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Abstract

Most generalization bounds in learning theory are based on some measure of the complexity

of the hypothesis class used, independently of any algorithm. In contrast, the notion of algorith-

mic stability can be used to derive tight generalization bounds that are tailored to specific learning

algorithms by exploiting their particular properties. However, as in much of learning theory, exist-

ing stability analyses and bounds apply only in the scenario where the samples are independently

and identically distributed. In many machine learning applications, however, this assumption does

not hold. The observations received by the learning algorithm often have some inherent temporal

dependence.

This paper studies the scenario where the observations are drawn from a stationary ϕ-mixing or

β-mixing sequence, a widely adopted assumption in the study of non-i.i.d. processes that implies a

dependence between observations weakening over time. We prove novel and distinct stability-based

generalization bounds for stationary ϕ-mixing and β-mixing sequences. These bounds strictly

generalize the bounds given in the i.i.d. case and apply to all stable learning algorithms, thereby

extending the use of stability-bounds to non-i.i.d. scenarios.

We also illustrate the application of our ϕ-mixing generalization bounds to general classes of

learning algorithms, including Support Vector Regression, Kernel Ridge Regression, and Support

Vector Machines, and many other kernel regularization-based and relative entropy-based regular-

ization algorithms. These novel bounds can thus be viewed as the first theoretical basis for the use

of these algorithms in non-i.i.d. scenarios.
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1. Introduction

Most generalization bounds in learning theory are based on some measure of the complexity of the

hypothesis class used, such as the VC-dimension, covering numbers, or Rademacher complexity.

These measures characterize a class of hypotheses, independently of any algorithm. In contrast,

the notion of algorithmic stability can be used to derive bounds that are tailored to specific learning

algorithms and exploit their particular properties. A learning algorithm is stable if the hypothesis it

outputs varies in a limited way in response to small changes made to the training set. Algorithmic

stability has been used effectively in the past to derive tight generalization bounds (Bousquet and

Elisseeff, 2001, 2002; Kearns and Ron, 1997).

But, as in much of learning theory, existing stability analyses and bounds apply only in the

scenario where the samples are independently and identically distributed (i.i.d.). In many machine

learning applications, this assumption, however, does not hold; in fact, the i.i.d. assumption is not

tested or derived from any data analysis. The observations received by the learning algorithm often

have some inherent temporal dependence. This is clear in system diagnosis or time series prediction

problems. Clearly, prices of different stocks on the same day, or of the same stock on different days,

may be dependent. But, a less apparent time dependency may affect data sampled in many other

tasks as well.

This paper studies the scenario where the observations are drawn from a stationary ϕ-mixing

or β-mixing sequence, a widely adopted assumption in the study of non-i.i.d. processes that im-

plies a dependence between observations weakening over time (Yu, 1994; Meir, 2000; Vidyasagar,

2003; Lozano et al., 2006; Mohri and Rostamizadeh, 2007). We prove novel and distinct stability-

based generalization bounds for stationary ϕ-mixing and β-mixing sequences. These bounds strictly

generalize the bounds given in the i.i.d. case and apply to all stable learning algorithms, thereby

extending the usefulness of stability-bounds to non-i.i.d. scenarios. Our proofs are based on the

independent block technique described by Yu (1994) and attributed to Bernstein (1927), which is

commonly used in such contexts. However, our analysis somewhat differs from previous uses of

this technique in that the blocks of points we consider are not necessarily of equal size.

For our analysis of stationary ϕ-mixing sequences, we make use of a generalized version of Mc-

Diarmid’s inequality given by Kontorovich and Ramanan (2008) that holds for ϕ-mixing sequences.

This leads to stability-based generalization bounds with the standard exponential form. Our gen-

eralization bounds for stationary β-mixing sequences cover a more general non-i.i.d. scenario and

use the standard McDiarmid’s inequality, however, unlike the ϕ-mixing case, the β-mixing bound

presented here is not a purely exponential bound and contains an additive term depending on the

mixing coefficient.

We also illustrate the application of our ϕ-mixing generalization bounds to general classes of

learning algorithms, including Support Vector Regression (SVR) (Vapnik, 1998), Kernel Ridge Re-

gression (Saunders et al., 1998), and Support Vector Machines (SVMs) (Cortes and Vapnik, 1995).

Algorithms such as SVR have been used in the context of time series prediction in which the i.i.d.

assumption does not hold, some with good experimental results (Müller et al., 1997; Mattera and

Haykin, 1999). However, to our knowledge, the use of these algorithms in non-i.i.d. scenarios has

not been previously supported by any theoretical analysis. The stability bounds we give for SVR,

SVMs, and many other kernel regularization-based and relative entropy-based regularization algo-

rithms can thus be viewed as the first theoretical basis for their use in such scenarios.
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The following sections are organized as follows. In Section 2, we introduce the definitions rel-

evant to the non-i.i.d. problems that we are considering and discuss the learning scenarios in that

context. Section 3 gives our main generalization bounds for stationary ϕ-mixing sequences based

on stability, as well as the illustration of its applications to general kernel regularization-based algo-

rithms, including SVR, KRR, and SVMs, as well as to relative entropy-based regularization algo-

rithms. Finally, Section 4 presents the first known stability bounds for the more general stationary

β-mixing scenario.

2. Preliminaries

We first introduce some standard definitions for dependent observations in mixing theory (Doukhan,

1994) and then briefly discuss the learning scenarios in the non-i.i.d. case.

2.1 Non-i.i.d. Definitions

Definition 1 A sequence of random variables Z = {Zt}∞t=−∞ is said to be stationary if for any t
and non-negative integers m and k, the random vectors (Zt, . . . , Zt+m) and (Zt+k, . . . , Zt+m+k)
have the same distribution.

Thus, the index t or time, does not affect the distribution of a variable Zt in a stationary sequence.

This does not imply independence however. In particular, for i < j < k, Pr[Zj | Zi] may not

equal Pr[Zk |Zi], i.e. conditional probabilities may vary at different points in time. The following

is a standard definition giving a measure of the dependence of the random variables Zt within a

stationary sequence. There are several equivalent definitions of these quantities, we are adopting

here a version convenient for our analysis, as in (Yu, 1994).

Definition 2 Let Z = {Zt}∞t=−∞ be a stationary sequence of random variables. For any i, j ∈
Z ∪{−∞,+∞}, let σj

i denote the σ-algebra generated by the random variables Zk, i ≤ k ≤ j.

Then, for any positive integer k, the β-mixing and ϕ-mixing coefficients of the stochastic process Z

are defined as

β(k) = sup
n

E
B∈σn

−∞

[
sup

A∈σ∞

n+k

∣∣∣Pr[A | B]− Pr[A]
∣∣∣
]

ϕ(k) = sup
n

A∈σ∞

n+k
B∈σn

−∞

∣∣∣Pr[A | B]− Pr[A]
∣∣∣. (1)

Z is said to be β-mixing (ϕ-mixing) if β(k) → 0 (resp. ϕ(k) → 0) as k → ∞. It is said to be

algebraically β-mixing (algebraically ϕ-mixing) if there exist real numbers β0 > 0 (resp. ϕ0 > 0)

and r > 0 such that β(k) ≤ β0/k
r (resp. ϕ(k) ≤ ϕ0/k

r) for all k, exponentially mixing if there

exist real numbers β0 (resp. ϕ0 > 0), β1 (resp. ϕ1 > 0) and r > 0 such that β(k) ≤ β0 exp(−β1k
r)

(resp. ϕ(k) ≤ ϕ0 exp(−ϕ1k
r)) for all k.

Both β(k) and ϕ(k) measure the dependence of an event on those that occurred more than k units

of time in the past. β-mixing is a weaker assumption than ϕ-mixing and thus covers a more general

non-i.i.d. scenario.

This paper gives stability-based generalization bounds both in the ϕ-mixing and β-mixing case.

The β-mixing bounds cover a more general case of course, however, the ϕ-mixing bounds are

simpler and admit the standard exponential form. The ϕ-mixing bounds are based on a concentration
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inequality that applies to ϕ-mixing processes only. Except for the use of this concentration bound

and two lemmas 5 and 6, all of the intermediate proofs and results to derive a ϕ-mixing bound in

Section 3 are given in the more general case of β-mixing sequences.

It has been argued by Vidyasagar (2003) that β-mixing is “just the right” assumption for the

analysis of weakly-dependent sample points in machine learning, in particular because several PAC-

learning results then carry over to the non-i.i.d. case. Our β-mixing generalization bounds further

contribute to the analysis of this scenario.1

We describe in several instances the application of our bounds in the case of algebraic mixing.

Algebraic mixing is a standard assumption for mixing coefficients that has been adopted in previous

studies of learning in the presence of dependent observations (Yu, 1994; Meir, 2000; Vidyasagar,

2003; Lozano et al., 2006). Let us also point out that mixing assumptions can be checked in some

cases such as with Gaussian or Markov processes (Meir, 2000) and that mixing parameters can also

be estimated in such cases.

Most previous studies use a technique originally introduced by Bernstein (1927) based on in-

dependent blocks of equal size (Yu, 1994; Meir, 2000; Lozano et al., 2006). This technique is

particularly relevant when dealing with stationary β-mixing. We will need a related but somewhat

different technique since the blocks we consider may not have the same size. The following lemma

is a special case of Corollary 2.7 from (Yu, 1994).

Lemma 3 ((Yu, 1994), Corollary 2.7) Let µ≥ 1 and suppose that h is measurable function, with

absolute value bounded by M , on a product probability space
(∏µ

j=1Ωj ,
∏µ

i=1 σ
si
ri

)
where ri ≤

si ≤ ri+1 for all i. Let Q be a probability measure on the product space with marginal measures Qi

on (Ωi, σ
si
ri ), and let Qi+1 be the marginal measure of Q on

(∏i+1
j=1Ωj ,

∏i+1
j=1 σ

sj
rj

)
, i=1, . . . , µ−1.

Let β(Q) = sup1≤i≤µ−1 β(ki), where ki=ri+1−si, and P =
∏µ

i=1Qi. Then,

|E
Q
[h]− E

P
[h]| ≤ (µ− 1)Mβ(Q). (2)

The lemma gives a measure of the difference between the distribution of µ blocks where the blocks

are independent in one case and dependent in the other case. The distribution within each block

is assumed to be the same in both cases. For a monotonically decreasing function β, we have

β(Q) = β(k∗), where k∗ = mini(ki) is the smallest gap between blocks.

2.2 Learning Scenarios

We consider the familiar supervised learning setting where the learning algorithm receives a sample

of m labeled points S = (z1, . . . , zm) = ((x1, y1), . . . , (xm, ym)) ∈ (X × Y )m, where X is the

input space and Y the set of labels (Y ⊆ R in the regression case), both assumed to be measurable.

For a fixed learning algorithm, we denote by hS the hypothesis it returns when trained on the

sample S. The error of a hypothesis on a pair z ∈ X ×Y is measured in terms of a cost function c :
Y × Y → R+. Thus, c(h(x), y) measures the error of a hypothesis h on a pair (x, y), c(h(x), y) =
(h(x)− y)2 in the standard regression cases. We will often use the shorthand c(h, z) := c(h(x), y)
for a hypothesis h and z = (x, y) ∈ X × Y and will assume that c is upper bounded by a constant

1. Some results have also been obtained in the more general context of α-mixing but they seem to require the stronger

condition of exponential mixing (Modha and Masry, 1998).
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M > 0. We denote by R̂(h) the empirical error of a hypothesis h for a training sample S =
(z1, . . . , zm):

R̂(h) =
1

m

m∑

i=1

c(h, zi). (3)

In the standard machine learning scenario, the sample pairs z1, . . . , zm are assumed to be i.i.d., a

restrictive assumption that does not always hold in practice. We will consider here the more general

case of dependent samples drawn from a stationary mixing sequence Z over X × Y . As in the i.i.d.

case, the objective of the learning algorithm is to select a hypothesis with small error over future

samples. But, here, we must distinguish two versions of this problem.

In the most general version, future samples depend on the training sample S and thus the gen-

eralization error or true error of the hypothesis hS trained on S must be measured by its expected

error conditioned on the sample S:

R(hS) = E
z
[c(hS , z) | S]. (4)

This is the most realistic setting in this context, which matches time series prediction problems.

A somewhat less realistic version is one where the samples are dependent, but the test points are

assumed to be independent of the training sample S. The generalization error of the hypothesis hS
trained on S is then:

R(hS) = E
z
[c(hS , z) | S] = E

z
[c(hS , z)]. (5)

This setting seems less natural since, if samples are dependent, future test points must also depend

on the training points, even if that dependence is relatively weak due to the time interval after which

test points are drawn. Nevertheless, it is this somewhat less realistic setting that has been studied by

all previous machine learning studies that we are aware of (Yu, 1994; Meir, 2000; Vidyasagar, 2003;

Lozano et al., 2006), even when examining specifically a time series prediction problem (Meir,

2000). We will consider instead a more general setting with the definition of the generalization

error based on Equation 4 and make the weaker assumption that for any set of points S′ that are

sampled after S and before z we have:

E
z
[c(hS , z)|S, S′] = E

z
[c(hS , z)|S] . (6)

One interpretation of this assumption is that the test point z is independent of the points that hS
was not trained with. Clearly, our analysis also applies to the less general setting where test point is

completely independent of the training set.

Let us also briefly discuss the more general scenario of non-stationary mixing sequences, that is

one where the distribution may change over time. Within that general case, the generalization error

of a hypothesis hS , defined straightforwardly by

R(hS , t) = E
zt∼σt

t

[c(hS , zt) | S], (7)

would depend on the time t and it may be the case that R(hS , t) 6= R(hS , t
′) for t 6= t′, making the

definition of the generalization error a more subtle issue. To remove the dependence on time, one

could define a weaker notion of the generalization error based on an expected loss over all time:

R(hS) = E
t
[R(hS , t)]. (8)
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It is not clear however whether this term could be easily computed and useful. A stronger condition

would be to minimize the generalization error for any particular target time. Studies of this type

have been conducted for smoothly changing distributions, such as in Zhou et al. (2008), however,

to the best of our knowledge, the scenario of a both non-identical and non-independent sequences

has not yet been studied.

3. ϕ-Mixing Generalization Bounds and Applications

This section gives generalization bounds for β̂-stable algorithms over a mixing stationary distri-

bution.2 The first two sections present our supporting lemmas which hold for either β-mixing or

ϕ-mixing stationary distributions. In the third section, we will briefly discuss concentration in-

equalities that apply to ϕ-mixing processes only. Then, in the final section, we will present our

main results.

The condition of β̂-stability is an algorithm-dependent property first introduced by Devroye

and Wagner (1979) and Kearns and Ron (1997). It has been later used successfully by Bousquet

and Elisseeff (2001, 2002) to show algorithm-specific stability bounds for i.i.d. samples. Roughly

speaking, a learning algorithm is said to be stable if small changes to the training set do not cause

large deviations in its output. The following gives the precise technical definition.

Definition 4 A learning algorithm is said to be (uniformly) β̂-stable if the hypotheses it returns for

any two training samples S and S′ that differ by removing a single point satisfy

∀z ∈ X × Y, |c(hS , z)− c(hS′ , z)| ≤ β̂. (9)

We note that a β̂-stable algorithm is also stable with respect to replacing a single point. Let S and

Si be two sequences differing in the ith coordinate, and S/i be equivalent to S and Si but with the

ith point removed. Then for a β̂-stable algorithm we have,

|c(hS , z)− c(hSi , z)| = |c(hS , z)− c(hS/i
) + c(hS/i

)− c(hSi , z)|
≤ |c(hS , z)− c(hS/i

)|+ |c(hS/i
)− c(hSi , z)|

≤ 2β̂ . (10)

The use of stability in conjunction with McDiarmid’s inequality will allow us to derive general-

ization bounds. McDiarmid’s inequality is an exponential concentration bound of the form

Pr[|Φ− E[Φ]| ≥ ǫ] ≤ exp

(
−mǫ2

τ2

)
, (11)

where the probability is over a sample of size m and where τ
m is the Lipschitz parameter of Φ, with

τ a function of m. Unfortunately, this inequality cannot be applied when the sample points are not

distributed in an i.i.d. fashion. We will use instead a result of Kontorovich and Ramanan (2008) that

extends McDiarmid’s inequality to ϕ-mixing distributions (Theorem 8). To obtain a stability-based

generalization bound, we will apply this theorem to

Φ(S) = R(hS)− R̂(hS) . (12)

2. The standard variable used for the stability coefficient is β. To avoid the confusion with the β-mixing coefficient, we

will use β̂ instead.

6



STABILITY BOUNDS FOR NON-I.I.D. PROCESSES

(a) (b)

Figure 1: Illustration of dependent (a) and independent (b) blocks. Although there is no dependence

between blocks of points in (b), the distribution within each block remains the same as in

(a) and thus points within a block remain dependent.

To do so, we need to show, as with the standard McDiarmid’s inequality, that Φ is a Lipschitz

function and, to make it useful, bound E[Φ]. The next two sections describe how we achieve both

of these in this non-i.i.d. scenario.

Let us first take a brief look at the problem faced when attempting to give stability bounds for

dependent sequences and give some idea of our solution for that problem. The stability proofs given

by Bousquet and Elisseeff (2001) assume the i.i.d. property, thus replacing an element in a sequence

with another does not affect the expected value of a random variable defined over that sequence. In

other words, the following equality holds,

E
S
[V (Z1, . . . , Zi, . . . , Zm)] = E

S,Z′

[V (Z1, . . . , Z
′, . . . , Zm)], (13)

for a random variable V that is a function of the sequence of random variables S = (Z1, . . . , Zm).
However, clearly, if the points in that sequence S are dependent, this equality may not hold anymore.

The main technique to cope with this problem is based on the so-called “independent block

sequence” originally introduced by Bernstein (1927). This consists of eliminating from the original

dependent sequence several blocks of contiguous points, leaving us with some remaining blocks of

points. Instead of these dependent blocks, we then consider independent blocks of points, each with

the same size and the same distribution (within each block) as the dependent ones. By Lemma 3,

for a β-mixing distribution, the expected value of a random variable defined over the dependent

blocks is close to the one based on these independent blocks. Working with these independent

blocks brings us back to a situation similar to the i.i.d. case, with i.i.d. blocks replacing i.i.d. points.

Figure 1 illustrates the two types of blocks just discussed.

Our use of this method somewhat differs from previous ones (see Yu, 1994; Meir, 2000) where

many blocks of equal size are considered. We will be dealing with four blocks and with typically

unequal sizes. More specifically, note that for Equation 13 to hold, we only need that the variable

Zi be independent of the other points in the sequence. To achieve this, roughly speaking, we will

be “discarding” some of the points in the sequence surrounding Zi. This results in a sequence

of three blocks of contiguous points. If our algorithm is stable and we do not discard too many

points, the hypothesis returned should not be greatly affected by this operation. In the next step,

we apply the independent block lemma, which then allows us to assume each of these blocks as

independent modulo the addition of a mixing term. In particular, Zi becomes independent of all

other points. Clearly, the number of points discarded is subject to a trade-off: removing too many

points could excessively modify the hypothesis returned; removing too few would maintain the

dependency between Zi and the remaining points, thereby inducing a larger penalty when applying
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Lemma 3. This trade-off is made explicit in the following section where an optimal solution is

sought.

3.1 Lipschitz Bound

As discussed in Section 2.2, in the most general scenario, test points depend on the training sample.

We first present a lemma that relates the expected value of the generalization error in that scenario

and the same expectation in the scenario where the test point is independent of the training sample.

We denote by R(hS) = Ez[c(hS , z)|S] the expectation in the dependent case and by R̃(hSb
) =

Ez̃[c(hSb
, z̃)] the expectation where the test points are assumed independent of the training, with

Sb denoting a sequence similar to S but with the last b points removed. Figure 2(a) illustrates that

sequence. The block Sb is assumed to have exactly the same distribution as the corresponding block

of the same size in S.

Lemma 5 Assume that the learning algorithm is β̂-stable and that the cost function c is bounded

by M . Then, for any sample S of size m drawn from a ϕ-mixing stationary distribution and for any

b ∈ {0, . . . ,m}, the following holds:

|R(hS)− R̃(hSb
)| ≤ bβ̂ +Mϕ(b) (14)

Proof Equation (6) and the β̂-stability of the learning algorithm implies that

|R(hS)−R(hSb
)| = |E

z
[c(hS , z)|S]− E

z
[c(hSb

, z)|Sb]|

= |E
z
[c(hS , z)|S]− E

z
[c(hSb

, z)|S]| ≤ bβ̂. (15)

Now, in order to remove the dependence on Sb we bound the following difference

|E
z
[c(hSb

, z)|Sb]− E
z̃
[c(hSb

, z̃)]|

=
∣∣∣
∑

z∈Z

c(hSb
, z)(Pr[z|Sb]− Pr[z])

∣∣∣

=
∣∣∣
∑

z∈Z+

c(hSb
, z)(Pr[z|Sb]− Pr[z]) +

∑

z∈Z−

c(hSb
, z)(Pr[z|Sb]− Pr[z])

∣∣∣

=

∣∣∣∣
∑

z∈Z+

c(hSb
, z)
∣∣∣Pr[z|Sb]− Pr[z]

∣∣∣−
∑

z∈Z−

c(hSb
, z)
∣∣∣Pr[z|Sb]− Pr[z]

∣∣∣
∣∣∣∣

≤ max
Z∈{Z−,Z+}

∑

z∈Z

c(hSb
, z)
∣∣∣Pr[z|Sb]− Pr[z]

∣∣∣

≤ max
Z∈{Z−,Z+}

M
∑

z∈Z

∣∣∣Pr[z|Sb]− Pr[z]
∣∣∣

= max
Z∈{Z−,Z+}

M
∣∣∣
∑

z∈Z

Pr[z|Sb]− Pr[z]
∣∣∣

= max
Z∈{Z−,Z+}

M
∣∣∣Pr[Z|Sb]− Pr[Z]

∣∣∣ ≤ Mϕ(b) ,

(16)

8
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where the sum has been separated over the set of zs Z+ for which the difference Pr[z|Sb] − Pr[z]
is non-negative, and its complement Z−. Using (15) and (16) and the triangle inequality yields the

statement of the lemma.

Note that we assume that z immediately follows the sample S, which is the strongest dependent

scenario. The following bounds can be improved in a straightforward manner if the test point z is

assumed to be observed say k units of time after the sample S. The bound would then contain the

mixing term ϕ(k + b) instead of ϕ(b).
We can now prove a Lipschitz bound for the function Φ.

Lemma 6 Let S = (z1, . . . , zi, . . . , zm) and Si = (z1, . . . , z
′
i, . . . , zm) be two sequences drawn

from a ϕ-mixing stationary process that differ only in point zi for some i ∈ {1, . . . ,m}, and let hS
and hSi be the hypotheses returned by a β̂-stable algorithm when trained on each of these samples.

Then, for any i ∈ {1, . . . ,m}, the following inequality holds:

|Φ(S)− Φ(Si)| ≤ (b+ 2)2β̂ + 2ϕ(b)M +
M

m
. (17)

Proof To prove this inequality, we first bound the difference of the empirical errors as in (Bousquet

and Elisseeff, 2002), then the difference of the generalization errors. Bounding the difference of

costs on agreeing points with β̂ and the one that disagrees with M gives

|R̂(hS)− R̂(hSi)| ≤ 1

m

∑

j 6=i

|c(hS , zj)− c(hSi , zj)|+
1

m
|c(hS , zi)− c(hSi , z′i)|

≤ 2β̂ +
M

m
. (18)

Since both R(hS) and R(hSi) are defined with respect to a (different) dependent point, we can

apply Lemma 5 to both generalization error terms and use β̂-stability. Using this and the triangle

inequality, we can write

|R(hS)−R(hSi)| ≤ |R(hS)− R̃(hSb
) + R̃(hSb

)− R̃(hSi
b
) + R̃(hSi

b
)−R(hSi)|

≤ |R̃(hSb
)− R̃(hSi

b
)|+ 2bβ̂ + 2ϕ(b)M

= E
z̃
[c(hSb

, z̃)− c(hSi
b
, z̃)] + 2bβ̂ + 2ϕ(b)M

≤ 2β̂ + 2bβ̂ + 2ϕ(b)M. (19)

The statement of the lemma is obtained by combining inequalities 18 and 19.

3.2 Bound on Expectation

As mentioned earlier, to obtain an explicit bound after application of a generalized McDiarmid’s

inequality, we also need to bound ES [Φ(S)]. This is done by analyzing independent blocks using

Lemma 3.

Lemma 7 Let hS be the hypothesis returned by a β̂-stable algorithm trained on a sample S drawn

from a β-mixing stationary distribution. Then, for all b ∈ [1,m], the following inequality holds:

E
S
[|Φ(S)|] ≤ (6b+ 2)β̂ + 3β(b)M. (20)

9
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Sb

b

z

bb

zi

Si

(a) (b)

z

bbb

Si,b

zi z

bbb

S
i
i,b

z

(c) (d)

Figure 2: Illustration of the sequences derived from S that are considered in the proofs.

Proof Let Sb be defined as in the proof of Lemma 5. To deal with independent block sequences

defined with respect to the same hypothesis, we will consider the sequence Si,b = Si ∩ Sb, which is

illustrated by Figure 2(a-c). This can result in as many as four blocks. As before, we will consider

a sequence S̃i,b with a similar set of blocks each with the same distribution as the corresponding

blocks in Si,b, but such that the blocks are independent as seen in Figure 2(d).

Since three blocks of at most b points are removed from each hypothesis, by the β̂-stability of

the learning algorithm, the following holds:

E
S
[Φ(S)] = E

S
[R̂(hS)−R(hS)]

= E
S,z

[
1

m

m∑

i=1

c(hS , zi)− c(hS , z)

]
(21)

≤ E
Si,b,z

[
1

m

m∑

i=1

c(hSi,b
, zi)− c(hSi,b

, z)

]
+ 6bβ̂.

The application of Lemma 3 to the difference of two cost functions also bounded by M as in the

right-hand side leads to

E
S
[Φ(S)] ≤ E

S̃i,b,z̃

[
1

m

m∑

i=1

c(h
S̃i,b

, z̃i)− c(h
S̃i,b

, z̃)

]
+ 6bβ̂ + 3β(b)M. (22)

Now, since the points z̃ and z̃i are independent and since the distribution is stationary, they have the

same distribution and we can replace z̃i with z̃ in the empirical cost. Thus, we can write

E
S
[Φ(S)] ≤ E

S̃i,b,z̃

[
1

m

m∑

i=1

c(h
S̃i
i,b
, z̃)− c(h

S̃i,b
, z̃)

]
+ 6bβ̂ + 3β(b)M ≤ 2β̂ + 6bβ̂ + 3β(b)M,

where S̃i
i,b is the sequence derived from S̃i,b by replacing z̃i with z̃. The last inequality holds by

β̂-stability of the learning algorithm. The other side of the inequality in the statement of the lemma

10
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can be shown following the same steps.

3.3 ϕ-Mixing Concentration Bound

We are now prepared to make use of a concentration inequality to provide a generalization bound

in the ϕ-mixing scenario. Several concentration inequalities have been shown in the ϕ-mixing case,

e.g. Marton (1998); Samson (2000); Chazottes et al. (2007); Kontorovich and Ramanan (2008). We

will use that of Kontorovich and Ramanan (2008), which is very similar to that of Chazottes et al.

(2007), modulo the fact that the latter requires a finite sample space.

The following is a concentration inequality derived from that of Kontorovich and Ramanan

(2008).3

Theorem 8 Let Φ: Zm→R be a measurable function that is c-Lipschitz with respect to the Ham-

ming metric for some c > 0 and let Z1, . . . , Zm be random variables distributed according to a

ϕ-mixing distribution. Then, for any ǫ>0, the following inequality holds:

Pr
[∣∣Φ(Z1, . . . , Zm)− E[Φ(Z1, . . . , Zm)]

∣∣ ≥ ǫ
]
≤ 2 exp

( −2ǫ2

mc2||∆m||2∞

)
, (23)

where ||∆m||∞ ≤ 1 + 2
m∑

k=1

ϕ(k).

It should be pointed out that the statement of the theorem in this paper is improved by a factor

of 4 in the exponent with respect to that of (Kontorovich and Ramanan, 2008, Theorem 1.1). This

can be achieved straightforwardly by following the same steps as in the proof of Kontorovich and

Ramanan (2008), but by making use of the following general form of McDiarmid’s inequality (The-

orem 9) instead of Azuma’s inequality. In particular, Theorem 5.1 of Kontorovich and Ramanan

(2008) shows that for a ϕ-mixing distribution and a 1-Lipschitz function, the constants ci can be

bounded as follows in Theorem 9:

ci ≤ 1 + 2
m−i∑

k=1

ϕ(k). (24)

Theorem 9 (McDiarmid (1989), 6.10) Let Z1, . . . , Zm be arbitrary random variables taking val-

ues in Z and let Φ: Zm→R be a measurable function satisfying for all zi, z
′
i∈Z, i=1, . . . ,m, the

following inequalities:
∣∣∣E
[
Φ(Z1, . . . , Zm)

∣∣Z1 = z1, . . . , Zi = zi

]
− E

[
Φ(Z1, . . . , Zm)

∣∣Z1 = z1, . . . , Zi = z′i

]∣∣∣ ≤ ci,

where ci>0, i=1, . . . ,m, are constants. Then, for any ǫ>0, the following inequality holds :

Pr
[∣∣Φ(Z1, . . . , Zm)− E[Φ(Z1, . . . , Zm)]

∣∣ ≥ ǫ
]
≤ 2 exp

( −2ǫ2∑m
i=1 c

2
i

)
. (25)

3. We should note that original bound is expressed in terms of η-mixing coefficients. To simplify presentation, we

are adapting it to the case of stationary ϕ-mixing sequences by using the following straightforward inequality for a

stationary process: 2ϕ(j − i) ≥ ηij . Furthermore, the bound presented in Kontorovich and Ramanan (2008) holds

when the sample space is countable, it is extended to the continuous case in Kontorovich (2007).

11
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In the i.i.d. case, McDiarmid’s theorem can be restated in the following simpler form that we

shall use in Section 4.

Theorem 10 (McDiarmid, i.i.d. scenario) Let Z1, . . . , Zm be independent random variables tak-

ing values in Z and let Φ: Zm → R be a measurable function satisfying for all zi, z
′
i ∈ Z,

i=1, . . . ,m, the following inequalities:

∣∣Φ(z1, . . . , zi, . . . zm)− Φ(z1, . . . , z
′
i, . . . zm)

∣∣ ≤ ci,

where ci>0, i=1, . . . ,m, are constants. Then, for any ǫ>0, the following inequality holds:

Pr
[∣∣Φ(Z1, . . . , Zm)− E[Φ(Z1, . . . , Zm)]

∣∣ ≥ ǫ
]
≤ 2 exp

( −2ǫ2∑m
i=1 c

2
i

)
. (26)

3.4 ϕ-Mixing Generalization Bounds

This section presents several theorems that constitute the main results of this paper in the ϕ-mixing

case. The following theorem is constructed from the bounds shown in the previous three sections.

Theorem 11 (General Non-i.i.d. Stability Bound) Let hS denote the hypothesis returned by a β̂-

stable algorithm trained on a sample S drawn from a ϕ-mixing stationary distribution and let c be

a measurable non-negative cost function upper bounded by M > 0, then for any b ∈ {0, . . . ,m}
and any ǫ>0, the following generalization bound holds

Pr
S

[∣∣∣R(hS)− R̂(hS)
∣∣∣ > ǫ+ (6b+ 2)β̂ + 6Mϕ(b)

]

≤ 2 exp

(
−2ǫ2(1 + 2

∑m
i=1 ϕ(i))

−2

m((b+ 2)2β̂ + 2Mϕ(b) +M/m)2

)
.

Proof The theorem follows directly the application of Lemma 6 and Lemma 7 to Theorem 8.

The theorem gives a general stability bound for ϕ-mixing stationary sequences. If we further

assume that the sequence is algebraically ϕ-mixing, that is for all k, ϕ(k) = ϕ0k
−r for some r>1,

then we can solve for the value of b to optimize the bound.

Theorem 12 (Non-i.i.d. Stability Bound for Algebraically Mixing Sequences) Let hS denote the

hypothesis returned by a β̂-stable algorithm trained on a sample S drawn from an algebraically ϕ-

mixing stationary distribution, ϕ(k) = ϕ0k
−r with r > 1, and let c be a measurable non-negative

cost function upper bounded by M > 0, then, for any ǫ > 0, the following generalization bound

holds

Pr
S

[∣∣∣R(hS)− R̂(hS)
∣∣∣ > ǫ+ 8β̂ + (r + 1)6Mϕ(b)

]

≤ 2 exp

(
−2ǫ2(1 + 2ϕ0r/(r − 1))−2

m(6β̂ + (r + 1)2Mϕ(b) +M/m)2

)
,

where b =
(

β̂
rϕ0M

)−1/(r+1)
.

12
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Proof For an algebraically mixing sequence, the value of b minimizing the bound of Theorem 11

satisfies the equation β̂b∗ = rMϕ(b∗). Since b must be an integer, we use the approximation

b =
⌈(

β̂
rϕ0M

)−1/(r+1) ⌉
when applying Theorem 11. However, observing the inequalities ϕ(b∗) ≥

ϕ(b) and (b∗ + 1) ≥ b, allows us to write the statement of Theorem 12 in terms of the fractional

choice b∗.

The term in the numerator can be bounded as

1 + 2
m∑

i=1

ϕ(i) = 1 + 2
m∑

i=1

ϕ0i
−r

≤ 1 + 2ϕ0

(
1 +

∫ m

1
x−rdx

)

= 1 + 2ϕ0

(
1 +

m1−r − 1

1− r

)
.

Using the assumption r > 1, we can upper bound m1−r with 1 and obtain

1 + 2ϕ0

(
1 +

m1−r − 1

1− r

)
≤ 1 + 2ϕ0

(
1 +

1

r − 1

)
= 1 +

2ϕ0r

r − 1
.

Plugging in this value and the minimizing value of b in the bound of Theorem 11 yields the state-

ment of the theorem.

In the case of a zero mixing coefficient (ϕ=0 and b=0), the bounds of Theorem 11 coincide

with the i.i.d. stability bound of Bousquet and Elisseeff (2002).

In the general case, in order for the right-hand side of these bounds to converge, we must have

β̂ = o(1/
√
m) and ϕ(b) = o(1/

√
m). The first condition holds for several families of algorithms

with β̂≤O(1/m) (Bousquet and Elisseeff, 2002).

In the case of algebraically mixing sequences with r > 1, as assumed in Theorem 12, β̂ ≤
O(1/m) implies ϕ(b) ≈ ϕ0(β̂/(rϕ0M))(r/(r+1))<O(1/

√
m). More specifically, for the scenario

of algebraic mixing with 1/m-stability, the following bound holds with probability at least 1− δ,

∣∣∣R(hS)− R̂(hS)
∣∣∣ ≤ O

(√
log(1/δ)

m
r−1
r+1

)
. (27)

This is obtained by setting the right hand side of Theorem 12 equal to δ and solving for ǫ. Further-

more, if we choose ǫ =
√

C log(m)

m(r−1)/(r+1) for a large enough constant C > 0, the right hand side of

Theorem 12 is summable over m and thus,

∣∣∣R(hS)− R̂(hS)
∣∣∣ ≤ O

(√
log(m)

m
r−1
r+1

)
, (28)

almost surely, by the Borel-Cantelli lemma.

Similar bounds can be given for the exponential mixing setting (ϕ(k) = ϕ0 exp(−ϕ1k
r)). If

we choose b = O(
√
log(m)3/m) and assume β̂ = O(1/m) then with probability at least 1− δ,

∣∣∣R(hS)− R̂(hS)
∣∣∣ ≤ O



√

log(1/δ) log2(m)

m


 . (29)

13
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If we instead set ǫ = C

√
log3(m)

m for a large enough constant C, the right hand side of Theorem 12

is summable and again by the Borel-Cantelli lemma we have

∣∣∣R(hS)− R̂(hS)
∣∣∣ ≤ O



√

log3(m)

m


 , (30)

almost surely.

3.5 Applications

We now present the application of our stability bounds for algebraically ϕ-mixing sequences to sev-

eral algorithms, including the family of kernel-based regularization algorithms and that of relative

entropy-based regularization algorithms. The application of our learning bounds will benefit from

the previous analysis of the stability of these algorithms by Bousquet and Elisseeff (2002).

3.5.1 KERNEL-BASED REGULARIZATION ALGORITHMS

We first apply our bounds to a family of algorithms minimizing a regularized objective function

based on the norm ‖ · ‖K in a reproducing kernel Hilbert space, where K is a positive definite

symmetric kernel:

argmin
h∈H

1

m

m∑

i=1

c(h, zi) + λ‖h‖2K . (31)

The application of our bound is possible, under some general conditions, since kernel regularized

algorithms are stable with β̂ ≤ O(1/m) (Bousquet and Elisseeff, 2002). For the sake of complete-

ness, we briefly present the proof of this β̂-stability.

We will assume that the cost function c is σ-admissible, that is there exists σ ∈ R+ such that

for any two hypotheses h, h′ ∈ H and for all z = (x, y) ∈ X × Y ,

|c(h, z)− c(h′, z)| ≤ σ|h(x)− h′(x)|. (32)

This assumption holds for the quadratic cost and most other cost functions when the hypothesis set

and the set of output labels are bounded by some M ∈ R+: ∀h ∈ H, ∀x ∈ X, |h(x)| ≤ M and

∀y ∈ Y, |y| ≤ M . We will also assume that c is differentiable. This assumption is in fact not

necessary and all of our results hold without it, but it makes the presentation simpler.

We denote by BF the Bregman divergence associated to a convex function F : BF (f‖g) =
F (f) − F (g) − 〈f − g,∇F (g)〉. In what follows, it will be helpful to define F as the objective

function of a general regularization based algorithm,

FS(h) = R̂S(h) + λN(h), (33)

where R̂S is the empirical error as measured on the sample S, N : H → R
+ is a regularization

function and λ > 0 is the familiar trade-off parameter. Finally, we shall use the shorthand ∆h =
h′ − h.

Lemma 13 (Bousquet and Elisseeff (2002)) A kernel-based regularization algorithm of the form

(31), with bounded kernel K(x, x) ≤ κ < ∞ and σ-admissible cost function, is β̂-stable with

coefficient,

β̂ ≤ σ2κ2

mλ
.

14
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Proof Let h and h′ be the minimizers of FS and F ′
S respectively where S and S′ differ in the first

coordinate (choice of coordinate is without loss of generality), then,

BN (h′‖h) +BN (h‖h′) ≤ 2σ

mλ
sup
x∈S

|∆h(x)|. (34)

To see this, we notice that since BF = B
R̂
+λBN , and since a Bregman divergence is non-negative,

λ
(
BN (h′‖h) +BN (h‖h′)

)
≤ BFS

(h′‖h) +BFS′
(h‖h′).

By the definition of h and h′ as the minimizers of FS and FS′ ,

BFS
(h′‖h) +BFS′

(h‖h′) = R̂FS
(h′)− R̂FS

(h) + R̂FS′
(h)− R̂FS′

(h′).

Finally, by the σ-admissibility of the cost function c and the definition of S and S′,

λ
(
BN (h′‖h) +BN (h‖h′)

)
≤ R̂FS

(h′)− R̂FS
(h) + R̂FS′

(h)− R̂FS′
(h′)

=
1

m

[
c(h′, z1)− c(h, z1) + c(h, z′1)− c(h′, z′1)

]

≤ 1

m

[
σ|∆h(x1)|+ σ|∆h(x′1)|

]

≤ 2σ

m
sup
x∈S

|∆h(x)|,

which establishes (34).

Now, if we consider N(·) = ‖·‖2K , we have BN (h′‖h) = ‖h′ − h‖2K , thus BN (h′‖h) +
BN (h‖h′) = 2‖∆h‖2K and by (34) and the reproducing kernel property,

2‖∆h‖2K ≤ 2σ

mλ
sup
x∈S

|∆h(x)|

≤ 2σ

mλ
κ||∆h||K .

Thus ‖∆h‖K ≤ σκ
mλ . And using the σ-admissibility of c and the kernel reproducing property we

obtain

∀z ∈ X × Y, |c(h′, z)− c(h, z)| ≤ σ|∆h(x)| ≤ κσ‖∆h‖K .

Therefore,

∀z ∈ X × Y, |c(h′, z)− c(h, z)| ≤ σ2κ2

mλ
,

which completes the proof.

Three specific instances of kernel regularization algorithms are SVR, for which the cost function

is based on the ǫ-insensitive cost:

c(h, z) =

{
0 if |h(x)− y| ≤ ǫ,

|h(x)− y| − ǫ otherwise.
(35)
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Kernel Ridge Regression (Saunders et al., 1998), for which

c(h, z) = (h(x)− y)2 , (36)

and finally Support Vector Machines with the hinge-loss,

c(h, z) =

{
0 if 1− yh(x) ≤ 0,

1− yh(x) if yh(x) < 1,
(37)

For kernel regularization algorithms, as pointed out in Bousquet and Elisseeff (2002, Lemma 23),

a bound on the labels immediately implies a bound on the output of the hypothesis returned by the

algorithm. We formally state this lemma below.

Lemma 14 Let h∗ be the solution of the optimization problem (31), let c be a cost function and let

B(·) be a real-valued function such that for all h ∈ H , x ∈ X , and y′ ∈ Y ,

c(h(x), y′) ≤ B(h(x)).

Then, the output of h∗ is bounded as follows,

∀x ∈ X, |h∗(x)| ≤ κ

√
B(0)

λ
,

where λ is the regularization parameter, and κ2 ≥ K(x, x) for all x ∈ X .

Proof Let F (h) = 1
m

∑m
i=1 c(h, zi) + λ‖h‖2K and let 0 be the zero hypothesis, then by definition

of F and h∗,

λ‖h∗‖2K ≤ F (h∗) ≤ F (0) ≤ B(0). (38)

Then, using the reproducing kernel property and the Cauchy-Schwarz inequality we note,

∀x ∈ X, |h∗(x)| = 〈h∗,K(x, ·)〉 ≤ ‖h∗‖K
√
K(x, x) ≤ κ‖h∗‖K . (39)

Combining the two inequalities proves the lemma.

We note that in Bousquet and Elisseeff (2002), the following bound is also stated: c(h∗(x), y′) ≤
B(κ

√
B(0)/λ). However, when later applied, it seems that the authors use an incorrect upper

bound function B(·), which we remedy in the following.

Corollary 15 Assume a bounded output Y = [0, B], for some B > 0, and assume that K(x, x) ≤
κ2 for all x for some κ > 0. Let hS denote the hypothesis returned by the algorithm when trained

on a sample S drawn from an algebraically ϕ-mixing stationary distribution. Let u = r/(r + 1) ∈
[12 , 1], M

′ = 2(r + 1)ϕ0M/(rϕ0M)u, and ϕ′
0 = (1 + 2ϕ0r/(r − 1)). Then, with probability at

least 1− δ, the following generalization bounds hold for

a. Support Vector Machines (SVM, with hinge-loss)

R(hS) ≤ R̂(hS) +
8κ2

λm
+

(
2κ2

λ

)u
3M ′

mu
+ ϕ′

0

(
M +

3κ2

λ
+

(
2κ2

λ

)u
M ′

mu−1

)√
2 log(2/δ)

m
,

where M = κ
√

1
λ +B.
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b. Support Vector Regression (SVR):

R(hS) ≤ R̂(hS) +
8κ2

λm
+

(
2κ2

λ

)u
3M ′

mu
+ ϕ′

0

(
M +

3κ2

λ
+

(
2κ2

λ

)u
M ′

mu−1

)√
2 log(2/δ)

m
,

where M = κ
√

2B
λ +B.

c. Kernel Ridge Regression (KRR):

R(hS) ≤ R̂(hS)+
32κ2B2

λm
+

(
8κ2B2

λ

)u
3M ′

mu
+ϕ′

0

(
M+

12κ2B2

λ
+

(
8κ2B2

λ

)u
M ′

mu−1

)√
2 log(2/δ)

m
,

where M = 2κ2B2/λ+B2.

Proof For SVM, the hinge-loss is 1-admissible giving β̂ ≤ κ2/(λm). Using Lemma 14, with

B(0) = 1, the loss can be bounded ∀x ∈ X, y ∈ Y, 1 + |h∗(x)| ≤ κ
√

1
λ +B.

Similarly, SVR has a loss function that is 1-admissible, thus, applying Lemma 13 gives us

β̂ ≤ κ2/(λm). Using Lemma 14, with B(0) = B, we can bound the loss as follows, ∀x ∈ X, y ∈
Y, |h∗(x)− y| ≤ κ

√
B
λ +B.

Finally for KRR, we have a loss function that is 2B-admissible and again using Lemma 13

β̂ ≤ 4κ2B2/(λm). Again, applying Lemma 14 with B(0) = B2 and ∀x ∈ X, y ∈ Y, (h∗(x) −
y)2 ≤ κ2B2/λ+B2 .

Plugging these values into the bound of Theorem 12 and setting the right-hand side to δ yields

the statement of the corollary.

3.5.2 RELATIVE ENTROPY-BASED REGULARIZATION ALGORITHMS

In this section, we apply the results of Theorem 12 to a family of learning algorithms based on

relative entropy-regularization. These algorithms learn hypotheses h that are mixtures of base hy-

potheses in {hθ : θ ∈ Θ}, where Θ is measurable set. The output of these algorithms is a mixture

g : Θ → R, that is a distribution over Θ. Let G denote the set of all such distributions and let

g0 ∈ G be a fixed distribution. Relative entropy based-regularization algorithms output the solution

of a minimization problem of the following form:

argmin
g∈G

1

m

m∑

i=1

c(g, zi) + λD(g‖g0), (40)

where the cost function c : G × Z → R is defined in terms of a second internal cost function

c′ : H × Z → R:

c(g, z) =

∫

Θ
c′(hθ, z)g(θ)dθ,

and where D(g‖g0) is the relative entropy between g and g0:

D(g‖g0) =
∫

Θ
g(θ) log

g(θ)

g0(θ)
dθ.
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As shown by (Bousquet and Elisseeff, 2002, Theorem 24), a relative entropy-based regularization

algorithm defined by (40) with bounded loss c′(·) ≤ M , is β̂-stable with the following bound on the

stability coefficient:

β̂ ≤ M2

λm
.

Theorem 12 combined with this inequality immediately yields the following generalization bound.

Corollary 16 Let hS be the hypothesis solution of the optimization (40) trained on a sample S
drawn from an algebraically ϕ-mixing stationary distribution with the internal cost function c′

bounded by M . Then, with probability at least 1− δ, the following holds:

R(hS) ≤ R̂(hS) +
8M2

λm
+

3M ′

λumu
+ ϕ′

0

(
M +

3M2

λ
+

2uM ′

λumu−1

)√
2 log(2/δ)

m
,

where u = r/(r + 1) ∈ [12 , 1], M
′ = 2(r + 1)ϕ0M

u+1/(rϕ0)
u, and ϕ′

0 = (1 + 2ϕ0r/(r − 1)).

3.6 Discussion

The results presented here are, to the best of our knowledge, the first stability-based generalization

bounds for the class of algorithms just studied in a non-i.i.d. scenario. These bounds are non-

trivial when the condition on the regularization parameter λ ≫ 1/m1/2−1/r parameter holds for all

large values of m. This condition coincides with the one obtained in the i.i.d. setting by Bousquet

and Elisseeff (2002), in the limit, as r tends to infinity. The next section gives stability-based

generalization bounds that hold even in the scenario of β-mixing sequences.

4. β-Mixing Generalization Bounds

In this section, we prove a stability-based generalization bound that only requires the training se-

quence to be drawn from a β-mixing stationary distribution. The bound is thus more general and

covers the ϕ-mixing case analyzed in the previous section. However, unlike the ϕ-mixing case,

the β-mixing bound presented here is not a purely exponential bound. It contains an additive term,

which depends on the mixing coefficient.

As in the previous section, Φ(S) is defined by Φ(S)=R(hS)−R̂(hS). To simplify the presenta-

tion, here, we define the generalization error of hS by R(hS)=Ez[c(hS , z)]. Thus, test samples are

assumed independent of S.4 Note that for any block of points Z = z1 . . . zk drawn independently

of S, the following equality holds:

E
Z

[
1

|Z|
∑

z∈Z

c(hS , z)

]
=

1

k

k∑

i=1

E
Z
[c(hS , zi)] =

1

k

k∑

i=1

E
zi
[c(hS , zi)] = E

z
[c(hS , z)] (41)

since, by stationarity, Ezi [c(hS , zi)] = Ezj [c(hS , zj)] for all 1≤ i, j ≤ k. Thus, for any such block

Z, we can write R(hS)=EZ

[
1
|Z|

∑
z∈Z c(hS , z)

]
. For convenience, we extend the cost function c

4. In the β-mixing scenario, a result similar to that of Lemma 5 can be shown to hold in expectation with respect the

sample S. Using Markov’s inequality, the inequality can be shown to hold with high probability. Thus, the results

that follow can all be be extended to the case where the test points depend on the training sample, at the expense of

an an additional confidence term.
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Figure 3: Illustration of the sequences Sa and Sb derived from S that are considered in the proofs.

The darkened regions are considered as being removed from the sequence.

to blocks as follows:

c(h, Z) =
1

|Z|
∑

z∈Z

c(h, z). (42)

With this notation, R(hS) = EZ [c(hS , Z)] for any block drawn independently of S, regardless of

the size of Z.

To derive a generalization bound for the β-mixing scenario, we apply McDiarmid’s inequality

(Theorem 10) to Φ defined over a sequence of independent blocks. The independent blocks we

consider are non-symmetric and thus more general than those considered by previous authors (Yu,

1994; Meir, 2000).

From a sample S made of a sequence of m points, we construct two sequences of blocks Sa

and Sb, each containing µ blocks. Each block in Sa contains a points and each block in Sb contains

b points (see Figure 3). Sa and Sb form a partitioning of S; for any a, b ∈ {0, . . . ,m} such that

(a+ b)µ = m, they are defined precisely as follows:

Sa = (Z
(a)
1 , . . . , Z(a)

µ ), with Z
(a)
i = z(i−1)(a+b)+1, . . . , z(i−1)(a+b)+a

Sb = (Z
(b)
1 , . . . , Z(b)

µ ), with Z
(b)
i = z(i−1)(a+b)+a+1, . . . , z(i−1)(a+b)+a+b,

(43)

for all i ∈ {1, . . . , µ}. We shall consider similarly sequences of i.i.d. blocks Z̃a
i and Z̃b

i , i ∈
{1, . . . , µ}, such that the points within each block are drawn according to the same original β-

mixing distribution and shall denote by S̃a the block sequence (Z̃
(a)
1 , . . . , Z̃

(a)
µ ).

In preparation for the application of McDiarmid’s inequality, we give a bound on the expectation

of Φ(S̃a). Since the expectation is taken over a sequence of i.i.d. blocks, this brings us to a situation

similar to the i.i.d. scenario analyzed by Bousquet and Elisseeff (2002), with the exception that we

are dealing with i.i.d. blocks instead of i.i.d. points.

Lemma 17 Let S̃a be an independent block sequence as defined above, then the following bound

holds for the expectation of |Φ(S̃a)|:

E
S̃a

[|Φ(S̃a)|] ≤ aβ̂.

Proof Since the blocks Z̃(a) are independent, we can replace any one of them with any other

block Z drawn from the same distribution. However, changing the training set also changes the
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hypothesis, in a limited way. This is shown precisely below:

E
S̃a

[|Φ(S̃a)|] = E
S̃a

[∣∣∣ 1
µ

µ∑

i=1

c(h
S̃a
, Z̃

(a)
i )− E

Z
[c(h

S̃a
, Z)]

∣∣∣
]

≤ E
S̃a,Z

[∣∣∣ 1
µ

µ∑

i=1

c(h
S̃a
, Z̃

(a)
i )− c(h

S̃a
, Z)

∣∣∣
]

= E
S̃a,Z

[∣∣∣ 1
µ

µ∑

i=1

c(h
S̃i
a
, Z)− c(h

S̃a
, Z)

∣∣∣
]
,

where S̃i
a corresponds to the block sequence S̃a obtained by replacing the ith block with Z. The

β̂-stability of the learning algorithm gives

E
S̃a,Z

[
1

µ

∣∣∣
µ∑

i=1

c(h
S̃i
a
, Z)− c(h

S̃a
, Z)

∣∣∣
]
≤ E

S̃a,Z

[
1

µ

µ∑

i=1

2aβ̂

]
≤ 2aβ̂.

We now relate the non-i.i.d. event Pr[Φ(S) ≥ ǫ] to an independent block sequence event to which

we can apply McDiarmid’s inequality.

Lemma 18 Assume a β̂-stable algorithm. Then, for a sample S drawn from a β-mixing stationary

distribution, the following bound holds,

Pr
S
[|Φ(S)| ≥ ǫ] ≤ Pr

S̃a

[
|Φ(S̃a)| − E[|Φ(S̃a)|] ≥ ǫ′0

]
+ (µ− 1)β(b), (44)

where ǫ′0 = ǫ− µbM
m − 2µbβ̂ − E

S̃′

a
[|Φ(S̃′

a)|].
Proof The proof consists of first rewriting the event in terms of Sa and Sb and bounding the error

on the points in Sb in a trivial manner. This can be afforded since b will be eventually chosen to be

small. Since |EZ′ [c(hS , Z
′)]− c(hS , z

′)| ≤ M for any z′ ∈ Sb, we can write

Pr
S
[|Φ(S)| ≥ ǫ] = Pr

S
[|R(hS)− R̂(hS)| ≥ ǫ]

= Pr
S

[
1

m

∣∣∣
∑

z∈S

E
Z
[c(hS , Z)]− c(hS , z)

∣∣∣ ≥ ǫ

]

≤ Pr
S

[
1

m

∣∣∣
∑

z∈Sa

E
Z
[c(hS , Z)]− c(hS , z)

∣∣∣+ 1

m

∣∣∣
∑

z′∈Sb

E
Z′

[c(hS , Z
′)]− c(hS , z

′)
∣∣∣ ≥ ǫ

]

≤ Pr
S

[
1

m

∣∣∣
∑

z∈Sa

E
Z
[c(hS , Z)]− c(hS , z)

∣∣∣+ µbM

m
≥ ǫ

]
.

By β̂-stability and µa/m ≤ 1, this last term can be bounded as follows

Pr
S

[
1

m

∣∣∣
∑

z∈Sa

E
Z
[c(hS , Z)]− c(hS , z)

∣∣∣+ µbM

m
≥ ǫ

]
≤

Pr
Sa

[
1

µa

∣∣∣
∑

z∈Sa

E
Z
[c(hSa , Z)]− c(hSa , z)

∣∣∣+ µbM

m
+ 2µbβ̂ ≥ ǫ

]
.
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The right-hand side can be rewritten in terms of Φ and bounded in terms of a β-mixing coefficient:

Pr
Sa

[
1

µa

∣∣∣
∑

z∈Sa

E
Z
[c(hSa , Z)]− c(hSa , z)

∣∣∣+ µbM

m
+ 2µbβ̂ ≥ ǫ

]

= Pr
Sa

[
|Φ(Sa)|+

µbM

m
+ 2µbβ̂ ≥ ǫ

]

≤ Pr
S̃a

[
|Φ(S̃a)|+

µbM

m
+ 2µbβ̂ ≥ ǫ

]
+ (µ− 1)β(b),

(45)

by applying Lemma 3 to the indicator function of the event
{
|Φ(Sa)|+ µbM

m + 2µbβ̂ ≥ ǫ
}

. Since

E
S̃′

a
[|Φ(S̃′

a)|] is a constant, the probability in this last term can be rewritten as

Pr
S̃a

[
|Φ(S̃a)|+

µbM

m
+ 2µbβ̂] ≥ ǫ

]

= Pr
S̃a

[
|Φ(S̃a)| − E

S̃′

a

[|Φ(S̃′
a)|] +

µbM

m
+ 2µbβ̂] ≥ ǫ− E

S̃′

a

[|Φ(S̃′
a)|]
]

= Pr
S̃a

[
|Φ(S̃a)| − E

S̃′

a

[|Φ(S̃′
a)|] ≥ ǫ′0

]
,

(46)

which ends the proof of the lemma.

The last two lemmas will help us prove the main result of this section formulated in the following

theorem.

Theorem 19 Assume a β̂-stable algorithm and let ǫ′ denote ǫ− µbM
m −2µbβ̂−2aβ̂ as in Lemma 18.

Then, for any sample S of size m drawn according to a β-mixing stationary distribution, any choice

of the parameters a, b, µ > 0 such that (a + b)µ = m, and ǫ ≥ 0 such that ǫ′ ≥ 0, the following

generalization bound holds:

Pr
S

[
|R(hS)− R̂(hS)| ≥ ǫ

]
≤ exp

(
−2ǫ′2m

(
4aβ̂m+ (a+ b)M

)2

)
+ (µ− 1)β(b).

Proof To prove the statement of theorem, it suffices to bound the probability term appearing in the

right-hand side of Equation 44, Pr
S̃a

[
|Φ(S̃a)|−E[|Φ(S̃a)]| ≥ ǫ′0

]
, which is expressed only in terms

of independent blocks. We can therefore apply McDiarmid’s inequality by viewing the blocks as

i.i.d. “points”.

To do so, we must bound the quantity
∣∣|Φ(S̃a)| − |Φ(S̃i

a)|
∣∣ where the sequence Sa and Si

a differ

in the ith block. We will bound separately the difference between the generalization errors and

empirical errors.5 The difference in empirical errors can be bounded as follows using the bound on

the cost function c:

|R̂(hSa)− R̂(hSi
a
)| =

∣∣∣∣
1

µ

[∑

j 6=i

c(hSa , Zj)− c(hSi
a
, Zj)

]
+

1

µ

[
c(hSa , Zi)− c(hSi

a
, Z ′

i)
]∣∣∣∣

≤ 2aβ̂ +
M

µ
= 2aβ̂ +

(a+ b)M

m
.

5. We drop the superscripts on Z(a) since we will not be considering the sequence Sb in what follows.
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The difference in generalization error can be straightforwardly bounded using β̂-stability:

|R(hSa)−R(hSi
a
)| = |E

Z
[c(hSa , Z)]− E

Z
[c(hSi

a
, Z)]| = |E

Z
[c(hSa , Z)− c(hSi

a
, Z)]| ≤ 2aβ̂.

Using these bounds in conjunction with McDiarmid’s inequality yields

Pr
S̃a

[|Φ(S̃a)| − E
S̃′

a

[|Φ(S̃′
a)|] ≥ ǫ′0] ≤ exp

(
−2ǫ′20 m(

4aβ̂m+ (a+ b)M
)2

)

≤ exp

(
−2ǫ′2m

(
4aβ̂m+ (a+ b)M

)2

)
.

Note that to show the second inequality we make use of Lemma 17 to establish the fact that

ǫ′0 = ǫ− µbM

m
− 2µbβ̂ − E

S̃′

a

[|Φ(S̃′
a)|] ≥ ǫ− µbM

m
− 2µbβ̂ − 2αβ̂ = ǫ′.

Finally, we make use of Lemma 18 to establish the proof,

Pr
S
[|Φ(S)| ≥ ǫ] ≤ Pr

S̃a

[
|Φ(S̃a)| − E[|Φ(S̃a)|] ≥ ǫ′0

]
+ (µ− 1)β(b)

≤ exp

(
−2ǫ′2m

(
4aβ̂m+ (a+ b)M

)2

)
+ (µ− 1)β(b).

This concludes the proof of the theorem.

In order to make use of this bound, we must determine the values of parameters b and µ (a is then

equal to µ/m− u). There is a trade-off between selecting a large enough value for b to ensure that

the mixing term decreases and choosing a large enough value of µ to minimize the remaining terms

of the bound. The exact choice of parameters will depend on the type of mixing that is assumed

(e.g. algebraic or exponential). In order to choose optimal parameters, it will be useful to view the

bound as it holds with high probability, in the following corollary.

Corollary 20 Assume a β̂-stable algorithm and let δ′ denote δ− (µ−1)β(b). Then, for any sample

S of size m drawn according to a β-mixing stationary distribution, any choice of the parameters

a, b, µ > 0 such that (a+ b)µ = m, and δ ≥ 0 such that δ′ ≥ 0, the following generalization bound

holds with probability at least (1− δ):

|R(hS)− R̂(hS)| <
√

log (1/δ′))

2m

(
4aβ̂m+M

m

µ

)
+ µb

(
M

m
+ 2β̂

)
+ 2aβ̂

In the case of a fast mixing distribution, it is possible to select the values of the parameters to

retrieve a bound as in the i.i.d. case, i.e. |R(hS)− R̂(hS)| = O
(
m− 1

2

√
log 1/δ

)
. In particular, for

β(b) ≡ 0, we can choose a = 0, b = 1, and µ = m to retrieve the i.i.d. bound of Bousquet and

Elisseeff (2001).
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In the following, we examine slower mixing algebraic β-mixing distributions, which are thus

not close to the i.i.d. scenario. For algebraic mixing, the mixing parameter is defined as β(b) = b−r.

In that case, we wish to minimize the following function in terms of µ and b:

s(µ, b) =
µ

br
+

m3/2β̂

µ
+

m1/2

µ
+ µb

(
1

m
+ β̂

)
. (47)

The first term of the function captures the condition δ > (µ + 1)β(b) ≈ µ/br and the remaining

terms capture the shape of the bound in Corollary 20.

Setting the derivative with respect to each variable µ and b to zero and solving for each parameter

results in the following expressions:

b = Crγ
− 1

r+1 µ =
m3/4γ

1
2(r+1)

√
Cr(1 + 1/r)

, (48)

where γ = (m−1 + β̂) and Cr = r
1

r+1 is a constant defined by the parameter r.

Now, assuming β̂ = O(m−α) for some 0 < α ≤ 1, we analyze the convergence behavior of

Corollary 20. First, we observe that the terms b and µ have the following asymptotic behavior,

b = O
(
m

α
r+1

)
µ = O

(
m

3
4
− α

2(r+1)

)
. (49)

Next, we consider the condition δ′ > 0 which is equivalent to,

δ > (µ− 1)β(b) = O

(
m

3
4
−α
(
1− 1

2(r+1)

))
. (50)

In order for the right-hand side of the inequality to converge, it must be the case that α > 3r+3
4r+2 . In

particular, if α = 1, as is the case for several algorithms in Section 3.5, then it suffices that r > 1.

Finally, in order to see how the bound itself converges, we study the asymptotic behavior of the

terms of Equation 47 (without the first term, which corresponds to the quantity already analyzed in

Equation 50):

m3/2β̂

µ
+ µbβ̂

︸ ︷︷ ︸
(a)

+
m1/2

µ
+

µb

m︸ ︷︷ ︸
(b)

= O

(
m

3
4
−α
(
1− 1

2(r+1)

)

︸ ︷︷ ︸
(a)

+ m
α

2(r+1)
− 1

4

)

︸ ︷︷ ︸
(b)

. (51)

This expression can be further simplified by noticing that (b) ≤ (a) for all 0 < α ≤ 1 (with equality

at α = 1). Thus, both the bound and the condition on δ decrease asymptotically as the term in (a),
resulting in the following corollary.

Corollary 21 Assume a β̂-stable algorithm with β̂ = O(m−1) and let δ′ = δ −m
1

2(r+1)
− 1

4 . Then,

for any sample S of size m drawn according to a algebraic β-mixing stationary distribution, and

δ ≥ 0 such that δ′ ≥ 0, the following generalization bound holds with probability at least (1− δ):

|R(hS)− R̂(hS)| < O

(
m

1
2(r+1)

− 1
4
√
log(1/δ′)

)
. (52)

As in previous bounds r > 1 is required for convergence. Furthermore, as expected, a larger mixing

parameter r leads to a more favorable bound.
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5. Conclusion

We presented stability bounds for both ϕ-mixing and β-mixing stationary sequences. Our bounds

apply to large classes of algorithms, including common algorithms such as SVR, KRR, and SVMs,

and extend to non-i.i.d. scenarios existing i.i.d. stability bounds. Since they are algorithm-specific,

these bounds can often be tighter than other generalization bounds based on general complexity

measures for families of hypotheses. As in the i.i.d. case, weaker notions of stability might help fur-

ther improve and refine these bounds. These stability bounds complement general data-dependent

learning bounds we have shown elsewhere for stationary β-mixing sequences using the notion of

Rademacher complexity (Mohri and Rostamizadeh, 2009).

The stability bounds we presented can be used to analyze the properties of stable algorithms

when used in the non-i.i.d settings studied. But, more importantly, they can serve as a tool for

the design of novel and accurate learning algorithms. Of course, some mixing properties of the

distributions need to be known to take advantage of the information supplied by our generalization

bounds. In some problems, it is possible to estimate the shape of the mixing coefficients. This

should help devising such algorithms.
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