

SF+GF 0.17 0.28 0.30 0.20 

TF+SF+GF 0.25 0.5 0.34 0.31 
Table 7. Correlation coefficients by leave-one-subject-out validation on 
linear regression models via different feature sources and different 
combinations of feature sources 

The error rate of our reproduced SwitchBack algorithm was higher 
than that in the original literature [34] (mean absolute percentage 
error increased from 3.9% to 20%). We suspect the difference was 
caused by two reasons: First, Lepton runs in portrait mode rather 
than the landscape mode of SwitchBack [34]. The lateral gaze 
movement distance in landscape mode is at least 1.5 times longer 
than the distance in portrait mode. As such, a global threshold in 
SwitchBack [34] could not detect the line break accurately. The 
landscape mode also leads to fewer number of lines per screen, 
hence reducing the space of possible line numbers; Second, 
SwitchBack highlights the next line to read if a reader switches 
visual attention. As such, SwitchBack won’t be able to generate a 
line number larger than the total number of lines. Meanwhile, 
Lepton allows rereading and a user can read more lines per screen 
than the number of lines displayed.  
The Y-only action detection also had a much lower accuracy when 
compared with X-line-counting action detection in our study. After 
taking a closer look at the failure cases together with experimental 
videos recorded, we noticed that most of the failures were 
triggered by large body movements. We noticed that posture 
adjustments in reading have a much stronger impact on gaze 
estimations in the y-axis than the x-axis. We suspect accelerometer 
signals may give us hints when a user is adjusting body posture in 
reading. Such information can help us improve Y-only action 
detection in the future.  

6.3  Modality Comparison 
As shown in section 5.3, the combination of the periodic saccade 
channel and the kinematic channel in Lepton can significantly 
improve the prediction accuracy of comprehension and 
engagement when compared with mainstream signals such as 
dwell time. According to Table 5, periodic saccade features worked 
better in predicting reading confidence, while scrolling signals 
alone worked better in predicting reading comprehension, 
concentration, and engagement. One possible explanation could be 
- confident users have smooth paces in reading, i.e., all lines are 
read at a steady speed, except for the short lines. 

The periodic saccade channel and the kinematic channel can 
complement each other in signal frequency and usage 
environments.  The periodic saccade channel can give us continual 
observations on line-by-line reading processes. Meanwhile there 
are fewer scrolling operations per page. For example, in task 2, 
there were 4 to 78 scrolls per article (μ=18.87, σ=13.48), accounting 
for around one fourth of the total reading time (μ=23.58%, σ=0.18). 
In comparison, there were around 24 periodic saccade patterns per 
page. There are also advantages in the kinematic channel. The 
kinematic channel in Lepton is not sensitive to posture changes 
and illumination changes, while the periodic saccade channel is 
sensitive to major posture changes and will not work in dark 
environments.  

7  CONCLUSIONS AND FUTURE WORK 
We presented Lepton, an intelligent mobile reading system and a 
set of dual-channel sensing algorithms to achieve scalable and fine-
grained understanding of users’ reading behaviors, comprehension, 
and engagement on unmodified smartphones. Lepton tracks the 
periodic lateral patterns, i.e. saccade, of users’ eye gaze via the 
front camera, and infers their muscle stiffness during text scrolling 
via a Mass-Spring-Damper (MSD) based kinematic model from 
touch events. Lepton leverages signals from these two channels to 
infer users’ comprehension and engagement during reading. 
Through a 25-subject study, we found that both the periodic 
saccade patterns and muscle stiffness signals captured by Lepton 
can be used as expressive features to infer users’ comprehension 
and engagement in mobile reading. Overall, our new signals lead 
to significantly higher performances in predicting users’ 
comprehension (+53% in R2), concentration (+173%), and 
confidence (+33%) than using traditional dwell-time based features. 
We plan to explore the following directions in the near future. 
First, Lepton primarily focuses on understanding line-level reading 
progress and page-level comprehension and engagement, can we 
use Lepton, together with supplemental information such as 
application logs, to understand high-level reading strategies on 
mobile devices? For example, how could a user search, compile, 
and read a set of articles to understand a controversial topic, such 
as “mountaintop coal mining removal”; Second, we plan to explore 
interactive technologies, such as personalized recommendation, 
smart highlighting, or in-situ quizzes when low engagement is 
detected; Third, we are interested in exploring privacy-preserving 
techniques to minimize users’ concerns on camera-based gaze 
tracking during reading; Fourth, we are interested in exploring 
supplemental sensing channels, such as motion and location, in 
mobile reading. For example, Bronzaft and McCarthy [9] 
discovered that the environmental noises had a significant impact 
on comprehension. We believe that understanding users’ mobile 
context will be important towards facilitation their reading 
experiences as well.  
We thank Xiang Xiao, Xiangmin Fan, Phuong Pham, Shumin Zhai, 
Zhenyuan Yang, and anonymous reviewers for the constructive 
feedback. This research was in-part supported by a gift from Byte 
Dance Telecommunications to the University of Pittsburgh. 
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