
Nines are Not Enough:
Meaningful Metrics for Clouds

Jeffrey C. Mogul
John Wilkes
Google Inc.

Mountain View, CA

Abstract

Cloud customers want strong, understandable promises
(Service Level Objectives, or SLOs) that their applications
will run reliably and with adequate performance, but cloud
providers don’t want to offer them, because they are techni-
cally hard to meet in the face of arbitrary customer behav-
ior and the hidden interactions brought about by statistical
multiplexing of shared resources. Existing cloud SLOs are
more concerned with defending against corner cases than
defining normal behavior. This and other tensions make
SLOs surprisingly hard to define.We show that this problem
shares some similarities with the challenges of applying sta-
tistics to make decisions based on sampled data. We argue
that a mutually beneficial set of Service Level Expectations
(SLEs) and Customer Behavior Expectations (CBEs) amelio-
rates many of the problems of today’s SLOs by explicitly
sharing risk between customer and service provider.

ACM Reference Format:

Jeffrey C. Mogul and John Wilkes. 2019. Nines are Not
Enough: Meaningful Metrics for Clouds. In Workshop on

Hot Topics in Operating Systems (HotOS ’19), May 13–15,

2019, Bertinoro, Italy. ACM, New York, NY, USA, 6 pages.
h�ps://doi.org/10.1145/3317550.3321432

1 Introduction

One way to meet several types of strict service-level guar-
antees is to provision sufficient resources to meet worst-
case (peak) demands, and sufficient underlying redundancy
to tolerate all conceivable faults. But most cloud customers
want low-cost service, and the ability to rapidly adjust up,
or down, the resources they are using/paying for. So to
meet cost goals, providers cannot overprovision, and must
multiplex customers onto more-or-less oversubscribed re-
sources. This means that the interests of cloud customers
and providers are inherently at odds (the “Principal-Agent

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

HotOS ’19, May 13–15, 2019, Bertinoro, Italy

© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6727-1/19/05.
h�ps://doi.org/10.1145/3317550.3321432

Problem"), and we need contractual agreements, Service
Level Agreements (SLAs), to re-align their interests.
An SLA is a promise by the provider that, in exchange

for payment, it will meet certain customer-visible behav-
iors known as Service Level Objectives (SLOs) or make up
for it – an SLA is an SLO plus consequences [3, Ch. 4], typ-
ically financial (e.g., refunds). Most commercial SLAs con-
cern availability, and don’t address the potential effects of
resource under-provisioning, leaving the Principal-Agent
Problem unresolved.
Creating an SLA seems simple: define one ormore SLOs as

predicates on clearly-defined measurements (Service Level

Indicators, or SLIs), then have the business experts and
lawyers agree on the consequences, and you have an SLA.
Sadly, in our experience, SLOs are insanely hard to spec-

ify. Customers want different things, and they typically can-
not describe what they want in terms that can be measured
and in ways that a provider can feasibly commit to promis-
ing. Real requirements are complicated; a single, one-size-
fits-all SLO will likely be unsatisfactory to most customers:
far removed from their desires, incomplete, or both. A bas-
ket of many simple SLOs could more faithfully reflect their
needs, but customers and product managers want simple
agreements, and prior work suggests that the “basket" ap-
proach could be gamed by an unscrupulous provider [2].
SLOs can also be a blunt tool. Providers want to limit SLA

payouts on SLO violations to rare, egregious events; and
because lawyers tend to think in binary terms, so are con-
sequences: either a contracted service level was met, or it
wasn’t. But blunt tools are seldom the best way to manage a
provider’s internal processes, which involve lots of complex
tradeoffs.
We can do better – by thinking less like lawyers andmore

like statisticians. Suppose we looked at SLOs as a tool to
manage a complex set of risks, the same way the medical
profession attempts to manage (say) the risks of a cancer
treatment vs. its benefits. Lessons from statistics, and deci-
sion theory (“the science of making decisions under uncer-
tainty" [6]) might provide us a path towards a principled
approach to SLO definition.
In this paper, we will first explain why SLO definition is

harder than it might seem. We will then describe an anal-
ogy between defining SLOs and doing statistical reasoning.
Finally, we will speculate on how to build from that analogy

https://doi.org/10.1145/3317550.3321432
https://doi.org/10.1145/3317550.3321432


HotOS ’19, May 13–15, 2019, Bertinoro, Italy Jeffrey C. Mogul and John Wilkes

towards a principled approach, based on managing risks in-
stead of managing outcomes.

1.1 A little more terminology

To define an SLO, we start with one or more Service Level

Indicators (SLIs). An SLI is something you can measure; an
SLO is a predicate over a set of SLIs. A simple SLO might
just be a fixed threshold on a single SLI; for example, that
the “monthly uptime percentage" for a VM is at least 99.99%.
Here, the uptime percentage is the SLI, and “≥99.99%" is the
predicate.1

A lot of complexity hides within innocuous-looking
phrases such as “monthly uptime percentage." At what gran-
ularity is it specified, measured, and aggregated (seconds?
minutes?); calendar months or rolling 30-day periods?What
does “up" mean: when the VM is provisioned, or actually
running an OS?); does the VM have to be reachable from
the Internet âĂŞ and how is this tested? Do performance
brownouts during VM migrations count as outages? It’s
even more complicated to define something like uptime of a
set of VMs across multiple availability zones in one region,
because that depends on the customer’s failover model: 2-
way redundancy, or N+1?

In addition to customer-facing SLOs, where the conse-
quences are financial penalties, a provider will also define
internal SLOs, well-defined predicates used to tell if various
internal aspects of their systems are functioning as intended.
For example, a short-term internal SLO might trigger an
alert for operators to take preventive action, long before cus-
tomers see any impact. A long-term internal SLO could help
detect when parts are failing sooner than expected. One can
also think of internal SLAs, based on internal consequences:
e.g., operators might be overwhelmed by alerts, or receive a
bonus for managing the system particularly well.
It is not easy to define internal SLOs, either, or to align in-

ternal SLOs with customer-facing SLOs, so that an internal
SLO violation will always happen in advance of customer-
facing SLO violations.

2 Many flavors of SLOs

Often, technical people focus on the SLOs rather than the
SLAs, and therefore treat all SLOs as variations on a single
theme. However, in the real world, there are different kinds
of consequences, and it is important to define SLOs that are
matched to the right kind of consequences.
Previous work [5] suggested dividing SLOs into two cate-

gories, “tactical" (short-term, aimed what “what do we need

1 These examples often involve quantities like 99.9% or 99.99%. People use
the shorthand “3 nines" or “4 nines", respectively, to refer to those per-
centiles, or “4 and a half nines" to describe 99.995%. This shorthand can
obscure the huge difference that “adding a nine" implies; going from 99.99%
to 99.999% uptime means reducing downtime from 263 to 26.3 seconds per
month, which, when sustained for a cloud-scale system over long periods,
is an astounding feat of engineering.

to fix now?") and “strategic" (long-term, aimed at designers
of dependent systems). We see a need for a larger set of “fla-
vors," based on a categorization of consequences (in bold):
• Contractual SLOs, to support legal agreements, where the
consequences are typically financial penalties – the tra-
ditional definition of an SLA. (Contractual SLAs also send
signals to potential customers: “we believe enough in our
service’s SLO that we’re willing to bet real money on it.")
Because contractual SLOs are aimed at bad outcomes, they
are often far from the expected outcomes, and few cus-
tomers would be happy if a system only met its contrac-
tual SLOs.

• Competitive (or “customer satisfaction") SLOs address this
gap, by defining “Service Level Expectations" (SLEs) aimed
at keeping customers happy. Such SLOs might be tighter
than the contractual ones (e.g., 5 nines instead of 4 nines),
or cover properties that are too hard or too risky to put
into contracts. As a result, SLEs are usually internal (not
exposed to customers) – so customers cannot rely on them,
and resort to behaviors such as benchmarking to learn
what they can expect.

• Compositional uses of SLOs, which system designers can
use to understand what they can depend on. E.g., an SLO
that says that VM failures in two different “availability
zones" are uncorrelated allows the designer of a higher-
level system to design fault-tolerance mechanisms and to
estimate the risk of failure for that system. (Sometimes
these are contractual, sometimes they are internal.)

• Control loop SLOs, which allow a provider to actively

manage its systems in order to meet other kinds of SLOs.
E.g., a control-loop SLO violation could alert an opera-
tor to repair something before there are any violations of
other SLOs. On an even shorter timescale, an SLO for net-
work link utilization could trigger automated shedding of
low-priority load. On a longer timescale, a capacity plan-
ner could look at increases in resource utilization as a sig-
nal to order more equipment. A vice president might look
at an SLO for help-desk response times to decide when to
hire more technicians – or when to replace their boss.
It is usually a mistake to try to support two or more kinds

of flavors with the same SLO, because the appropriate SLIs
and/or predicates differ (especially in timescale). The result-
ing compromise satisfies nobody; attempts to craft a com-
promise leads to long, fruitless discussions when the par-
ties do not even realize they are trying to solve two distinct
problems with one SLO.
While only the first flavor of SLOs (“contractual SLOs") is

typically associated with formal, lawyer-defined SLAs, we
suggest that it is still useful to think of all flavors in terms
of informal consequences (e.g., “my pager won’t go off" or “I
won’t get fired"), because that helps to focus on exactlywhat
SLOs we need, and how carefully they need to be specified.
We have seen attempts to use SLOs to solve problems

for which SLOs are inappropriate. For example, debugging



Nines are Not Enough: Meaningful Metrics for Clouds HotOS ’19, May 13–15, 2019, Bertinoro, Italy

should be based on SLIs, or other non-SLI measurements
(such as packet traces), not SLOs, because the use of aggre-
gation or thresholds in the definition of an SLO’s predicate
inherently loses most of the data from the SLIs.2 If debug-
gers need predicates to filter out noise in SLIs, these should
be treated as sui generis filters, not as an added requirement
for a true SLO.

3 What makes SLO definitions hard?

In our own attempts to define meaningful, practical SLOs,
we have learned several lessons. (Here, “meaningful" means
that customers can understand and benefit from an SLO;
“practical" means that one can accurately and cheaply col-
lect the SLI data, and process it to compute the SLO’s predi-
cate.) These lessons include:
•We need SLOs because we want to protect against the con-
sequences defined by SLAs. Even within one “flavor" as
described above, there are many kinds of consequences.
Therefore, we need lots of SLOs (often, multiple SLOs per
flavor).

• However, SLOs are not free. We have to spend resources
collecting and processing the data that allows us to com-
pute an SLO’s predicate, without significantly interfering
with “real" work – and without compromising security or
privacy of cloud customers and their own users. We often
must aggregate data to reduce costs, which loses fidelity.
(These costs are what we mean by the “feasibility" of a set
of SLOs.)

• Customers (and operators) don’t like dealing with too
many SLOs, which creates pressure to limit the number
of SLOs âĂŞ especially the externally published ones.

• Customers must also be able to understand how to make
use of the SLOs they are offered. A “meaningful" compo-
sitional SLO should support clear decisions – for exam-
ple, how much capacity a customer needs to purchase, or
how many VM replicas are required to reach a desired
application-level availability. A contractual SLO that in-
volves complex predicates, although well-defined, might
be too confusing to be truly meaningful.

• The cloud business is price-sensitive, so providers must
typically multiplex their resources, creating a tension be-
tween predictability and cost (predictability is not free!),
but this relationship is not easy to express in a closed form.

• Some SLOs depend on customer behavior âĂŞ e.g., any-
thing involving a guarantee about network throughput re-
lies on the customer running software capable of driving
the network fast enough. (This is one reason why perfor-
mance SLOs are surprisingly rare.)

2 For example, if you are usingML-based anomaly detector to spot unantic-
ipated failures, its input data should include as much detail as possible, and
should not be aggregated or thresholded based on your prior assumptions
about what SLI values indicate problems.

• System availability as seen by end users depends on care-
ful exploitation of redundancy (because the alternative –
failure-proof systems – is either too expensive or entirely
impossible). Redundancy only works when one can avoid
correlated failures of the resources that a system depends
on, but it is not always easy to understand these depen-
dencies. Given the wide variety of possible correlations,
writing SLOs about non-correlation is a complex art.
We have encountered a few issues specifically related to

the use of “nines" to express availability SLOs:
• Using average uptime metrics over a period (e.g., the num-
ber of “bad minutes" per month) hides the distinction be-
tween many short outages and a few long ones. Yet many
applications/users actually care about this distinction –
distributed-systems algorithms can magnify the impact of
a “short" outage (e.g., BGP convergence, or state-heavy
services which have long initialization times), while hu-
mans (e.g., bank ATM customers) might better tolerate a
frequently-but-slightly degraded overall experience (wait-
ing an extra 15 seconds for their cash) rather than a long
outage (making a second trip to the ATM).

• “Nines" treats outages as generic problems; one outage
is the same as another if they last the same length of
time. But for real-world applications, that’s not always
true. For example, for a retailer, an outage on Black Fri-
day is a lot worse than the same outage on a boring day in
March or planned downtime. Cloud providers know that
if they want to retain their customers, they have to sup-
port stronger SLOs on certain dates, rather than treating
a formal SLA as the only constraint.

• Even when a system is not formally meeting its SLO, we
generally prefer “graceful degradation"; a system that is
“almost within SLO" is usually better than nothing, but
it is hard to formalize this concept within the “nines" ap-
proach.
In general, SLOs are not just single SLIs with a simple

threshold; they are complex predicates over complex SLIs.
For example, we might want to define a compositional SLO
over a time series rather than a scalar; we might need sta-
tistical functions (mean, median, nth percentile, min, max)
depending on the application.
A consequence of the Principal-Agent Problem is that cus-

tomers should not trust a provider to report whether it is
meeting its SLOs, and they should prefer SLOs that can be in-
dependently validated without specific assistance from the
provider. This is especially difficult for SLOs, such as stored-
data integrity, where consequences (loss of data) cannot be
observed until years or decades after the fact [7].

4 Lessons from statistical thinking

A good statistician will look at what decision needs to be
made, define hypotheses to test in order to make the de-
cision, decide how to collect sufficient data without bias,



HotOS ’19, May 13–15, 2019, Bertinoro, Italy Jeffrey C. Mogul and John Wilkes

often sampled from the underlying population while stay-
ing within a budget, choose an appropriate method to test
the hypotheses against the sample. We call this the “profes-
sional statistician method."
“Choosing an appropriate method" is the part of statistics

where one most needs deep training, careful reasoning, and
honest creativity. Poorly-trained statisticians often fall back
on the few methods they know, without understanding if
these are appropriate to the task at hand.
This suggests a close analogy between SLO definition and

statistics:
• Given that an SLA is an SLO with consequences, the de-

cision we need to make is “should we invoke those conse-
quences, or not?" Crisply defining this question is called
“operationalizing" the decision (a term from the social sci-
ences that made its way to statistics via psychology); in
SLOs, the challenge is knowing exactly what is “meaning-
ful" to the customer or provider.

• The problem of gathering accurate SLI data, while not
using up too many resources, is analogous to sampling

the underlying population. Neither in statistics nor SLOs
do we have unconstrained freedom to gather all the data
we might possibly want, or even to know if it might be
biased by unexpected phenomena. Trained statisticians
know how to avoid mistakes in this phase, such as biased
sampling.

•What remains is to define the SLO as a predicate on the
available SLIs, which is roughly analogous to choosing
an inference method, the deepest expertise of the expert
statistician – so, if this analogy is valid, it should not be
surprising that defining SLOs is not as easy as it looks. It
also requires direct use of statistical skills: using the ap-
propriate aggregation mechanisms, and applying the ap-
propriate statistical hypothesis tests to make a decision
about something that is not directly measurable.
Perhaps the most important lesson we can learn from

statisticians is to realize that we can never be fully confi-
dent when reasoning under uncertainty, and sometimes we
must admit defeat. “Indeed, the very humility of statistics is
its salvation." [1]
By analogy to the professional statistician method, a pro-

fessional SLOgician’s approach to defining SLOs would be
to:3

• List the good outcomes you want and bad outcomes you
want to avoid (e.g., lack of network capacity, correlated
failures, stored-data loss, disk failure rates, mis-predicted
demands, late capacity delivery, etc.).

• Agree with business decision-makers what the conse-
quences should be (e.g., the size of a refund).

• Operationalize these outcomes – e.g., deciding what level
of network capacity or stored-data loss you need to
promise to customers, to attract their business.

3Such people practice SLOgistics, of course.

• Decide what kind of data to collect in order to decide
whether you are suffering from one of those bad outcomes,
and what kinds of aggregation are needed/possible, in or-
der to be able to test whether the SLO is being met (i.e.,
what are the SLIs needed to evaluate each SLO predicate?).
Deciding how much data you need is analogous to what
statisticians call “power analysis."

• Decide what specific predicate on that data tells you
whether an outcome has happened – this is analogous to
choosing the right method for hypothesis testing. Much
of the challenge is in choosing the numeric thresholds, be-
cause these represent a negotiated tradeoff between costs
and outcomes.

• Decide how much of the desired data you can collect,
given your resource budget, and then deciding whether
that is enough to actually compute the SLOs. For exam-
ple, if you have an SLO that network throughput mea-
sured over a 1-minute interval will never drop below some
threshold, but you can only afford to collect data in 5-
minute aggregates, you have a problem.

Just as “statistician” and “data scientist” are distinct roles
that share many, but not all, skills [4], “SLOgician” is also a
distinct role with its own specific skills.
Suppose a provider wants to compute many SLOs, but

does not have the measurement budget to support all of
those at once; how can one resolve this conflict?
• Accept that fewer SLOs is OK, and use the consequences
to prioritize the most important ones. Providing metrics
instead of SLOs is often enough.

• Accept lower confidence in determiningwhether the SLOs
are being met, when this can reduce measurement load –
e.g., by reducing the sampling frequency or increasing the
aggregation window.

• Dynamically lower a measurement rate if an SLO is not at
risk of violation; raise the rate when risks are high.

5 Are we barking up the wrong tree?

Our experiences trying to define performance-oriented
SLOs for networks, VMs, and storage systems have con-
vinced us that such SLOs are hard to define, that many de-
pend on decisions (such as the choice of congestion-control
algorithm) outside the provider’s control, and that we seem
to have way too many of them. Perhaps this is a sign that
we are solving the wrong problem.

Following our analogy with statistics, we could focus less
on SLOs that guarantee outcomes (e.g., network throughput
or query performance), and instead use SLOs as a tool for
providers to provide structured guidance about making de-
cisions that create or remove risk. That is, we should focus
SLOs on risks that are entirely under the provider’s control –
a provider’s job, with respect customers, is to mitigate risks
andmake them understandable, not to ensure complete hap-
piness.



Nines are Not Enough: Meaningful Metrics for Clouds HotOS ’19, May 13–15, 2019, Bertinoro, Italy

If we could ignore resource sharing, we could focus SLOs
on various risks that arise from poor engineering or opera-
tional practices, such as not repairing control-plane outages;
SDN designs that allow short-term control-plane failure to
disrupt the data plane; failover mechanisms that do not ac-
tually work; operational procedures that create correlated
risks, such as simultaneous maintenance on two availabil-
ity zones in a region; routing network packets along sur-
prisingly long WAN paths.
It should be relatively simple to write SLOs addressing

this kind of “sharing-agnostic" issue, because while they
sometimes require reasoning about probabilities, they do
not require reasoning about customer behavior.
If we could offer only sharing-agnostic SLOs, we could

reason about system composition by assuming that vir-
tual CPUs, networks, and storage behave similarly to real
ones, but without the hubris of offering quantified “outcome
SLOs." This would still require the provider to expose some
aspects of the real hardware: our expectations for a rotat-
ing disk reasonably differ from our expectations for an SSD,
and likewise we have reasonably different SLEs for LANs,
MANs, and WANs.
However, we cannot ignore resource sharing, and thus the

tension between predictability and cost, in the face of unpre-
dictable customer behaviors. Sharing creates risks such as:
unpredictable CPU performance due to a shared L3 cache or
memory bus; unpredictable network throughput or packet
loss due to link overutilization or queue overflow; or unpre-
dictable storage performance due to disk-bandwidth or disk-
seek overutilization. The analogy to statistics, the science of
reasoning under uncertainty, is especially obvious here –we
have uncertain knowledge of future workloads, and we also
are unable to accurately model the performance of complex
computer systems even if we did know the workloads.

5.1 Coping with customer behavior

Even if we address catastrophic failures by defining SLAs for
sharing-agnostic risks, we still must manage the conflict be-
tween resource-sharing (for efficiency) and predictable out-
comes. Uncertainty about customer behavior makes it hard
for a provider to define such “sharing-dependent" SLOs – so,
let’s change the rules of the game to sidestep uncertainty.
Instead of focusing on outcomes, we should focus on ex-

pectations, and make these expectations bilateral: what ser-
vice level the customer can expect from the provider (an
SLE), and what the provider can expect from the customer
(Customer Behavior Expectations, or CBEs). An SLE only ap-
plies if its related CBEs are met. Our view is that the cus-
tomer and provider should each bear part of the risk of un-
predictability, and use SLEs and CBEs to explicitly manage
the sharing of risks.4

4 By analogy, a consumer using a medicine typically bears some of the risk
of side effects (“do not operate heavy machinery") to themselves or others,

Providers already have some CBEs; e.g., they limit a VM’s
egress network bandwidth, or how many VMs a customer
can run at once. But contractual SLOs are not typically pred-
icated on customer behavior, and many customer behaviors
that could lead to resource conflicts are inherently hard to
enforce efficiently in real-time.
But after-the-fact detection of a CBE violation is often ac-

ceptable, especially for CBEs that are hard to enforce. For
example, while we cannot prevent a customer VM from
generating lots of L3 cache misses, CPU counters can tell
us that this is happening. And while we cannot prevent a
customer from generating a network incast, switch-based
metrics can tell us when incast has happened, and which
source(s) caused it.
Contractual SLAs could thus be structured with obliga-

tions in both directions: for example, the provider’s obliga-
tion to limit LAN packet loss is removed whenever the cus-
tomer seems to be generating incast traffic. And, one step
further, customers could either agree to pay additional fees
if they unexpectedly create bursts of traffic that interfere
with other customers, or accept stricter rate limits in ex-
change for more predictable bills.
Then one could limit sharing-dependent SLOs to be

only compositional, not contractual – that is, sharing-
dependent SLOs are offered as guidance: the provider im-
plicitly promises not to undermine well-accepted SLEs,
but makes no enforceable promises (SLAs) about sharing-
dependent outcomes.
SLEs cover likely behavior, rather than worst cases. Most

commercial SLAs focus on the latter, which means that
there are no clear, enforceable expectations for “normal
behavior." CBEs can help here, too: by eliminating worst-
case customer behavior (from the provider’s point of view),
they permit tighter bounds on average or median behavior.
Providers can use CBEs to signal to consumers the behavior
they can optimize for, rather than what they have to toler-
ate.
While they may feel like additional restrictions, CBEs

and joint risk sharing can move customers and providers
closer towards mutually-beneficial collaboration, and fur-
ther away from lawyers. The downside is that we needmore
SLOs/CBEs to define behaviors. This should not be a sur-
prise: real systems have immense complexity.We should not
expect to describe them via just a few numbers without a
huge loss of fidelity.

5.2 CBEs vs. burstable instances

Several cloud providers offer “burstable instances” for VMs,
which are complementary to CBEs. A burstable instance
provides a performance SLO equivalent to a partial CPU

as well as the risk that the medicine does not actually cure them, while the
pharmaceutical company accepts the risks associated with manufacturing
errors.



HotOS ’19, May 13–15, 2019, Bertinoro, Italy Jeffrey C. Mogul and John Wilkes

core, but offers a way for a customer to occasionally exploit
the work-conserving nature of that shared resource, with a
disincentive to take this extra capacity for granted. As far
as we know, providers offers no guarantee that any extra
capacity will be available, although they can optimize VM
placement to benefit from statistical multiplexing of uncor-
related workloads.

6 Open questions

We list here a few more open questions for discussion:
•We argue for treating sharding-agnostic and sharing-
dependent risks differently, but how do we define the
boundary between these? – given that the decision about
which resources to share is left to the provider, and can
vary by cloud-product differentiation (e.g., spot instances
vs. high-availability instances). SLO definitions must also
evolve as novel network features (such as RDMA within
distance-constrained neighborhoods) create new trade-
offs.

• SLO definitions must evolve over time, as customer be-
havior and expectations change, and as providers im-
prove their infrastructure or discover new failure modes.
It may be impossible to define SLOs, especially their
thresholds, purely by reasoning from first principles;
rather these must be defined through an incremental-
improvement process grounded in a deep understanding
of the provider’s systems [3, Ch. 4]. Or could there be a
principle-driven method?

• Suppose customer X has unexpected L3 cache behavior
that affects customerY , and the provider fails to detect this
CBE violation and the resulting interference. Clearly cus-
tomer Y , in this situation, should be able to call “foul” and
perhaps invoke the legal system as the final arbiter – but
by what cost-effective mechanism could Y detect or prove
the SLO violation? Perhaps we must require providers
to include support for third-party audits [7] – while one
would prefer to avoid legal proceedings, when they be-
come necessary they must be based on solid data.

• Can we validate “SLO quality” by comparing an SLO’s
history to separately-measured evidence of system and
customer well-being (e.g., outage history, support tickets,
etc.)? How can we analyze our SLOs to ensure they cor-
rectly support the decisions we are trying to make with
them?

7 Putting it all together

There are good times; there are bad events. Cloud customers
need well-defined SLOs to avoid bad events, but the quest to
create outcome-oriented SLOs, for application performance
on multiplexed resources, has challenged many smart com-
puter scientists and engineers in multiple fields – storage,
networking, and computation. We do not pretend to have a
complete solution to the problems of cloud-SLO definition,

but we think such a solution could emerge from re-thinking
our use of SLOs, and using the combination of SLEs and
CBEs to create harmonious cooperation in normal times.
We hope this paper has exposed some of the issues under-

lying the difficulties of defining outcome-oriented SLOs for
shared resources, and how this area may resemble the fields
of statistics and decision science – suggesting that there is
room for a new field of expertise within computer systems,
analogous to the role of statisticians (with a similar need to
create a structured corpus of knowledge and practice).
Perhaps the most important lesson we can learn from sta-

tistics, however, is humility – that the combination of un-
predictable workloads, hard-to-model behavior of complex
shared infrastructures, and the infeasibility of collecting all
the necessary metrics means that certain kinds of SLOs are
beyond our power to deliver, no matter how much we be-
lieve we need them.

Acknowledgments

We are grateful for insightful contributions from Cassie
Kozyrkov, Steven Hand, and Yaniv Aknin, and thoughtful
comments from the anonymous reviewers.

References
[1] The Function of Statistics. The Nation. [81:2094] pp. 137–138, August

17, 1905.
[2] Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Ant Rowstron.

The Price is Right: Towards Location-independent Costs in
Datacenters. In Proc. HotNets, 2011.

[3] Betsy Beyer, Chris Jones, Jennifer Petoff, and Niall Richard Murphy,
editors. Site Reliability Engineering. O’Reilly Media, Inc., 2016.

[4] Cassie Kozyrkov. Top 10 roles in AI and data science.
h�ps://hackernoon.com/top-10-roles-for-your-data-science

-team-e7f05d90d961, 2018.
[5] Jeffrey C. Mogul, Rebecca Isaacs, and Brent Welch. Thinking About

Availability in Large Service Infrastructures. In Proc. HotOS, 2017.
[6] Leonard J. Savage. The Foundations of Statistics. New York, 1954.
[7] Mehul A. Shah, Mary Baker, Jeffrey C. Mogul, and Ram Swaminathan.

Auditing to Keep Online Storage Services Honest. In Proc. HOTOS,
pages 11:1–11:6, 2007.

https://hackernoon.com/top-10-roles-for-your-data-science
-team-e7f05d90d961

	Abstract
	1 Introduction
	1.1 A little more terminology

	2 Many flavors of SLOs
	3 What makes SLO definitions hard?
	4 Lessons from statistical thinking
	5 Are we barking up the wrong tree?
	5.1 Coping with customer behavior
	5.2 CBEs vs. burstable instances

	6 Open questions
	7 Putting it all together
	References

