
Analysis of UXSS exploits and 
mitigations in Chromium 

Max Moroz, Sergei Glazunov, Google 
{mmoroz,glazunov}@google.com 

 

Abstract ​2 

Background ​3 

Overview ​4 
Bug Reports Analyzed ​5 
Distribution Over Time ​5 

Analysis Of Bugs ​6 
Class 1. [16 items] Blink: abusing parser initiated javascript: URI page loads ​6 

Description ​6 
Hardening Measures ​6 
Reports ​6 

Class 2. [6 items] Blink: missing or incorrect usage of cross-origin access checks ​8 
Description ​8 
Hardening Measures ​8 
Reports ​8 

Class 3. [10 items] Blink and V8: incorrect context used ​9 
Description ​9 
Reports ​10 

Class 4. [11 items] Navigation: isNavigationAllowed() bypass, missing or bypassed 
ScriptForbiddenScope, etc ​11 

Description ​11 
Hardening Measures ​11 
Reports ​12 

Class 5. [8 items] Extensions API: leak of a function or an object and use of an arbitrary or a 
hijacked createContext ​12 

Description ​12 
Reports ​13 

Class 6. [3 items] V8: missing or incorrect usage of access check ​14 
Description ​14 
Reports ​14 

1 



Class 7: [3 items] Flash-specific issues ​14 
Description ​14 
Reports ​15 

Class 8. [6 items] Custom issues: external dependencies, custom modes (e.g. Design mode, 
DevTools), plugins (e.g. Pepper), special resource types ​15 

Description ​15 
Reports ​16 

Distribution Of Reports Among Different Classes ​17 
Combined View Over Time ​17 

UXSS In Other Browsers ​18 
Safari ​18 
Edge ​18 
Firefox ​18 
Takeaway ​18 

Potential Mitigations And Countermeasures ​19 
DataFlowSanitizer Instrumentation ​19 
Origin Sanitization Via DOM Wrappers ​19 
Fuzzing For UXSS ​19 
Site Isolation ​21 

Conclusion ​21 

Abstract 
UXSS ​(​Universal Cross-Site Scripting​) is an attack that exploits client-side vulnerabilities in the 
browser or browser extensions in order to execute malicious code (usually JavaScript) with 
access to arbitrary resources (origins). To put it simply: 
 

A victim visits a malicious (or hacked / infected) website and an attacker becomes able 
to read victim’s GMail contents, private messages on Facebook, and so on, as well as to 
perform other actions on behalf of the victim: send emails, upload photos, etc​. 

 
The goal of this research is to analyze vulnerabilities in Chromium leading to UXSS attacks that 
were reported over 3 years (2014 - 2016), to evaluate potential mitigations that can be 
implemented in Chromium browser, and to explore the possibilities of new techniques to be 
used for prevention or detection of vulnerabilities leading to UXSS. 

2 



Background 
SOP​ (​Same Origin Policy​) is one of the most important concepts in the web application security 
model. Basically, it prevents different ​origins​ from accessing each other’s data stored on the 
client side (i.e. cookies, contents of browser tabs, everything associated with some web 
application and available on client side). 
 
Origin​, as it is defined by the ​HTML Standard​, is a combination of a URI's scheme, host and 
port. Thus, two different URIs belong to the ​Same Origin​, if they both contain the same scheme 
(e.g. ​https ​), host (e.g. ​google.com ​) and port (e.g. ​443 ​). Otherwise, two URIs belong to 
different origins and cannot access data of each other by default. 
 
In JavaScript, an ​Execution Context​ represents the environment in which the code is being 
executed. The default context is the ​Global Execution Context​ (GEC), which is usually created 
when the browser loads a new page. Every GEC has its own set of JS builtins, and every JS 
object is tied to an execution context. API functions often use the context to perform access 
checks. 
 
Cross-Site Scripting​ (XSS) is a client-side code injection attack that allows an attacker to 
compromise the interactions users have with a vulnerable web application. XSS flaws usually 
allow an attacker to perform any actions on behalf of a victim user and to access any of their 
data on the website thus evading the SOP. These vulnerabilities occur when a web application 
uses an input provided by a user to generate the output without proper validation. Currently, 
XSS is the most widespread type of web application attacks. 
 
Instead of using flaws in web applications, ​Universal Cross-Site Scripting​ (UXSS) attacks 
exploit vulnerabilities in the browser itself or in browser extensions to achieve an XSS condition. 
As a result, the attacker does not just get access to user session on a single website, but may 
get access to any page currently opened in the browser, including internal browser pages.​ Bugs 
leading to UXSS attacks are among the most significant threats for users of any browser. 
Chromium Severity Guidelines​ categorize such bugs as ​High Severity Vulnerabilities​. 
 
From an attacker perspective, a UXSS exploit may be almost as valuable as a ​Remote Code 
Execution​ (RCE) exploit with the sandbox escape, as UXSS exploits tend to be more reliable 
and in many cases can satisfy the needs of an attacker, unless the goal is to fully compromise 
the victim’s device. 
 
This research often refers to Chromium’s multi-process architecture. See ​Chromium 
documentation​ for more details on this topic. The components which are the most relevant for 
this research are the following ones: 

● Browser Process​ is the main and the most privileged process of the browser 

3 

https://html.spec.whatwg.org/multipage/origin.html
https://html.spec.whatwg.org/multipage/origin.html#same-origin
https://chromium.googlesource.com/chromium/src/+/master/docs/security/severity-guidelines.md
https://www.chromium.org/developers/design-documents/multi-process-architecture
https://www.chromium.org/developers/design-documents/multi-process-architecture


application. That process has privileges equal to the privileges of the user running 
Chromium on their computer, including access to the file system, network stack, system 
APIs, and so on. The browser process controls the top-level browser window, user 
interface, inter-process communication, and does other high level management. 

● Renderer Process​ is a less privileged process that is responsible for surfacing web 
pages to the user and executing JavaScript. Chromium creates multiple renderer 
processes for different websites opened in the browser. Each process is isolated and 
runs in the ​sandbox​, therefore a compromise of a renderer process imposes a lower risk 
compared to a compromise of the browser process. 

 
Blink​ is the ​rendering engine​ used by Chromium. 
 
V8​ is the JavaScript and WebAssembly engine used by Chromium. 
 
Until a newer navigation architecture (also known as ​PlzNavigate​: ​https://crbug.com/368813​, 
Design Doc​) was deployed (​October 2017​), an RCE in a renderer process could be trivially 
turned into a UXSS. The reason being that navigations were initiated by renderer processes 
whereas a malicious code could bypass cross-origin security checks. With PlzNavigate being 
effective, the browser process handles all navigations requests and enforces the policy. 
 
Also, it used to be trivial to turn a successful UXSS exploitation into an RCE on Android until 
December of 2016 (​https://crbug.com/664411#c31​). Briefly, an attacker could install an arbitrary 
application on the victim's device without any user interaction or permission. Since then, the 
user is always prompted to re-authenticate when installing an application through the web flow. 
 
Chrome’s Vulnerability Reward Program​ used to grant equal monetary rewards for UXSS and 
renderer RCE exploits. 

Overview 
Chromium browser and its components strongly enforce the Same Origin Policy concept. This is 
addressed on various levels ranging from the actual ​SOP implementation​ in Blink and V8's 
context security model​ to new features such as ​Site Isolation​. However, as in any other complex 
software project, there are mistakes breaking these protections under certain circumstances. 
 
This document presents an overview and analysis of vulnerabilities enabling UXSS attacks that 
were reported over the years 2014-2016, to draw conclusions about how to mitigate these 
issues in the future. Note that in that time range neither PlzNavigate nor Site Isolation features 
were enabled in Chromium. 
 
This research was mostly performed in early 2017. That is why we still refer to Site Isolation as 
an upcoming enhancement rather than an existing feature. 

4 

https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md
https://en.wikipedia.org/wiki/Browser_engine
https://crbug.com/368813
https://docs.google.com/document/d/1cSW8fpJIUnibQKU8TMwLE5VxYZPh4u4LNu_wtkok8UE/edit
https://groups.google.com/a/chromium.org/forum/#!msg/chromium-dev/oohIJSakwIQ/4G52DaVFAQAJ
https://crbug.com/664411#c31
https://www.google.com/about/appsecurity/chrome-rewards/index.html
https://cs.chromium.org/chromium/src/third_party/blink/renderer/bindings/core/v8/binding_security.cc?rcl=52716f040edbda1b9f34cd86034b890f94fefe67
https://v8.dev/docs/embed#security-model
https://www.chromium.org/Home/chromium-security/site-isolation


Bug Reports Analyzed 
More than a hundred Chromium issues were found using the following queries among the 
issues reported ​in 2014 - 2016​: 

● “UXSS”, “XSS”, “Universal XSS”. 
● “Cross-Site Scripting”, “Universal Cross-Site Scripting”. 
● “SOP Bypass”, “SOP”. 
● “Same Origin Policy”, “Same Origin Policy”. 
● “Cross-origin”, and some others. 

 
After the first pass and an initial analysis, ​63​ ​issues​ in the ​Chromium bug tracker​ were selected 
as ​valid UXSS reports​. After that, these ​63​ ​reports​ were tentatively clustered into different 
classes of vulnerabilities having a common root cause or exploitation pattern. Finally, these 
classes were refined and all the reports were strictly grouped into ​8 classes​. For more detailed 
information, please see the ​Analysis Of Bugs​ section. 

Distribution Over Time 

 

5 

https://bugs.chromium.org/p/chromium/


Analysis Of Bugs 
The following classes were defined from the analysis of UXSS exploits reported in Chromium in 
2014-2016 years. 

Class 1. [16 items] Blink: abusing parser initiated javascript: URI 
page loads 

Description 
The biggest vulnerability class in this research. 
 
One of the possible ways to trigger JavaScript execution is to perform javascript: URI 
navigation. Chromium used to check the origin of the current execution context to determine 
whether the load should succeed. If there was no active context on the stack, the browser 
considered the navigation safe. So, if an ​<iframe> ​ element had a cross-origin page loaded in 
it and was a part of a subtree that wasn’t attached to the document, it was possible to force the 
HTML parser to insert the element to the document and load an arbitrary javascript: URI. 

Hardening Measures 
A comment from Daniel Cheng (​dcheng@chromium.org​): 

We've had a longstanding assumption in the parser that it's always safe to execute a 
javascript:​ URL if there's no javascript context on the stack, we assume that this is 
parser triggered. Unfortunately, some of VRP reporters noticed this assumption, and 
combined this assumption with DOM corruption attacks: the DOM corruption is always a 
different source, but the goal of the DOM corruption is to trigger this assumption in a 
situation where it's dangerous. We finally landed general mitigations for this: see 
https://codereview.chromium.org/2502783004/​ and 
https://codereview.chromium.org/2190523002/​.  
 
One other thing I forgot to add: we should change ​javascript:​ navigations to never be 
synchronous. There are several instances where they are synchronous today, and it's 
only ever caused trouble. 

Reports 

# crbug date summary 

1 456518 7-Feb-2015 HTML parser may leave frame element in an incorrect state 

6 

https://codereview.chromium.org/2502783004/
https://codereview.chromium.org/2190523002/
https://bugs.chromium.org/p/chromium/issues/detail?id=456518


2 464552 5-Mar-2015 Heap-use-after-free in blink::ContainerNode::attach 

3 516377 3-Aug-2015 UAF/DOM tree corruption in 
blink::ContainerNode::parserRemoveChild 

4 519558 11-Aug-2015 Security: Universal XSS via ContainerNode::parserInsertBefore 

5 541206 8-Oct-2015 Security: Universal XSS using document.adoptNode 

6 556724 16-Nov-2015 Security: Universal XSS via persistence of subframes 

7 560011 22-Nov-2015 Security: Universal XSS using widget updates in 
ContainerNode::parserRemoveChild 

8 577105 13-Jan-2016 Security: Universal XSS by circumventing the unload event 

9 605766 21-Apr-2016 Security: Universal XSS through adopting image elements 

10 621362 19-Jun-2016 Security: Universal XSS with Flash calling into JavaScript inside 
Node::removedFrom 

11 630870 24-Jul-2016 Security: Universal XSS by intercepting a UA shadow tree 

12 645211 8-Sep-2016 Security: Universal XSS using blink::HTMLMarqueeElement 

13 655904 14-Oct-2016 Security: Universal XSS via fullscreen element updates 

14 658535 22-Oct-2016 Security: Universal XSS using an <input type="color"> element 

15 663476 8-Nov-2016 Security: Universal XSS through removing link elements 

16 668552 24-Nov-2016 Security: Universal XSS by polluting private scripts with named 
properties 

 

 

7 

https://bugs.chromium.org/p/chromium/issues/detail?id=464552
https://bugs.chromium.org/p/chromium/issues/detail?id=516377
https://bugs.chromium.org/p/chromium/issues/detail?id=519558
https://bugs.chromium.org/p/chromium/issues/detail?id=541206
https://bugs.chromium.org/p/chromium/issues/detail?id=556724
https://bugs.chromium.org/p/chromium/issues/detail?id=560011
https://bugs.chromium.org/p/chromium/issues/detail?id=577105
https://bugs.chromium.org/p/chromium/issues/detail?id=605766
https://bugs.chromium.org/p/chromium/issues/detail?id=621362
https://bugs.chromium.org/p/chromium/issues/detail?id=630870
https://bugs.chromium.org/p/chromium/issues/detail?id=645211
https://bugs.chromium.org/p/chromium/issues/detail?id=655904
https://bugs.chromium.org/p/chromium/issues/detail?id=658535
https://bugs.chromium.org/p/chromium/issues/detail?id=663476
https://bugs.chromium.org/p/chromium/issues/detail?id=668552


Class 2. [6 items] Blink: missing or incorrect usage of cross-origin 
access checks 

Description 
This class is relatively straightforward. When performing a sensitive operation, the browser 
should ensure that the current context (or the current page) has the appropriate permissions. In 
the bugs listed below the checks were either missing at all or were performed on a wrong 
context. 
 
Bug ​504011​ is a good example of the issue. First, an attacker leaks ​GetModuleSystem() 
function of ​V8ContextNativeHandler ​. Then, they call that function with a cross-origin 
window object of another origin. Actually, a cross-origin reference should not be created, but, 
due to a lack of an access check, that function call returns the requested module object in the 
context of the other origin. 
 
Bug fixes for this class of bugs are usually small, e.g. for the bug referenced above: 

● call a ​helper function for an access check​ from the vulnerable function; 
● and ​implement that helper​ using ​BindingSecurity ​ API. 

Hardening Measures 
See ​https://crbug.com/525330​: ​Null out ​DOMWindow::m_frame​ as soon as the frame/window 
is detached​. 
 
Chromium uses objects with different lifetimes to represent a page. For example, a ​Frame 
object is preserved between navigations, but a new ​DOMWindow ​ is created for every page load. 
DOMWindow ​ objects used to store a reference to the frame even after they had been detached. 
That led to a number of issues where the access check for a cross-origin frame was performed 
on a same-origin detached window. This patch made it possible to clear the frame reference. 

Reports 

# crbug date summary 

1 342618 11-Feb-2014 Security: UXSS via dispatchEvent on iframes (subject to some 
conditions) 

2 504011 24-Jun-2015 Security: Cross-origin scripting possible via module system leak 

3 522791 20-Aug-2015 Security: Universal XSS using navigator.serviceWorker.ready 

4 524074 24-Aug-2015 Security: Universal XSS by loading a javascript: URI from an unloaded 

8 

https://bugs.chromium.org/p/chromium/issues/detail?id=504011
https://cs.chromium.org/chromium/src/extensions/renderer/v8_context_native_handler.cc?rcl=7c874dddfb6568a30b0b59b072488b56dbc961f8
https://codereview.chromium.org/1235863003/diff/1/extensions/renderer/v8_context_native_handler.cc
https://codereview.chromium.org/1235463006/diff/1/Source/web/WebLocalFrameImpl.cpp?context=10&column_width=80&tab_spaces=8
https://bugs.chromium.org/p/chromium/issues/detail?id=525330
https://bugs.chromium.org/p/chromium/issues/detail?id=342618
https://bugs.chromium.org/p/chromium/issues/detail?id=504011
https://bugs.chromium.org/p/chromium/issues/detail?id=522791
https://bugs.chromium.org/p/chromium/issues/detail?id=524074


window 

5 529682 9-Sep-2015 Content script is able to eval code in background page of other 
extension 

6 638742 17-Aug-2016 Security: Universal XSS using 
ThreadDebugger::setMonitorEventsCallback 

 

 

Class 3. [10 items] Blink and V8: incorrect context used 

Description 
When creating a new JS wrapper object, Blink methods often have to determine the correct 
creation context. Bugs in this class occur when the value used as the creation context source is 
controllable by a user. 
 
Consider bug ​632634​ as an example. ​Bindings code for static methods​ allowed 
info.Holder() ​ (a method of its argument) to be set to an arbitrary value. Then, the creation 
context of ​info.Holder() ​ could be used to return a ​ScriptState ​ object, which ended up 
as a cross-origin reference when executed from a static method. 
 
The fix contained ​two different implementations​ of previously vulnerable ​forHolderObject() 
function (​forFunctionObject() ​ and ​forReceiverObject() ​) to be used based on 
whether the calling ​method​ or ​attribute​ is static or not. 
 
A number of issues in this class abused JS exception creation. Bug ​453979​ is a good example: 

When a DOM method throws an exception, the creation context for the exception object 
is inherited from the object the method is called on even if it's from a different origin. The 
created object doesn't have any access checks so an attacker can use it to obtain a 
reference to e.g. the function constructor. 

9 

https://bugs.chromium.org/p/chromium/issues/detail?id=529682
https://bugs.chromium.org/p/chromium/issues/detail?id=638742
https://bugs.chromium.org/p/chromium/issues/detail?id=632634
https://cs.chromium.org/chromium/src/third_party/WebKit/Source/bindings/templates/methods.cpp?rcl=1c815652bc24a83da99ca473d489accdeeafa435&l=236
https://codereview.chromium.org/2199643003/diff/40001/third_party/WebKit/Source/bindings/core/v8/ScriptState.h
https://codereview.chromium.org/2199643003/diff/40001/third_party/WebKit/Source/bindings/templates/methods.cpp?context=10&column_width=80&tab_spaces=8
https://codereview.chromium.org/2199643003/diff/40001/third_party/WebKit/Source/bindings/templates/attributes.cpp?context=10&column_width=80&tab_spaces=8
https://bugs.chromium.org/p/chromium/issues/detail?id=453979


 
Fixes for these issues typically include ​sanitization of a creation context​ when throwing an 
exception. ​Another fix​ was landed to convert cross-site exceptions into security errors. 
 
Lastly, ​583445​ is another notable example. In that case the browser didn’t update the execution 
context after navigation, so the new page would run JavaScript in the context of the previous 
one. 

Reports 

# crbug date summary 

1 453979 30-Jan-2015 Security: UXSS in V8 with exception object 

2 494640 31-May-2015 Security: Universal XSS using IDBKeyRange static methods 

3 530301 10-Sep-2015 Security: Universal XSS using stack overflow exceptions 

4 531891 15-Sep-2015 Security: Universal XSS using exceptions thrown from Object.observe 

5 583445 2-Feb-2016 Universal XSS in DocumentLoader::createWriterFor 

6 605910 22-Apr-2016 Security: Universal XSS using iterables 

7 607483 28-Apr-2016 Security: Universal XSS converting IDL array/sequence values 

8 616225 31-May-2016 Security: Universal XSS in V8Console::memoryGetterCallback 

9 632634 29-Jul-2016 Security: Universal XSS with static methods and 
ScriptState::forHolderObject 

10 656274 15-Oct-2016 Security: Cross-origin object leak via fetch 

 

10 

https://codereview.chromium.org/893813002/diff/40001/Source/bindings/core/v8/V8ThrowException.cpp
https://codereview.chromium.org/1339023002/diff/40001/Source/bindings/core/v8/V8DOMWrapper.cpp
https://bugs.chromium.org/p/chromium/issues/detail?id=583445
https://bugs.chromium.org/p/chromium/issues/detail?id=453979
https://bugs.chromium.org/p/chromium/issues/detail?id=494640
https://bugs.chromium.org/p/chromium/issues/detail?id=530301
https://bugs.chromium.org/p/chromium/issues/detail?id=531891
https://bugs.chromium.org/p/chromium/issues/detail?id=583445
https://bugs.chromium.org/p/chromium/issues/detail?id=605910
https://bugs.chromium.org/p/chromium/issues/detail?id=607483
https://bugs.chromium.org/p/chromium/issues/detail?id=616225
https://bugs.chromium.org/p/chromium/issues/detail?id=632634
https://bugs.chromium.org/p/chromium/issues/detail?id=656274


Class 4. [11 items] Navigation: isNavigationAllowed() bypass, 
missing or bypassed ScriptForbiddenScope, etc 

Description 
This is the most recent class of vulnerabilities. 7 of 8 bugs here were reported in 2016 (see the 
chart below). 
 
The class combines bugs that have used weaknesses in the page navigation logic to break one 
of two invariants. The first one is that it’s impossible to perform a synchronous cross-origin page 
load. It could lead to UXSS because of the TOCTOU issue related to loading ​javascript: 
URIs in ​<iframe> ​ elements. The second one is that two documents cannot be attached to the 
same ​Frame ​ object simultaneously. If one of the documents is same-origin, and the other is 
cross-origin, the attacker can use the former to modify the latter while the ​Frame ​ acts as a 
proxy. 
 
Bug ​616907​ is a good example: 

This is an architectural problem with the implementation of 
ScopedPageLoadDeferrer​. Basically, it works by marking pages as deferred at the 
time a deferrer is instantiated. The issue is that pages created past this point don't defer 
loads by default. An attacker can move an iframe across the deferral boundary, which 
allows synchronous cross-origin navigations in unexpected circumstances. 

 
And the fix was to ​disable opening new pages while the deferrer is instantiated​. 
 
Another notable case is bug ​600182​: 

When a ​ScopedPageLoadDeferrer​ is destroyed, the deferring state is updated on the 
associated pages and loaders. If any history load was set aside during the event loop 
the deferrer has been protecting, it's processed during the update without checking if 
navigation is allowed on the frame. 
This opens an avenue for an attacker to bypass the ​FrameNavigationDisabler​. 

 
The fix against this one was to ​move ​isNavigationAllowed() ​ check to main entry point for 
loads​. 

Hardening Measures 
See ​https://crbug.com/629431​: ​Security: extension system must respect the page load deferrer​. 
 
Several bugs in this category relied on using a nested event loop to perform page loads. After 
the load has been completed, the exploit has to continue its execution, however, it's not possible 

11 

https://bugs.chromium.org/p/chromium/issues/detail?id=616907
https://codereview.chromium.org/2035973002
https://bugs.chromium.org/p/chromium/issues/detail?id=600182
https://codereview.chromium.org/1858833003/
https://codereview.chromium.org/1858833003/
https://codereview.chromium.org/1858833003/
https://codereview.chromium.org/1858833003/
https://bugs.chromium.org/p/chromium/issues/detail?id=629431


to schedule a JavaScript callback inside a nested loop with a regular timeout or promise. The fix 
addressed a problem in the extension API which allowed an attacker to bypass the restriction. 

Reports 

# crbug date summary 

1 546545 22-Oct-2015 Security: Universal XSS using plugin objects 

2 597532 24-Mar-2016 Security: Universal XSS using a FrameNavigationDisabler bypass 

3 600182 3-Apr-2016 Security: Universal XSS using deferred history loads 

4 601706 8-Apr-2016 Security: Universal XSS using a flaw in the load deferral logic 

5 613266 19-May-2016 Security: Universal XSS via reentrancy in FrameLoader::startLoad 

6 616907 2-Jun-2016 Security: Universal XSS using a ScopedPageLoadDeferrer bypass 

7 617495 6-Jun-2016 Security: Universal XSS via same document navigations 

8 628942 17-Jul-2016 Security: Universal XSS with ScopedPageLoadDeferrer and 
RemoteFrame 

9 646610 13-Sep-2016 Security: Universal XSS using OOPIF 

10 671102 5-Dec-2016 Security: Universal XSS through bypassing ScopedPageSuspender 
with closing windows 

11 673170 11-Dec-2016 Security: Universal XSS using late widget updates 

 

Class 5. [8 items] Extensions API: leak of a function or an object 
and use of an arbitrary or a hijacked createContext 

Description 
The extensions system has access to some JavaScript internals and also provides a public API 
to the user context. Due to different mistakes in the API implementation, there were a few tricks 

12 

https://bugs.chromium.org/p/chromium/issues/detail?id=546545
https://bugs.chromium.org/p/chromium/issues/detail?id=597532
https://bugs.chromium.org/p/chromium/issues/detail?id=600182
https://bugs.chromium.org/p/chromium/issues/detail?id=601706
https://bugs.chromium.org/p/chromium/issues/detail?id=613266
https://bugs.chromium.org/p/chromium/issues/detail?id=616907
https://bugs.chromium.org/p/chromium/issues/detail?id=617495
https://bugs.chromium.org/p/chromium/issues/detail?id=628942
https://bugs.chromium.org/p/chromium/issues/detail?id=646610
https://bugs.chromium.org/p/chromium/issues/detail?id=671102
https://bugs.chromium.org/p/chromium/issues/detail?id=673170


used to abuse extensions API. 
 
The main idea of all bugs in this class is to leak an internal object. For example, bug ​590275​: 

RequireForJsInner​ calls ​GetProperty​ on the internal object that is used to store 
exported functions for the module system. A getter function defined on 
Object.prototype​ could leak that object. 
 

Then, the leaked object is being used to gain a cross-origin access, for example: 
● via native functions such as user_gestures.RunWithUserGesture in bug ​590118​; 
● by abusing ​SendRequestNatives::GetGlobal ​ to obtain a victim windows object in 

bug ​546677​. 
 
There were different fixes applied against different bugs. Notable examples are: 

● Stop using the given ​creationContext ​ in public APIs​. 
● Harden against bindings interception​. 

Reports 

# crbug date summary 

1 497507 6-Jun-2015 Security: Cross-origin scripting possible via native functions 

2 534923 22-Sep-2015 Security: Universal XSS via the unload_event module 

3 546677 22-Oct-2015 Universal XSS with SendRequestNatives::GetGlobal 

4 590118 26-Feb-2016 Security: Universal XSS using an intercepted native function 

5 590275 26-Feb-2016 Internal object leak in ModuleSystem::RequireForJsInner => Universal 
XSS 

6 598165 26-Mar-2016 Security: Universal XSS via the interception of |Binding| with 
Object.prototype.create 

7 601073 6-Apr-2016 Security: Universal XSS in extension bindings 

8 604901 19-Apr-2016 Security: Persistent UXSS via SchemaRegistry 

 

13 

https://bugs.chromium.org/p/chromium/issues/detail?id=590275
https://bugs.chromium.org/p/chromium/issues/detail?id=590118
https://bugs.chromium.org/p/chromium/issues/detail?id=546677
https://codereview.chromium.org/1166793006/
https://codereview.chromium.org/1166793006/
https://codereview.chromium.org/1166793006/
https://codereview.chromium.org/1748943002/
https://bugs.chromium.org/p/chromium/issues/detail?id=497507
https://bugs.chromium.org/p/chromium/issues/detail?id=534923
https://bugs.chromium.org/p/chromium/issues/detail?id=546677
https://bugs.chromium.org/p/chromium/issues/detail?id=590118
https://bugs.chromium.org/p/chromium/issues/detail?id=590275
https://bugs.chromium.org/p/chromium/issues/detail?id=598165
https://bugs.chromium.org/p/chromium/issues/detail?id=601073
https://bugs.chromium.org/p/chromium/issues/detail?id=604901


Class 6. [3 items] V8: missing or incorrect usage of access check 

Description 
This class is similar to class 2, the only difference is that the missed checks should be on the V8 
side. 
 
Consider bug ​354123​ as an example: 

The current implementation of ​Object.setPrototypeOf​ doesn't have any security 
checks. To exploit this as a UXSS an attacker could replace the victim's window 
prototype with an object which has default methods/property accessors redefined to leak 
an object from the victim's JS context. 

 
The ​fix for this issue​ was pretty small. Required access check calls were added. 

Reports 

# crbug date summary 

1 354123 19-Mar-2014 UXSS with Object.setPrototypeOf 

2 455961 6-Feb-2015 Cross origin access with window.name and 
Object.getOwnPropertyDescriptor 

3 619166 10-Jun-2016 Universal XSS with global proxies, interceptors, and synchronous 
page loads 

 

 

Class 7: [3 items] Flash-specific issues 

Description 
The Flash plugin has its own implementation of the SOP policy. This class combines missing 
security checks in the plugin itself and issues in the code responsible for Flash support in 

14 

https://bugs.chromium.org/p/chromium/issues/detail?id=354123
https://codereview.chromium.org/205033011/diff/1/src/runtime.cc
https://bugs.chromium.org/p/chromium/issues/detail?id=354123
https://bugs.chromium.org/p/chromium/issues/detail?id=455961
https://bugs.chromium.org/p/chromium/issues/detail?id=619166


Chromium. 
 
Most of the bugs in this class were fixed by Adobe. The fix for ​569496​ was to ​suppress page 
loads inside ​PPB_Flash_MessageLoop ​. 

Reports 

# crbug date summary 

1 425280 20-Oct-2014 Security: Flash Cross Domain Policy Bypass by Using File Upload and 
Redirection - only in Chrome 

2 481639 27-Apr-2015 Security: Boundless Tunes - universal SOP bypass through 
ActionSctipt's Sound object 

3 569496 14-Dec-2015 Security: Universal XSS using Flash message loop 

 

 

Class 8. [6 items] Custom issues: external dependencies, custom 
modes (e.g. Design mode, DevTools), plugins (e.g. Pepper), 
special resource types 

Description 
This class contains reports exploiting different parts of Chromium codebase without any 
common pattern. Each of these bugs can be moved to a singleton class, but putting them into a 
single bucket of custom issues seems slightly more reasonable. 
 
Due to the different nature of the vulnerabilities, the fixes were very different as well. 
 
One pattern that is common for two issues in this class (​429542​ and ​594383​) is that both 
vulnerabilities were caused by a special handling of the ​file:// ​ scheme. The fixes were the 
following: 

● Make “​file: ​” to be an effectively unique origin​. 

15 

https://bugs.chromium.org/p/chromium/issues/detail?id=569496
https://codereview.chromium.org/1559113002
https://codereview.chromium.org/1559113002
https://codereview.chromium.org/1559113002
https://bugs.chromium.org/p/chromium/issues/detail?id=425280
https://bugs.chromium.org/p/chromium/issues/detail?id=481639
https://bugs.chromium.org/p/chromium/issues/detail?id=569496
https://bugs.chromium.org/p/chromium/issues/detail?id=429542
https://bugs.chromium.org/p/chromium/issues/detail?id=594383
https://codereview.chromium.org/1140203002
https://codereview.chromium.org/1140203002
https://codereview.chromium.org/1140203002


● Apply ​WebSettings ​ before initializing the main frame​. 

Reports 

# crbug date summary 

1 429542 2-Nov-2014 Security: file-to-file SOP bypass on Linux via /proc/self/fd/ 

2 444927 23-Dec-2014 Security: Inherited designMode and cross-window drag-n-drop allow 
to modify a cross-origin iframe's DOM 

3 462843 28-Feb-2015 Security: UXSS in AuthenticatorHelper 

4 569955 15-Dec-2015 Security: Universal XSS by using fullscreen API 

5 594383 13-Mar-2016 Security: UXSS via window.open() via file:// pages 

6 637594 14-Aug-2016 Security: Universal XSS using DevTools 

 

16 

https://codereview.chromium.org/1799423003/diff/80001/content/renderer/render_view_impl.cc
https://codereview.chromium.org/1799423003/diff/80001/content/renderer/render_view_impl.cc
https://codereview.chromium.org/1799423003/diff/80001/content/renderer/render_view_impl.cc
https://bugs.chromium.org/p/chromium/issues/detail?id=429542
https://bugs.chromium.org/p/chromium/issues/detail?id=444927
https://bugs.chromium.org/p/chromium/issues/detail?id=462843
https://bugs.chromium.org/p/chromium/issues/detail?id=569955
https://bugs.chromium.org/p/chromium/issues/detail?id=594383
https://bugs.chromium.org/p/chromium/issues/detail?id=637594


Distribution Of Reports Among Different Classes 

 

Combined View Over Time 

 

17 



UXSS In Other Browsers 
Chromium is not unique to have vulnerabilities leading to UXSS. Every major browser has had 
such bugs in the past. Let’s consider a few examples and compare them to the categories 
defined for Chromium. 

Safari 
Chromium and Safari used to share the same rendering engine (WebKit), so a lot of older bugs 
listed in this paper affect Safari as well. One of the more recent examples is 
https://bugs.chromium.org/p/project-zero/issues/detail?id=1068​. Even though it’s a bug in the 
bindings for JavaScriptCore, Safari’s JavaScript engine which is different from Chromium’s V8, it 
exactly matches the class 3. One of the arguments was used to determine the creation context 
for an exception object. An attacker could pass a cross-origin object as the argument to obtain a 
cross-origin exception which exposed the other origin’s ​Function ​ constructor. 
 
The fix modified the function to ​obtain the context directly​ through an additional argument. 

Edge 
CVE-2017-0002​ demonstrates a bug in dealing with ​about:blank ​ pages. Such pages are 
special in a way that it’s not possible to derive their origin from the URL, instead they inherit the 
origin of either an opener or a parent page. Implementing this behaviour incorrectly might lead 
to violations of SOP. In this particular case the problem was that an ​about:blank ​ page that 
didn’t inherit the origin (i.e. had an empty one) was able to access any other ​about:blank 
page. This vulnerability is actually almost identical to an old Chromium bug ​89453​. As for 
classification, it falls under class 8. 
 
Unfortunately, there is no public link to the fix. 

Firefox 
In one notable ​vulnerability​ in Firefox, incorrect handling of special characters allowed an 
attacker to spoof the page URL. Even though the internal code would still be able to determine 
the origin correctly from the spoofed URL, the Flash plugin treated the spoofed part as the 
actual domain. So, the attacker could run ActionScript code in the context of the victim page. 
This bug belongs to class 7. 
 
The fix was to ​improve URL validation​. 

18 

https://bugs.chromium.org/p/project-zero/issues/detail?id=1068
https://trac.webkit.org/changeset/210468/webkit
https://nvd.nist.gov/vuln/detail/CVE-2017-0002
https://crbug.com/89453
https://bugzilla.mozilla.org/show_bug.cgi?id=1199430
https://hg.mozilla.org/releases/mozilla-beta/diff/%20cdc65a3f9b02/netwerk/base/nsStandardURL.cpp


Takeaway 
As one can see, the bug classes introduced in this document apply to other browsers as well, 
moreover, some of the aforementioned bugs are identical for different browsers. That leads to 
the conclusion that this paper might also be useful for reasoning about UXSS defenses in 
browsers other than Chromium. 

Potential Mitigations And Countermeasures 
This section presents several ideas that are intended to either detect or mitigate bugs leading to 
UXSS, as well as the caveats that come with these methods. These ideas are not tied to any 
particular classes described above and aim to be rather generic approaches. 

DataFlowSanitizer Instrumentation 
DataFlowSanitizer​ is a memory tool for a generalised dynamic data flow analysis. ​DFSan API 
allows to mark any byte in memory with a tag. DFSan will propagate the tags as the data is 
copied around. For some operations (e.g. addition), the tags will be joined to form new 
combined tags if the source operands have different tags. Then, at any point of the program 
execution, we may query which tags are attached to particular bytes of memory. 
 
In theory, this approach might have allowed to ultimately track which origins the objects are 
associated with, and perform access checks based on the DFSan tags assigned. However, this 
approach seemed to be too low level for that kind of bugs. It would not be possible to assign 
proper tags for memory bytes inside basic types such as ​WTF::String​ or ​WTF::Vector​, as 
objects of those types are not aware of their associated origins or even associated frames. 

Origin Sanitization Via DOM Wrappers 
Another proposal that has been discussed previously is called “​Per-origin Memory Protection​”. A 
brief summary of that proposal is to associate origins with DOM wrappers and hook all entry 
points from V8 to Blink (and probably some entry points from Blink to V8). 
 
As it was discussed in the proposal document, protecting a wrapper access is not sufficient to 
prevent UXSS exploits. There are many ways to exploit a UXSS without going through 
wrappers. Due to that, it might not be a great idea, though anyway it should be helpful for 
preventing many vulnerabilities leading to UXSS. 

19 

http://clang.llvm.org/docs/DataFlowSanitizer.html
http://llvm.org/svn/llvm-project/compiler-rt/trunk/include/sanitizer/dfsan_interface.h
https://docs.google.com/document/d/1DbNCWB6O_sD_oBTCMxdH8A5a0fUCYIMx1I2ytSotKSk/edit


Fuzzing For UXSS 
Several bug reports (such as ​https://crbug.com/497507​ and ​https://crbug.com/504011​) use the 
following approach to demonstrate a UXSS exploitation. A harmless ​parent.html​ page embeds 
child.html​ page, which performs the exploitation and eventually gets access to the parent page. 
The access is then demonstrated by modifying the background color of the parent page. 
 
Assuming that there is a possibility that the cross-origin access can be obtained by executing a 
JavaScript code produced by a fuzzer, we can approach the fuzzing in the following way. 
 

1) The fuzzing process operates on a pair of html files: 
● parent.html​ is a harness with a constant content that looks roughly as follows: 

<!doctype html> 

<​title​>Parent</​title​> 
<​body​> 
<​script​> 
... 

var​ savedState = deepCopy(window); 
setTimeout(() => verifyState(window, savedState), TIMEOUT); 

</​script​> 
<​iframe​ sandbox=​"allow-scripts"​ src=​"child.html"​></​iframe​> 
</​body​> 

 
● child.html​ contains generated JavaScript code and performs arbitrary API 

method calls and DOM tree manipulations. It’s possible to use existing fuzzers to 
generate such files. 

 
2) The ​deepCopy ​ method creates a snapshot of the current state of JavaScript’s  ​window 

object. Since most DOM objects usually have JS wrappers that are reachable from 
window ​, they are also included in the snapshot. 
 

3) After the code in ​child.html​ had some time to run, ​verifyState ​ traverses through the 
object tree and compares it to the snapshot. A mismatch would likely indicate an SOP 
violation. 

 
Another idea how to use fuzz testing to discover SOP bypasses might be applied on top of the 
existing fuzzers. The proposal is to verify ​document.origin ​ at the end of every test case 
generated by existing fuzzers. A bug should be reported, if the ​origin ​ value is either: 

● not equal to ​http://localhost:8000 ​ for test cases served via HTTP; 
● not equal to ​null ​ for test cases opened directly from the disk. 

 
However, as it was described above in the document, the majority of the known SOP bypasses 

20 

https://bugs.chromium.org/p/chromium/issues/detail?id=497507
https://bugs.chromium.org/p/chromium/issues/detail?id=504011


are logical bugs rather than memory corruption ones. Due to that, an automated generation of 
payloads triggering SOP bypasses would be much harder than generation of payloads 
triggering memory corruption errors via random manipulations done with different JavaScript 
objects. 
 
Another interesting point (which explains the lack of UXSS obtained via memory corruption), is 
that a Code Execution exploit in the renderer process is essentially equivalent to a UXSS. The 
reason being that a Code Execution makes it possible for an attacker to overwrite the security 
checks and obtain a cross-origin access. [​Note:​ this is not applicable after ​PlzNagivate​ launch]. 

Site Isolation 
The vast majority of the vulnerabilities analyzed during the research were using cross-site 
frames. In such case, different origins would normally share the same renderer process. 
Because of that, there is a large attack surface available for SOP bypassing: 

● Logical bugs in Blink, Bindings, V8. 
● Extensions and other APIs. 
● Memory corruption bugs leading to RCE. 

 
Site Isolation​ project aims to add support for a ​site-per-process​ policy that ensures all renderer 
processes contain documents from at most one website. In early 2017, when this research was 
originally conducted, Site Isolation looked very promising and valuable for mitigating UXSS 
attacks. 
 
Now that Site Isolation is available [​Note:​ ​Site Isolation was deployed in desktop Chromium in 
the middle of 2018​], a compromised renderer is not able to access another site without 
bypassing the sandbox restrictions, which significantly elevates the cost of an attack, as the 
sandbox attack surface is much smaller compared to the attack surface described above. 
 
It's worth noting that Site Isolation still has some limitations. First of all, the Site Isolation ​design 
document​ has a strict definition for a site: a page's site includes the scheme and registered 
domain name, including the public suffix, but ignoring subdomains, port, or path. That doesn't 
exactly match the definition of an origin, otherwise some browser features (e.g. 
document.domain modification) would be extremely difficult to implement. Therefore Site 
Isolation will not protect from UXSS when an attacker is able to run JavaScript within the same 
second-level domain and scheme as the victim. 
 
Secondly, several web features like ​<img> ​ and ​<script> ​ historically allow cross-origin 
requests. Chromium uses Cross-Origin Resource Blocking (CORB) to prevent using them as a 
way to leak sensitive cross-origin data. However, CORB uses content type sniffing, which might 
yield incorrect results in some corner cases, and only protects JSON, XML and HTML data, so it 
will not stop the attacker from stealing JS, CSS and media files. 

21 

https://docs.google.com/document/d/1cSW8fpJIUnibQKU8TMwLE5VxYZPh4u4LNu_wtkok8UE/edit
https://www.chromium.org/developers/design-documents/site-isolation
https://security.googleblog.com/2018/07/mitigating-spectre-with-site-isolation.html
https://security.googleblog.com/2018/07/mitigating-spectre-with-site-isolation.html
https://www.chromium.org/developers/design-documents/site-isolation
https://www.chromium.org/developers/design-documents/site-isolation


Conclusion 
Site Isolation​ is the most promising countermeasure against UXSS attacks. Not only because it 
is the most viable of the ideas considered above in the document, but mainly because it will 
break the vast majority of UXSS exploits which rely on the availability of cross-origin frames in 
the same process. After deploying Site Isolation in Chromium, the cost of developing a UXSS 
exploit will be very close to the cost of developing a full RCE exploit, including the sandbox 
escape, which is considered to be the most complicated and expensive component of an exploit 
chain. 
 

22 

https://www.chromium.org/developers/design-documents/site-isolation

