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ABSTRACT
In machine learning programs, it is often tedious to annotate the
dimensions of shapes of various tensors that get created during ex-
ecution. We present a dynamic likely tensor shape inference analy-
sis, called ShapeIt, that annotates the dimensions of shapes of ten-
sor expressions with symbolic dimension values and establishes
the symbolic relationships among those dimensions. Such annota-
tions can be used to understand the machine learning code written
in popular frameworks, such as PyTorch and JAX, and to find bugs
related to tensor shape mismatch. We have implemented ShapeIt
on top of a novel dynamic analysis framework for Python, called
Pynsy, which works by instrumenting Python bytecode on the fly.
Our evaluation of ShapeIt on several tensor programs illustrates
that ShapeIt could effectively infer symbolic shapes and their rela-
tionships for various neural network programs with low runtime
overhead.
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1 INTRODUCTION
Multi-dimensional arrays, called tensors, are a widely used data
structure nowadays. Deep learning and various scientific comput-
ing systems have tensors as core data structures. Several popular
and widely used deep learning frameworks, such as TensorFlow,
PyTorch, JAX, use tensors to represent neural networks.These ten-
sor frameworks provide many valuable and efficient API functions
to manipulate and compute on tensors in parallel.

Due to massive AI and deep learning growth, many program-
mers have started programming using tensors in the last decade.
This is a significant switch in the programming paradigm where
programmers must use tensors correctly and effectively to pro-
gram modern machine learning systems. Tensor programming
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could get complicated and result in bugs not observed in general-
purpose programming. A common kind of error that program-
mers encounter while programmingwith tensors is runtime tensor
shape mismatch error. For example, a tensor reshape operation re-
quires the input and output tensors to have the same number of
elements. Thus, if one wants to reshape a tensor of shape (2, 3) to
a tensor of shape (5, 1), the operation will throw a runtime shape
mismatch error. Such errors arise commonly while writing tensor
programs.

Debugging tensor shape mismatch errors is difficult, and a step-
by-step debugger might be difficult to use since most tensor frame-
works provide lazy evaluation. A common practice to debug such
errors is to add print statements to the programs and observe the
shape of relevant tensors at runtime. However, such approaches
are ad hoc and time-consuming as they require programmers to
guess the tensors whose shape theywant to print. Another existing
approach to avoid such mismatch errors is to perform static shape
inference by performing whole program analysis [3, 4, 10, 11].
However, these techniques are too conservative and reject valid
programs. Those systems also require annotation of the shapes of
the various tensor functions provided by the framework, which
could be in hundreds. Moreover, some of these systems could also
miss shape mismatch errors. Without robust tools for tensor shape
analysis, programmers often resort tomanual annotation of shapes
of various tensors. Such annotations help with program under-
standing and debugging any shape mismatch error.

We propose a novel dynamic analysis technique, called ShapeIt,
for likely tensor shape inference for tensor programs in Python.
The technique infers the relationships among the dimensions of
various tensor expressions in a program. The technique is based
on the key insight that the dimensions of various tensor expres-
sions in a tensor program can be expressed in terms of a small
set of tensor dimensions such as 'batch_size', 'height', 'width', and
'classes'. For example, consider the tensor expression y = A * x +
b, where A, b, x, and y have the tensor shapes (𝑑1, 𝑑2), (𝑑3, ), (𝑑4, ),
and (𝑑5, ), respectively. For the expression to correctly evaluate,
we must have 𝑑2 = 𝑑3, 𝑑1 = 𝑑4, and 𝑑1 = 𝑑5. Therefore, all the di-
mensions can be expressed in terms of 𝑑1 and 𝑑2. ShapeIt logs the
concrete shape of all tensor expressions evaluated during an ex-
ecution. From the logs, ShapeIt computes the likely relationship
among the tensor dimensions and annotates the tensor expressions
with their symbolic dimensions expressed in terms of a small set of
symbolic tensor dimensions. ShapeIt also allows the user to asso-
ciate a meaningful name to each dimension in the small set. Then,
the annotated code will have all shape annotations expressed in
terms of these meaningful names. The annotated code generated



ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal Sen et al.

by ShapeIt can be used to understand the shapes of tensor expres-
sions and identify quickly any source of shape mismatch error.The
technique works for existing tensor programming libraries such as
PyTorch and JAX.

Figure 2 shows the shape-annotated code of a simple tensor pro-
gram shown in Figure 1. The user has provided meaningful names
(i.e., batch, size, hidden1, hidden2, hidden3, and classes) to
various dimensions in the first nine lines of code in Figure 1.Those
names got propagated to the annotations of other tensor expres-
sions in the program. Note that at line 31 of the annotated code,
the shape of w changes in each iteration of the loop. Therefore, the
shape of w cannot be expressed in terms of the meaningful names
provided by the user. However, ShapeIt finds that symbolic dimen-
sions of w (i.e., (d2, d3)) are related to the symbolic dimensions
of the tensor expressions b, activations, jnp.dot(activation,
w), and jnp.dot(activation, w) + b.

A key challenge in inferring tensor shape relations is that
ShapeIt can infer spurious relations because the relations are
solely inferred based on the observation of concrete shape values.
A simple approach to eliminate false positives would be to run the
programwith various hyperparameters and use observations from
all executions to infer the symbolic shape relations. However, such
an approach would be expensive as it requires multiple program
executions with different hyperparameters. We propose a novel ap-
proach to avoid such false positives while running the program once.
The approach picks values for hyperparameters dynamically so
that no two hyperparameters are equal while not being too far
from the original hyperparameter values.

We have implemented ShapeIt on top of Pynsy, a framework
that provides useful abstractions and an API that significantly sim-
plifies the implementation of dynamic analyses for Python. The
framework is also a novel contribution of the paper and is pub-
licly available at https://github.com/google-research/pynsy. The
framework works through Python bytecode instrumentation and
allows the implementation of various heavy-weight dynamic anal-
ysis techniques. Pynsy can be used to develop various dynamic
analyses for Python similar to AddressSanitizer[21], Valgrind[18],
Pin[16] for C/C++ programs. Such dynamic analyses could help us
annotate code or execution with useful program properties under
analysis.

There are a few advantages of using dynamic instrumentation
of Python bytecode.

• The analysis works for any Python code, whether its source
is available. Moreover, since the instrumentation of the
Python bytecode happens on the fly, there is no need to
write compiler passes required to instrument source code.
The analysis could be easily used and deployed since we
don’t need the extra instrumentation phase to process the
Python source code.

• Unlike Python source code, Python bytecode is small and
does not change from version to version, mostly. There-
fore, it is easy to maintain a dynamic analysis framework
that operates on Python bytecode. One could argue that
we could modify the Python interpreter to collect neces-
sary runtime information. However, the Python interpreter

evolves rapidly, making maintaining such a code base diffi-
cult. Moreover, people are also reluctant to use a modified
Python interpreter for safety and security reasons.

• Pynsy’s framework independent instrumentation enables
us to implement ShapeIt once and for all for various tensor
frameworks such as PyTorch and JAX. One could use these
frameworks, which already support tracing, to implement
ShapeIt. However, such implementations would be differ-
ent for each framework. Moreover, they will be difficult to
maintain as the frameworks evolve.

We have evaluated Pynsy on several deep-learning programs
written in JAX and PyTorch. Our results show that Pynsy has an
average overhead of up to 5×. In a manual case study with three
programs already annotated with shape information by their pro-
grammer, we found that Pynsy derived shape annotations match
human annotations already present in the program. Finally, we
show that Pynsy helps to reduce the number of symbolic shape
dimensions in our benchmark programs significantly.

2 SHAPEIT: DYNAMIC LIKELY TENSOR
SHAPE INFERENCE ALGORITHM

ShapeIt works in several phases described in the next subsections.

2.1 Dynamic data collection
We assume that a program has a set of functions and methods,
say 𝐹 , and each function 𝑓 ∈ 𝐹 has a set of expressions, each of
which evaluates to a tensor object. Such expressions are called ten-
sor expressions. The expressions are identified by their static lo-
cation in the program. Let 𝐿 be the set of locations of all tensor
expressions in the program. Since ShapeIt is a dynamic analysis
algorithm, it can determine if an expression evaluates to a tensor
object at runtime. For example, the function init_random_params
in Figure 1 has two expressions that evaluate to tensor objects:
rng.randn(m,n) and rng.randn(n). Each tensor object has a
shape which is a tuple of the form (𝑛1, 𝑛2, . . . , 𝑛𝑟 ) where each
𝑛𝑖 ∈ N. The length of the tuple (i.e., 𝑟 ) gives the tensor object’s
rank (i.e., the number of axes), and the tuple’s elements give the
dimension of each axis.

ShapeIt instruments the program under analysis so that when
the instrumented program is executed, the instrumentation logs
the concrete shape of each tensor resulting from the execution of
each tensor expression. A trace is a map from 𝐿 (i.e., the set of
all locations of tensor expressions) to a concrete shape value. For
example, a partial trace of the execution of the program in Figure 1
is shown in Figure 3. The trace is restricted to the execution of the
function init_random_params() for simplicity. The trace records
the shape values of the tensor expressions rng.randn(m,n) and
rng.randn(n) at line 22. The locations of these tensor expressions
are, say, 3 and 4, respectively. Since each of the two expressions
gets evaluated three times in a loop, the trace records six shape
values of the tensor expressions.

2.2 Creating symbolic dimension variables
For each tensor expression, if the concrete shape value of the ex-
pression has been observed to have rank 𝑟 , then ShapeIt intro-
duces fresh symbolic dimension variables for each dimension of
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1 inputs = rngi.randn(128, 784)
2 layer_sizes = [784, 1024, 1024, 10]
3
4 def init_random_params(layer_sizes, rng=npr.RandomState(0)):
5 return [
6 (rng.randn(m, n), rng.randn(n))
7 for m, n, in zip(layer_sizes[:-1], layer_sizes[1:])
8 ]
9

10 def predict(params, inputs):
11 activations = inputs
12 for w, b in params[:-1]:
13 outputs = jnp.dot(activations, w) + b
14 activations = jnp.tanh(outputs)
15
16 final_w, final_b = params[-1]
17 logits = jnp.dot(activations, final_w) + final_b
18 return logits - logsumexp(logits, axis=0, keepdims=True)
19
20 predict(init_random_params(layer_sizes), inputs)

Figure 1: A simple tensor program extracted from a JAX im-
plementation of MNIST.

the tensor. For example, if the concrete shape of a tensor expres-
sion at line 19 is recorded as (10, 28, 28), then ShapeIt introduces
the symbolic shape (𝑑1, 𝑑2, 𝑑3) where 𝑑1, 𝑑2, and 𝑑3 are fresh sym-
bolic dimension variables. The symbolic shape of a tensor expres-
sion remains the same throughout an execution, although the con-
crete shape of the expression could be different at different points
in the execution.The goal of ShapeIt is to establish the likely sym-
bolic relationships between these symbolic dimension variables
based on the concrete shape values observed during an execution.
Let 𝐷 be the set of all fresh symbolic dimension variables intro-
duced during the execution of a program. For example, ShapeIt
introduces the fresh symbolic dimension variables 𝑑0, 𝑑1, and 𝑑2 to
denote the dimensions of the tensor expressions rng.randn(m,n)
and rng.randn(n) at line 22.

Note that we are creating symbolic dimension variables to de-
note the shape of each tensor expression and not the shape of each
program variable. A tensor expression can have different ranks at
different points of execution. We can detect this case by looking at
all the shape values observed for the tensor expression in an execu-
tion. If a tensor expression has different shape ranks, then ShapeIt
cannot work with such tensor expressions. We do not create any
symbolic dimension for that tensor expression in such cases. In
practice, this does not happen. On the other hand, a program vari-
able can have different ranks at different execution points in real-
world programs. Therefore, we are not inferring shapes for pro-
gram variables.

2.3 Abstract state creation
The goal of abstract state creation is to create an abstract state at
each point in the trace. Such an abstract state maps a symbolic
dimension variable to its latest observed concrete value. ShapeIt
checks which relationships among the dimension variables are sat-
isfied by all the abstract states in the trace and reports them as the
final result of the analysis.

The abstract state of a program, say Σ, at any point in the trace
is the latest shape value of the live tensor expressions during the

1 # ⊲ randn: [batch, size]
2 inputs = rngi.randn(128, 784)
3 # ⊲ inputs: [batch, size]
4 # ⊲ annotate_shape: [batch, size]
5 shaper.annotate_shape(inputs, ("batch", "size"))
6
7 layer_sizes = [
8 # ⊲ hyper_parameter: [size]
9 shaper.hyper_parameter(784, "hidden1"),

10 # ⊲ hyper_parameter: [hidden2]
11 shaper.hyper_parameter(1024, "hidden2"),
12 # ⊲ hyper_parameter: [hidden3]
13 shaper.hyper_parameter(1024, "hidden3"),
14 # ⊲ hyper_parameter: [classes]
15 shaper.hyper_parameter(10, "classes"),
16 ]
17
18 def init_random_params(layer_sizes, rng=npr.RandomState(0)):
19 return [
20 # ⊲ randn: [d0, d1]
21 # ⊲ randn: [d1]
22 (rng.randn(m, n), rng.randn(n))
23 for m, n, in zip(layer_sizes[:-1], layer_sizes[1:])
24 ]
25
26 def predict(params, inputs):
27 # ⊲ inputs: [batch, size]
28 activations = inputs
29 for w, b in params[:-1]:
30 # ⊲ activations: [batch, d2]
31 # ⊲ w: [d2, d3]
32 # ⊲ dot: [batch, d3]
33 # ⊲ b: [d3]
34 # ⊲ +: [batch, d3]
35 outputs = jnp.dot(activations, w) + b
36 # ⊲ outputs: [batch, d3]
37 # ⊲ tanh: [batch, d3]
38 activations = jnp.tanh(outputs)
39
40 final_w, final_b = params[-1]
41 # ⊲ activations: [batch, hidden3]
42 # ⊲ final_w: [hidden3, classes]
43 # ⊲ dot: [batch, classes]
44 # ⊲ final_b: [classes]
45 # ⊲ +: [batch, classes]
46 logits = jnp.dot(activations, final_w) + final_b
47 # ⊲ logits: [batch, classes]
48 # ⊲ logsumexp: [batch, classes]
49 # ⊲ -: [batch, classes]
50 # ⊲ return: [batch, classes]
51 return logits - logsumexp(logits, axis=0, keepdims=True)
52
53 # ⊲ inputs: [batch, size]
54 # ⊲ predict: [batch, classes]
55 predict(init_random_params(layer_sizes), inputs)

Figure 2: An annotated version of the tensor program in Fig-
ure 1 with shape annotations inferred by SHapeIt. SHapeIt-
inferred shape annotations are shown in comment lines
with ⊲. Additional shaper operations are added to anno-
tate known dimension names (to improve the readability of
inferred annotations) and hyperparameter dimensions (to
avoid false positive constraints, see Section 2.6).

execution up to the point in the trace. A trace maps 𝐷 , the set of
all fresh symbolic dimension variables, to their concrete dimension
values observed during the execution. When a function 𝑓 is called,
the current abstract state is copied, and all symbolic dimension
variables corresponding to tensor expressions inside the function
are reinitialized to ⊥ (i.e., undefined). The newly created abstract
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1 line 22: trace(3) = (784, 1024)
2 line 22: trace(4) = (1024,)
3 line 22: trace(3) = (1024, 1024)
4 line 22: trace(4) = (1024,)
5 line 22: trace(3) = (1024, 10)
6 line 22: trace(4) = (10,)

Figure 3: A partial trace of the program in Figure 1.

1 2: {𝑑0: ⊥, 𝑑1: ⊥, 𝑑2: ⊥}
2 3: {𝑑0: 784, 𝑑1: 1024, 𝑑2: ⊥}
3 4: {𝑑0: 1024, 𝑑1: 1024, 𝑑2: 1024}
4 3: {𝑑0: 1024, 𝑑1: 10, 𝑑2: 1024}
5 4: {𝑑0: 784, 𝑑1: 1024, 𝑑2: 1024}
6 3: {𝑑0: 1024, 𝑑1: 1024, 𝑑2: 1024}
7 4: {𝑑0: 1024, 𝑑1: 10, 𝑑2: 10}

Figure 4: Abstract states after the evaluation of each tensor
expression in Figure 1 at line 22.

state becomes the current state of the execution. The abstract state
is also pushed to a call stack. When a tensor expression in the func-
tion is evaluated during the execution, the corresponding symbolic
dimension variables in the current abstract state are updated to the
observed dimension values. When the function returns, the cur-
rent abstract state is popped from the call stack, and the state of
the caller function, which is at the top of the stack, becomes the
current abstract state of the program.

For example, let us assume that the symbolic dimension vari-
ables associated with the tensor expressions at line 22 are (𝑑0, 𝑑1)
for rng.randn(m,n) and (𝑑2, ) for rng.randn(n). Then, the ab-
stract state just before the execution of the partial trace in Fig-
ure 3 is given by the first line in Figure 4. The second line gives
the abstract state after the evaluation of the tensor expression
rng.randn(m,n) and the third line gives the state after the evalua-
tion of the tensor expression rng.randn(n). Each line starts with a
number.The number is the location of the tensor expressionwhose
last evaluation resulted in the state.

2.4 Anti-unification
After collecting a trace, creating symbolic dimension variables, and
constructing the abstract states along the collected trace, ShapeIt
checks if certain symbolic relationships consistently hold among
the symbolic dimension variables at a program location in all ab-
stract states. ShapeIt has a pre-defined set of templates of sym-
bolic relations, which are as follows:

• 𝑑𝑖 = 𝑑 𝑗 , a template stating that symbolic dimensions 𝑑𝑖 and
𝑑 𝑗 have the same concrete value in all abstract states if nei-
ther is ⊥,

• 𝑑𝑖 = 𝑑 𝑗 · 𝑑𝑘 , a template where the symbolic dimension 𝑑𝑖 is
the product of the dimensions 𝑑 𝑗 and 𝑑𝑘 if neither is ⊥,

• 𝑑𝑖 = 𝑑 𝑗 +𝑑𝑘 , a template where the symbolic dimension 𝑑1 is
the sum of the dimensions 𝑑 𝑗 and 𝑑𝑘 if neither is ⊥,

• 𝑑𝑖 = 𝑑 𝑗 · 𝑑𝑘/𝑑𝑙 , a template where 𝑑𝑖 · 𝑑𝑙 = 𝑑 𝑗 ∗ 𝑑𝑘 .
More templates can be added by the user of ShapeIt; however,
in practice, we found these templates to be sufficient to infer the
common relationships among the symbolic dimension variables.

Given the set of templates, ShapeIt’s anti-unification computes
all the relationships described by the templates that hold through-
out the execution. Specifically, ShapeIt runs the following in a
loop:

(1) For each template 𝑡𝑖1 ...𝑖𝑚 , where 𝑖1 . . . 𝑖𝑚 are the symbolic
dimensions involved in the template,

(2) For each location ℓ of a tensor expression,
(3) For each 𝑑1, . . . , 𝑑𝑚 ∈ 𝐷 , where at least a 𝑑𝑖 is a symbolic

dimension at the location ℓ ,
(4) For all abstract states Σ at location ℓ , (i.e., the abstract

state after the evaluation of the tensor expression at ℓ),
if Σ(𝑑1), . . . , Σ(𝑑𝑚) makes the template 𝑡𝑖1 ...𝑖𝑚 true, then
the template instantiated with the symbolic dimensions
𝑑1, . . . , 𝑑𝑚 is a likely relationship computed among the sym-
bolic dimensions.

The set of all likely constraints returned by ShapeIt are likely sym-
bolic relationships satisfied by the tensor objects in the program
execution. ShapeIt augments the code with the information about
shape relationships after each program location.

For example, consider the template 𝑑𝑖 = 𝑑 𝑗 with 𝑖 = 7 and 𝑗 = 8
and location 4. Then, from the sequence of states in Figure 4, we
can see that 𝑑1 = 𝑑2 at location 4 for all three states at location 4.
Therefore, we can say that 𝑑1 = 𝑑2 is a likely relationship inferred
from the execution of the program. On the other hand, consider
the same template with 𝑖 = 6 and 𝑗 = 8. Then, at location 3, only
two of the three states satisfy the relationship. Therefore, 𝑑0 = 𝑑2
is not a valid relationship.

2.5 Substitution and named dimensions
ShapeIt allows its users to annotate shape dimensions with mean-
ingful names in two ways: using shaper.annotate_shape(t,
(name1, name2, ...) which specifies that the dimensions of the
tensor t has the names name1, name2, ..., respectively, and us-
ing shaper.hyper_parameter(dim, name) which specifies that
the dimension value passed as the first argument has the name
given by the second argument. The second API call returns the
first argument.

Once ShapeIt has computed all the symbolic relationships
among the symbolic dimensions, it tries to reduce the number of di-
mension variables via substitutions. Let𝐶 be the set of constraints
on dimension variables found by ShapeIt. The substitution algo-
rithm works as follows.

(1) If a dimension 𝑑 is annotated with a name, say name, then
any occurrence of 𝑑 in 𝐶 is replaced with name.

(2) If 𝑑𝑖 = 𝑑 𝑗 is a constraint in 𝐶 , then replace any occurrence
of 𝑑𝑖 with 𝑑 𝑗 if 𝑖 > 𝑗 .

(3) If 𝑑𝑖 = 𝑒 is a constraint where 𝑒 is an expression involving
two or more dimension variables, then replace any occur-
rence of 𝑑𝑖 with 𝑒 in 𝐶 .

(4) The previous two rules are applied repeatedly on 𝐶 until
no more substitutions can be performed in 𝐶 . The first rule
breaks the symmetry and ensures that the loop terminates.

ShapeIt then annotates the shape of every tensor expression in
the program with the reduced set of dimension variables.
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For example, for the trace in Figure 3 ShapeIt will compute
the relationship 𝑑2 = 𝑑1. Therefore, it will annotate the tensor ex-
pressions rng.randn(m,n) and rng.randn(n) with (𝑑0, 𝑑1) and
(𝑑1, ), respectively, showing that the dimension of the 1st axis
of rng.randn(m,n) is same as the dimension of the 0th axis of
rng.randn(n).

2.6 False positive avoidance
In ShapeIt, since we are generating likely constraints based on ob-
served values, it is possible to infer wrong relations if, by chance,
the observed values support the relation, but the relation may not
hold if the hyperparameters of the program are changed. For ex-
ample, consider the case where all the layer_sizes in Figure 1
are equal to 784. In such a case, ShapeIt will infer that the tensor
expressions rng.randn(m,n) and rng.randn(n) at line 22 have
symbolic shapes (size, size) and (size,) which is true for the
current execution, but may not be true if any of the layer sizes
is not 784. We, therefore, report a false positive for the shapes of
these tensor expressions.

One naive way to eliminate such false positives is to run the
program multiple times with different sets of hyperparameters
and infer the symbolic shapes by combining the observations
from all executions. However, this approach is inefficient as
it requires executing the program several times with different
hyperparameters. In ShapeIt, we propose a novel approach
to avoid such false positives. The approach is based on the
insight that if a tensor program is run with different hyperpa-
rameters, the execution remains semantically correct, although
the actual accuracy of training a neural network may change.
We assume the user has already annotated all the dimensions
representing hyperparameters with meaningful names using
the shaper.hyper_parameter function. During the execu-
tion, whenever shaper.hyper_parameter(dimension_value,
dimension_name) is executed, ShapeIt observes if the
dimension_value returned by other previous calls to
shaper.hyper_parameter is same as the dimension_value
in the current call. If this is the case, ShapeIt returns the min-
imum value that is greater than dimension_value and is not
equal to the dimension_value returned by any previous call to
shaper.hyper_parameter. This ensures that all hyperparameters
are distinct while not being too different from the actual hyperpa-
rameters. This, in turn, ensures that the relations that are inferred
due to the same value of some hyperparameters are no longer
inferred. A key advantage of dynamically choosing different
hyperparameters in a single execution is avoiding false positives
even if the observations are made using a single execution.

3 PYNSY: IMPLEMENTATION
Wehave implemented ShapeIt on top of a dynamic analysis frame-
work for Python called Pynsy. In addition to ShapeIt, Pynsy is
also a novel contribution of the paper. Pynsy instruments the
Python bytecode of a target application on the fly and provides
a hook to log or inspect each Python bytecode instruction being
executed, along with dynamic information about the operands in-
volved in the instruction. A custom dynamic analyzer can be im-
plemented by overriding the hooks provided by Pynsy. ShapeIt

1 def abstraction(obj: Any) -> tuple[bool, Any]:
2 """Returns an abstract representation of the given object.
3
4 Args:
5 obj: The object to abstract.
6
7 Returns:
8 A tuple (bool, Any) where the first value indicates whether
9 the abstraction should track the location of the object, and

10 the second value is a finite abstraction of the object.
11 """
12
13 def process_event(record):
14 """Process each instrumentation event as it is generated."""
15
16 def process_termination():
17 """Called at the end of an analysis."""

Figure 5: The interface for writing a custom dynamic ana-
lyzer for Python in Pynsy.

has been implemented as a dynamic analyzer in Pynsy. We have
made Pynsy and ShapeIt implementations open-source at https:
//github.com/google-research/pynsy.

3.1 Pynsy API for Dynamic Analysis
One can write a custom dynamic analysis for Python programs
by creating a Pynsy analysis module, which defines the functions
shown in Figure 5. The function abstraction takes any Python
object and should return an abstraction of the object’s value that
the custom analysis is interested in. For example, in the case of
ShapeIt, the abstraction should return the shape tuple if the ob-
ject has a shape attribute. Note that this simple abstraction func-
tion, which does not require the object to be a tensor type, makes
it compatible with PyTorch and JAX. The custom abstraction is re-
turned by the abstraction function as the second component of
the returned pair. The first component of the return pair hints at
whether to include the unique object ID of the object in the ab-
straction. We never used the object ID of an object in ShapeIt, so
we kept the first returned tuple component true. Note that the cus-
tom abstraction function would be different for different dynamic
analyses. For example, if we want to perform a program’s likely dy-
namic type inference, the abstraction functions should return the
object type.

When a Pynsy-instrumented program is executed, it records in-
formation about every load, store, and application (e.g., application
of a binary/unary operator or invocation of a method) instruction
executed by the program in order. For each bytecode instruction
being executed by the Python interpreter, Pynsy calls the hook
function process_event(record). A custom dynamic analysis
would override this function to implement the analysis.The record
structure passed as an argument to process_event(record) con-
tains static and dynamic information about the executed bytecode
instruction. Each record has the following attributes:

• module_name: The name of the module whose bytecode in-
struction execution generated the record.

• method_id: The unique method id whose instruction has
generated the record.
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1 def abstraction(obj):
2 if (
3 isinstance(obj, tuple)
4 or isinstance(obj, list)
5 or str(type(obj)) == "<class 'range'>"
6 ):
7 return True, len(obj)
8 else:
9 return True, None

10
11
12 def process_event(record):
13 if record.opcode == "CONTAINS_OP":
14 list_len: int = record.results_and_args[3].abstraction
15 module_name = record.module_name
16 lineno = record.lineno
17 if list_len is not None and list_len > 100:
18 print(
19 "Warning: key in list is slow for a list of length "
20 f"{list_len} at {module_name}:line {lineno]}"
21 )

Figure 6: A “key in list” expensive check dynamic analysis
in Pynsy.

• instruction_id: The unique instruction within the
method that generated the record.

• lineno: The line number of the program such that compi-
lation of the statement at the line number resulted in the
instruction bytecode.

• type: Type of the bytecode instruction such as LOAD_FAST,
STORE_FAST, CALL_FUNCTION.

• indentation: The indentation of the instruction being ex-
ecuted. This helps to capture the recursive organization of
the instructions.

• before: Whether the record appears before executing the
instruction or not.

• result_and_args: A list containing abstractions of the re-
sult produced by the execution of the instruction and the
arguments being used by the instruction.

• name: The name of the variable or attribute if the instruction
accesses the value of a variable or attribute.

• function_name: The function’s name being called.
Once Pynsy has executed the entire program, it calls the hook

function process_termination. A custom dynamic analysis for
Python could override this function to perform the final analysis
and produce reports.

3.2 A Pynsy dynamic analysis example
Pynsy supports defining custom dynamic analyses. We illus-

trate how to implement the KeyInList analysis from DynaPyt [6].
In Python, checking whether a key exists in a list is expensive and
takes linear time compared to the sub-linear time for a set or dict.
Therefore, an analysis that finds all program locations where a key
in a long list is queried would be useful to eliminate inefficiencies
in the program.

Figure 6 shows a dynamic analysis for detecting expensive “key
in list” operations. The analysis only cares about objects of type
list, tuple, or range. For these objects, the abstraction function
returns the object’s length. Otherwise, abstraction returns None.

The function process_event performs the actual check. If the
operator is in, whose bytecode is CONTAINS_OP, and if the abstrac-
tion of the second operand of the bytecode is not None and greater
than 100 (where lists with 100 or more elements are considered
long lists), we report a warning to the user. Note that this analy-
sis cannot be implemented precisely using static analysis because
Python is dynamically typed, and one cannot always precisely in-
fer if the type of the second operand for the in operator is a list.

4 EVALUATION
We run experiments with ShapeIt implemented in Pynsy to an-
swer the following questions:

• RQ1 Runtime overhead: what is the runtime overhead of in-
strumenting programs and running tensor shape inference?

• RQ2 Shape inference correctness: are inferred shapes con-
sistent with human-written shape annotations?

• RQ3 Shape inference statistics: how many unique dimen-
sion variables remain after anti-unification, compared with
the number of total starting dimensions?

We evaluate ShapeIt on a suite of publicly available programs
using popular machine learning libraries, including PyTorch and
JAX (Flax [13], Haiku [15], Haliax1, and Levanter2).

The experiments were performed on a virtual machine with 2.2
GHz Intel Xeon and 16 GB RAM running Debian. Python 3.10 was
used for all experiments.

4.1 Runtime overhead (RQ1)
We evaluate the runtime performance of ShapeIt by comparing
the original runtime of a suite of machine learning programs ver-
sus the runtime with ShapeIt instrumentation and analysis.

Since ShapeIt involves program instrumentation via Pynsy,
some performance overhead is expected. Table 1 shows the rel-
ative cost of ShapeIt instrumentation: slowdown is between 1×
and 5×, which is on par with similar program analysis frame-
works. For comparison, the TraceAll analysis from Dynapyt [6]
is reported to have a slowdown between 1.2× and 16×. Compared
with frameworks for other languages, the Jalangi framework for
JavaScript [20] imposes 26×-30× overhead, and the RoadRunner
framework for Java bytecode [8] imposes an average instrumenta-
tion overhead of 52×.

As a software development tool for analyzing shapes, ShapeIt is
intended to be run incrementally to infer shapes for new or mod-
ified code units, not repeatedly during end-to-end executions of
machine learning programs, so slowdown is not a critical concern
for most use cases. Since ShapeIt operates on program traces, the
algorithm is agnostic to how traces are collected and could be im-
plemented with an instrumentation approach that collects lower-
quality traces with less overhead.

1https://github.com/stanford-crfm/haliax
2https://github.com/stanford-crfm/levanter
2https://raw.githubusercontent.com/karpathy/char-rnn/master/data/
tinyshakespeare/input.txt
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ML framework Name Baseline program With Pynsy and ShapeIt Slowdown

JAX

flax/mnist 62.65 71.64 1.14×
haiku/impala_rl 58.23 64.61 1.11×
haiku/rnn 13.93 17.80 1.28×
haiku/transformer 80.84 86.26 1.07×
levanter/gpt2 61.80 137.05 2.21×

PyTorch

pytorch/gcn 9.94 27.56 2.77×
pytorch/mnist_forward_forward 24.98 53.91 2.16×
pytorch/regression 2.44 10.93 4.47×
pytorch/siamese_network 11.32 34.30 3.03×
pytorch/vae 13.66 45.11 3.30×
pytorch/vision_transformer 13.80 14.60 1.06×

Table 1: End-to-end CPU runtime performance on benchmark programs (in seconds) with and without SHapeIt instrumenta-
tion. The slowdown is between 1x and 5x when instrumenting ML programs for one execution of one training loop iteration,
which is a realistic usage mode for SHapeIt. All numbers are averaged across three runs.

4.2 Shape inference correctness (RQ2)
Next, we look at the ability of ShapeIt to infer shapes that are
correct. We measure the correctness of inferred shapes by compar-
ing them against human-written shape annotations on a suite of
programs.

Given an inferred shape 𝑠𝑖 and a target human-annotated shape
𝑠𝑡 , we propose an “equivalent match” criterion, which is satisfied
if 𝑠𝑖 and 𝑠𝑡 have dimension variables that are (1) identical or (2)
equal in value, in the case where dimension variables have differ-
ent explicitly-annotated names but the same concrete values at all
abstract states.

For example, in Figure 1: the size and hidden1 dimensions
have different names but the same value of 784, so we treat 𝑠𝑖 =
(batch, size) and 𝑠𝑡 = (batch, hidden1) as equivalent when mea-
suring inferred shape correctness.

In practice, not all machine learning programs use shape annota-
tions, includingmost of those evaluated in Table 1. (We believe this
is partly due to a lack of easy-to-use shape inference tools, given
the value of shape annotations as documentation.) Most human-
written shape annotations take the form of informal code com-
ments, which serve as documentation and are unchecked.

To expand the set of programs used for evaluation, we manually
annotate some programs from Section 4.1 following standard con-
ventions for writing shape annotations. This involves annotating
shapes of function parameters and results and shapes of top-level
program inputs.

Table 2 shows correctness metric results for ShapeIt. We find
that ShapeIt is generally able to infer precise shape annotations
in practice, consistent with handwritten shape annotations by pro-
grammers in real machine learning programs. In flax/wmt and
levanter/gpt2, ShapeIt does not achieve 100% equivalent match
for shape annotations due to false positive constraints being in-
ferred between dimension variables with small constant values like
1 and 2: this leads to annotations with dimension expressions that
are less precise, but improving these is possible with heuristics in
anti-unification.

4.3 Shape inference statistics (RQ3)
Finally, we examine quantitative metrics from running ShapeIt on
real-world programs to gain insight into the algorithm’s behavior
in practice.

We measure the following metrics for ShapeIt related to anti-
unification:

• The total number of starting dimension variables before
anti-unification.

• The number of dimension variables after anti-unification.
• The number of unique dimension expressions after anti-

unification.
• The number of unique dimension names in human-written

shape annotations—if human annotations are available.

Table 3 shows these metrics for a suite of programs. We see
that ShapeIt is able to anti-unify a large fraction of dimen-
sion variables in real-world programs. In practice, ShapeIt infers
shapes for all intermediate program values and often introduces
many dimension variables—more than that are helpful for human
programmers—so shapes containing dimension variables that are
not anti-unified or not explicitly named can simply be discarded
instead of being shown to programmers.

One observation from our study is that careful annotation is
important: poor shape annotations, like annotating constant di-
mensions, can cause spurious false positive constraints to be gen-
erated, lowering the overall quality of inferred shapes. For exam-
ple, pseudorandom number generation key (PRNGKey) values are
internally represented in JAX as tensors with shape (2, ). While
it is possible to explicitly shape-annotate PRNGKey values with
shaper.annotate_shape(key, (“key”,)), this causes unhelp-
ful 𝑑𝑖 = key · 𝑑 𝑗 constraints to be generated, for even-valued
dimension variables 𝑑𝑖 . Instead, writing annotations of API signifi-
cance (e.g., on function parameters and results) avoids these issues
and leads to practically helpful inferred shapes.
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Name LOC Human-annotated shapes ShapeIt-inferred annotations % Equivalent match
jax/mnist 69 12 80 12/12 = 1.0
flax/wmt 262 42 182 38/42 = 0.90
levanter/gpt2 494 45 185 41/45 = 0.91

Table 2: Evaluation of SHapeIt correctness vs human-annotated programs. SHapeIt infers shape annotations for all inter-
mediate tensor values in programs, while humans typically annotate only a subset. “Equivalent match” means “exact value
match” in the case where dimension variables have different explicit names but the same concrete value in all abstract states.
Lines-of-code (LOC) are measured using ohcount [2].

Name Annotations Total starting dims. Unique dim. expressions Unique dims. Human-named dims.
flax/mnist 90 172 34 32 …
haiku/impala_rl 85 96 31 28 …
haiku/rnn 18 33 3 3 …
haiku/transformer 96 220 7 6 …
levanter/gpt2 185 405 19 16 10
pytorch/gcn 147 208 17 17 …
pytorch/mnist_forward_forward 116 173 22 22 …
pytorch/regression 46 64 4 4 …
pytorch/siamese_network 104 206 17 17 …
pytorch/vae 89 196 34 33 …
pytorch/vision_transformer 81 231 27 25 …

Table 3: Anti-unification metrics for SHapeIt. Given a large number of initial starting dimension variables, SHapeIt is capa-
ble of inferring dimension relationships and identifying a small set of unique dimension variables. Some programs involve
dimension expressions like 𝑑 𝑗 · 𝑘 and 𝑑 𝑗 + 𝑘 .

5 RELATEDWORK
Program invariant detection. There is a large body of work on au-

tomatic inference of program invariants, including both static [9]
and dynamic approaches [5, 7]. ShapeIt is similar to the dynamic
approaches. Daikon [7] infer invariants over the program variables.
Therefore, these techniques can introspect the state of the program
dynamically and check various invariant templates. ShapeIt infers
invariants over shape dimension variables. Such variables are not
program variables but are variables introduced by ShapeIt. There-
fore, ShapeIt needs to create the state of the shape variables by
observing a trace. Moreover, the set of templates used by ShapeIt
is much smaller and simpler than in Daikon.

Python instrumentation and dynamic analysis. The Python stan-
dard library offers a sys.settrace function 3 for registering a
hook that gets called at one of three granularity levels: at ev-
ery executed opcode, line of code, or function call. However, for
bytecode-level tracing, sys.settrace provides only opcodes with-
out any information about the value of the operands and result,
making it insufficient for producing fine-grained object-level pro-
gram traces. Dynapyt [6] is a general-purpose dynamic analysis
for Python that explicitly chooses to do source-level instrumenta-
tion via AST rewriting to express analyses at a high level of ab-
straction on a stable code representation. Our Pynsy framework
does bytecode-level instrumentation. Therefore, Pynsy works for
3https://docs.python.org/3/library/sys.html#sys.settrace

any Python code, whether its source is available. Moreover, since
the instrumentation of the Python bytecode happens on the fly,
there is no need to write compiler passes required to instrument
source code. Unlike Python source code, Python bytecode is small
and does not change from version to version mostly. Therefore, it
is easy to maintain a dynamic analysis framework that operates on
Python bytecode.

Tensor shape annotation and checking. . There has been work on
type systems for tensor shape safety, including gradual typing [11],
refinement types [10], and named tensor DSLs [3, 4]: these sys-
tems focus on shape checking in statically-typed languages. Grad-
ual tensor shape typing [11] is particularly related to our work,
as it combines best-effort static inference with dynamic checks;
ShapeIt could fit into a gradual typing system by incrementally
suggesting annotations to improve inference precision.

Dynamic shape fault detection. ShapeFlow [22] is a fork of Ten-
sorFlow that uses dynamic abstract interpretation to detect shape
faults. In a TensorFlow program, one could replace TensorFlow
with ShapeFlow. ShapeFlow will then not compute the actual ten-
sors but the shape of the tensors. ShapeFlow’s analysis is precise;
however, it requires one to write an abstract interpreter for the
computation graph, which requires a TensorFlow-specific imple-
mentation. Moreover, ShapeFlow requires one to modify the code
of 118 TensorFlow APIs so that those APIs do only shape computa-
tion. Porting ShapeFlow to other frameworks would be, therefore,
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tedious. ShapeIt does not require any modification to the APIs be-
cause it tries to infer the symbolic shape dimensions of the API
calls based on runtime observation. Elichika [12] uses a similar
method to ShapeFlow but applied to PyTorch, with a feature to dis-
play the interpreted shapes with a symbolic expression. However,
like ShapeFlow, Elichika needs the specification of the API meth-
ods to perform symbolic shape inference. ShapeIt has no such lim-
itation as it tries to infer such likely specifications by observing the
concrete values only at the call sites of the API. ShapeIt can also
be used for shape fault detection, general across machine learning
frameworks, and including for buggy programs. This would work
by collecting program traces up to an exception, then displaying
inferred shape annotations like in Figure 2 to let users identify un-
expected dimensions and work backward to find where they ap-
pear.

Python type inference. Traditional type inference approaches
are rule-based and rely on statically resolved types for accurate
inference; these do not transfer well to dynamic languages like
Python, where the types ofmany variables cannot be resolved stati-
cally. Several recent projects [1, 14, 17, 19] explore general-purpose
type inference in Python and other dynamic languages, primarily
via machine-learning-based approaches.

In Python, type annotations have been supported as a language
feature since version 3.5, and many libraries have been developed
for annotating types of multi-dimensional arrays using the typing
module and variadic generics. Modern libraries like jaxtyping4
support precise dimension-level tensor shape annotations and are
compatible with static and runtime type checkers. However, these
approaches only enable tensor shape checking and do not pro-
vide shape inference beyond straightforward type propagation be-
tween variable assignments and shape-preserving functions. To
our knowledge, our work is the first to explore tensor shape in-
ference from dynamic traces. Rather than being at odds, ShapeIt
can interact nicely with existing tensor shape annotation libraries:
future development can extend ShapeIt to produce annotations
in a library-supported format to help developers convert unanno-
tated or partially annotated programs to fully annotated programs
by adding one shape annotation at a time.

6 CONCLUSION
We present ShapeIt, a novel algorithm for symbolic tensor shape
inference in machine learning programs. We also develop Pynsy,
a library for heavyweight bytecode-level dynamic analysis in
Python, and use it to implement ShapeIt. We show that ShapeIt
in Pynsy can infer precise and useful symbolic tensor shape an-
notations for real-world machine learning programs without man-
ual annotations. In future work, we plan to continue developing
ShapeIt into a polished and practical shape linter tool for machine
learning practitioners to extend the anti-unification algorithm to
support named variadic dimensions (such as batch...) for rank-
polymorphic annotations, and to conduct a case study with users
on applying the tool to large-scale real-world codebases.

4https://github.com/google/jaxtyping
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