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ABSTRACT

Extracting structured data from emails can enable several assistive
experiences, such as reminding the user when a bill payment is due,
answering queries about the departure time of a booked flight, or
proactively surfacing an emailed discount coupon while the user is
at that store.

This paper presents Juicer, a system for extracting information
from email that is serving over a billion Gmail users daily. We
describe how the design of the system was informed by three key
principles: scaling to a planet-wide email service, isolating the
complexity to provide a simple experience for the developer, and
safeguarding the privacy of users (our team and the developers
we support are not allowed to view any single email). We describe
the design tradeoffs made in building this system, the challenges
faced and the approaches used to tackle them. We present case
studies of three extraction tasks implemented on this platform—bill
reminders, commercial offers, and hotel reservations—to illustrate
the effectiveness of the platform despite challenges unique to each
task. Finally, we outline several areas of ongoing research in large-
scale machine-learned information extraction from email.
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1 INTRODUCTION

Email is one of the most pervasive forms of online communication
today, and remains at the center of online identity. It is estimated
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Figure 1: Google Assistant responding to a user query for
their recent bills, and proactively displaying deals extracted
from Gmail when the user enters the relevant store.

that nearly 270 billion emails are received daily, projected to in-
crease to 320 billion by 2021'. This enormous volume of email traffic
has lead to the notion of email overload, in which users become
overwhelmed when they can no longer process their inbox at the
rate at which emails arrive [10]. Traditional methods to handle this
influx include user-driven labeling, foldering, and filtering. These
techniques require manual tuning by inbox owners. Automatic
techniques have also been developed, including spam filters [8],
automatic foldering [21], labeling [44], and prioritization [1].

More recently, smart assistants surface the pertinent parts of
emails proactively or in response to personal queries. For example,
the Google Assistant may trigger a notification with a discount
coupon extracted from an email when the user walks into a physical
store corresponding to the email’s sender. Smart assistants are also
able to answer personal queries, such as “when is my electric bill
due?”. See Figure 1 for some examples of these experiences.

The key enabler for these capabilities is information extraction.
Large-scale information extraction of web documents is a well re-
searched topic that spans back to the earliest days of the World
Wide Web [23]. Many techniques exist to build large-scale informa-
tion extraction systems [17, 36]. Unlike the general web, which is
predominantly public, emails are private. Thus, to date, relatively

Uhttps://www.radicati.com/wp/wp-content/uploads/2017/01/Email-Statistics-Report-
2017-2021-Executive-Summary.pdf
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little research has been presented on information extraction over
this domain [4, 46]. Learning and iterating is a much more difficult
task when privacy must be preserved [13].

Upwards of 90% of messages are machine-generated [29]. Virtu-
ally all of these business-to-consumer (B2C) emails are created by
filling in variable fields of a fixed template. For example, shipping
confirmation emails from an e-commerce site will contain much
of the same boilerplate text and images shared across all instances,
while information such as name, address, tracking numbers, and
products will be personalized. In this paper, we present Juicer—
a machine-learned system for information extraction from B2C
emails that is serving over a billion Gmail users daily. Juicer relies
on three key design principles:

Scalability Gmail is a planet-scale email system. While web docu-
ments can be processed and extracted in batch offline, email
is a near-real-time service. Our information extraction sys-
tem must not only scale to the massive number of emails
flowing through Gmail, but also do so at low latency and low
cost. A key property of Juicer’s scalability is that extraction
rules are learned offline and aggregated into the template,
thus removing the need for an expensive model inference
call online.

Simplicity Juicer is designed so generalist software engineers with
a basic understanding of machine learning can implement
a new extraction task quickly and effectively. Developers
focus on generating training data for two kinds of classifiers.
The first is vertical classification, in which we determine
which category the email belongs to (e.g. offers, bills, ho-
tel reservations, etc.). The second task consists of learning
extractors for the fields that are relevant to that vertical. De-
velopers use off-the-shelf models to train these classifiers,
and do not focus their energy on novel machine learning
models. Details on the workflow are presented in Section 5.

Safety Most importantly, our system respects user privacy. None
of the engineers may view any single email. Evaluation of our
system relies on k-anonymity to protect user’s privacy [13].
A detailed discussion is presented in Section 4.1.

In Juicer, we first cluster a representative sample of emails ac-
cording to the templates from which they were instantiated. As part
of this process, we also execute a set of classifiers and field extrac-
tors over the emails within each cluster, and aggregate the results
into a set of static rules used online for extraction. For example, if
a majority of the emails in a template cluster are classified as pur-
chase receipts, then we label that template as a purchase template.
Likewise, if a majority of emails contain a shared XPath containing
the tracking number, then we write a rule in the template indicating
that an email’s matching XPath will contain the tracking number.
Thus, online, when an email arrives, the information extraction task
is reduced to a simple lookup for the email’s matching template,
followed by applying any labels and rules that are associated with
the template.

Our key contributions are as follows:

e We provide and end-to-end description of a privacy-safe,
planet-scale, machine-learned information extraction system
over email.
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Figure 2: The Juicer architecture. Details of the ML compo-
nent are described in the text and depicted in Figure 3.

e We describe how to leverage templates to both reduce run-
time cost of extraction as well as increase the accuracy of
these extractions.

o We discuss several design choices informed by our principles
of scale, simplicity, and safety that can be applied to new
information extraction systems on other corpora.

e We present three different case studies to highlight the effec-
tiveness of the platform even when each task poses unique
challenges.

e Finally, we close with a description of several ongoing ar-
eas of investigation in this space that are of interest to re-
searchers and practitioners alike.

The remainder of the paper is organized as follows. A description
of the system architecture is presented in Section 2 followed by a
detailed discussion in Section 3 of the models trained to perform
the vertical classification and field extraction tasks and how the
learned results are attached to the template. Section 4 recounts
some of the challenges encountered during development. Section
5 describes the typical workflow for a developer to implement a
new or improve an existing extraction task. And Section 6 presents
three case studies and the challenges associated with each.

2 SYSTEM ARCHITECTURE

The Juicer system consists of three main components: (1) template
induction, in which we cluster emails together to form templates
that can be looked up quickly online, (2) machine-learned rule
generation, in which we classify each template into a “vertical” (e.g.
bills, hotel reservations, flights, etc.) and learn a set of extraction
rules specific to each vertical, and (3) an online extraction system
that looks up an incoming email’s template and executes the rules.
A high level depiction of this architecture is presented in Figure 2.




2.1 Template Induction

Juicer induces email templates by sampling recent emails from the
Gmail corpus and clustering them. Intuitively, our objective is to
cluster sampled emails in a way that groups together all emails
instantiated from the same template, and no others. The two failure
modes are grouping together emails from multiple templates (tem-
plate conflation), and grouping emails from the same template into
multiple clusters (template fragmentation). Conflation interferes
with the vertical classification and rule generation steps, while frag-
mentation may cause us to ignore that template due to k-anonymity
constraints.

There are several features we could use for mapping an email to
a cluster: the email’s content (that is, its words); its structure (that is,
its DOM tree, assuming the email is HTML-formatted); or its RFC
5322 header information (including sender and subject line). Using
shared content for clustering is prone to template fragmentation,
particularly for templates that have substantial non-fixed portions.
Therefore, we rely on header and structural information. We con-
ducted experiments on a variety of clustering techniques (beyond
the scope of this paper) and eventually deployed two techniques
into production. The data source for both is a random 0.5% sample
of emails from the last 90 days of the Gmail corpus.

The first clustering technique [2] takes advantage of the fact
that most instantiations of a single B2C template are delivered from
the same email address (e.g. “googlestore-noreply@google.com”)
with subject lines that can be represented by fixed terms and wild-
cards (e.g. “Your order of <wildcard> has shipped!”). After clustering
emails by sender, subject regular expressions are derived by gen-
erating a dictionary of fixed terms, which are observed in at least
k documents and n unique users within the sender cluster, where
k and n are determined by policy. The subject lines are reduced
to regular expressions by replacing non-fixed terms with regular
expression wildcards, (.+). Subject regular expressions that pass
the aforementioned privacy constraints within the cluster are saved
as templates for the given sender, and the remaining are discarded.

For online access, these templates are stored in a table keyed by
sender, and valued by the list of privacy-passing subject regular
expressions along with any data (such as extraction rules) that are
associated with those templates. This list is loosely organized from
most specific to least specific (from regular expressions that match
the fewest emails to ones that match the most).

Juicer’s second B2C template representation is derived by clus-
tering emails on their HTML DOM structure. For each email, we
emit a set of locality-sensitive hashes—we use Minhash by Broder et
al. [7]—computed over the XPaths of all leaf nodes in the DOM tree.
Clusters that pass the anonymity thresholds are saved as templates,
while the rest are discarded. A similar approach presented by Di Cas-
tro et al. [13], called “Mail-Hash”, clusters emails based on a single
hash over the XPaths. The key difference between these two ap-
proaches is that “Mail-Hash” clusters identically structured emails
together, while Juicer’s Minhash-based implementation clusters
together emails with similar but not necessarily identical structures.
Note that Di Castro et al. also study Minhash, but apply it over both
the markup and text of the email message.
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Figure 3: Procedure for vertical classification and rule gen-
eration.

Online, templates are keyed by their hash. A set of hashes is
produced for each incoming email and looked up; the first hit is
declared the matching template.

2.2 Classification and Rule Generation

Having identified templates, we use a family of classifiers to attach
vertical labels (e.g. Hotel) and field (e.g. Hotel check-in time) extrac-
tion rules to the templates. This procedure is outlined in Figure 3
and described in detail here. More details for Bill, Hotel and Offer
verticals are discussed in Section 6.

A wvertical classifier is a binary classifier which decides if an email
belongs to a given vertical. Templates are labeled by aggregating
the results of the classifier across the emails in the template. This
also helps to de-noise the template-level label.

Each vertical is associated with a set of fields we want to extract.
We train a field classifier for each of these fields. Once a template
has been identified as belonging to a given vertical, we generate
candidate spans in the emails which are potential instances of the
field we want to extract. This is done for each email in the template
and for each field in the vertical.

For instance, to extract the check-in date, we can use a date-
annotator to identify all instances of dates in the email. The actual
check-in date (obtained from a ground truth extraction) is used as
the positive example. All other candidates identified by the date-
annotator are treated as negative examples. Note that the candidate
generating annotator needs to have high recall. Precision is pro-
vided by the classifier we train.

These scores are aggregated at the template level to generate
rules in the following way. The field candidates are identified using
their HTML XPath in the email. We average the field classification
scores for candidates in the same XPath across different emails in
the template cluster. We then construct a table with (XPath, NumIn-
stances, AvgScore). This table is used to determine the extraction
rules using suitable values for minimum support and precision.



2.3 Online Extraction

Online, when a new email arrives that matches a template associ-
ated with a known vertical, the extraction component is triggered.
The extraction rules corresponding to each of the fields for the
given vertical are triggered in order. A single field may contain
more than one extraction XPath—they are triggered starting from
the highest scoring XPath to the lowest. Execution for a given field
stops as soon as we identify that the contents of an XPath contains
exactly one candidate span that can be extracted.

If any of the required fields for a vertical fail to extract, we discard
the other field values and generate nothing. This can happen if
the template changes over time, and the XPaths we learned no
longer match anything in the email. The key advantage of the rule-
based extraction system over directly using the classifiers online
are improved quality from aggregating the predictions across the
samples in a template and the significantly lower cost of applying
XPath rules compared to executing a series of sophisticated ML
models online.

3 LEARNING CLASSIFIERS

This section describes how the vertical and field classifiers are
learned, and the tradeoffs considered in making the design choices.

3.1 Training Data

We obtain training data for both vertical and field classifiers by
leveraging three major pre-existing sources for extraction:

Microdata Some email-senders include structured microdata us-
ing a standard? for machine-readable annotations in HTML
documents. As expected, this data tends to have very high
precision, but extremely low recall.

Manual Parsers Sender-specific parsers are hand-crafted based
on several instances of emails donated by users for this pur-
pose. These parsers are typically only available for very pop-
ular templates (e.g. hotel reservation confirmations from ma-
jor chains). These too tend to have very high precision. They
are expensive to develop, brittle to changes in the email’s for-
mat, and offer low recall since they only cover one particular
sender.

Generic Parsers This is a class of rule-based extractors developed
using more traditional information extraction techniques
leveraging donated emails, dictionaries (e.g. a database of all
hotel names crawled from the web), and heuristic regular-
expression based rules (e.g. look for “check-in” up to n tokens
before a date for the check-in date). This class of parsers
have lower precision but have significantly higher recall
than microdata and manual parsers.

3.2 Vertical Classifiers

We learn a binary classifier for each of the verticals of interest.
An email is a positive example for a given class an extraction of
that type is produced by any of the three sources described above.
The rest of the emails are treated as negatives. Note that there are
several techniques [16, 28] that are aimed at learning classifiers

https://www.w3.org/TR/microdata/

Feature Name
subject-text
sender-text

Description
Words in the subject line
Tokens in the sender field

top-text Top 150 words in the body
strong-text Text marked header, title, bold etc.
alt-text Alt-text supplied for image content

footer-text Last 100 words in the body
html-tag-count Number of HTML tags in the body
text-token-count | Number of text tokens in the body
link-tag-count Number of link tags

image-tag-count | Number of image tags
script-tag-count | Number of script tags
table-tag-count | Number of table tags

datetime-count Number of candidate date-time spans
salient-entities Top entity IDs

Table 1: Features used in the vertical classifiers.

from positive and unlabeled data that we don’t discuss at length
here.

When generating training examples, instead of randomly sam-
pling emails across all users, we sample a fixed number of emails
from each template. This ensures that the training data is not dom-
inated by examples from popular templates whose email count
can exceed that of tail domains by several orders of magnitude. (A
large online retailer may send out millions of times more purchase
receipts than a small local retailer.) As a natural consequence of this
approach, personal email that are not generated from an underlying
template are automatically excluded from training data. For some
verticals, only a very small fraction of the emails are positive exam-
ples. In order to effectively deal with class skew, we downsample
the examples in the negative class while training, but compute our
final precision and recall metrics on the full template-level data.

Each example is represented using simple bag-of-words, count,
and bag-of- entities [39] features. Table 1 summarizes the key fea-
tures that we currently use. Only those tokens that pass the neces-
sary k-anonymity thresholds are used in constructing these features.
The rest are replaced by a special “‘REDACTED” marker.

The embeddings for each of these text features are concatenated
together with the count features and fed to a deep network with
a stack of ReLU layers. We minimize the log-loss using Proximal
Adagrad [15]. The hyperparameters are picked using the Gauss-
ian Process Bandits algorithm in Vizier [20]. Figure 4 shows the
objective values (precision-recall AUC) for trials of different hy-
perparameters. Clearly some hyperparameters lead to poor quality
classifiers. We picked the best sets of hyperparameters for our
model training. We currently do not use any convolutional layers
or an attention mechanism. We are currently investigating if these
mechanisms improve our classifiers.

3.3 Field Classifiers

For each field of a given vertical, a library of existing annotators
(mentioned above) is used to identify candidate text spans that
might be potentially valid values for this field. Then, a binary clas-
sifier is trained to identify the most likely candidate.
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Figure 4: Hyperparameter tuning with Vizier.

Feature Name
{5/10/20}-w-before
{5/10/20}-w-after
field-text
doc-index
candidate-index

Description

5/10/20 words before the candidate span
5/10/20 words after the candidate span
Contents of the candidate span

Position of the field in the document (0-1)
Positional rank relative to all candidates

Table 2: Features used in the field classifiers.

Note that only the emails that actually contain an extraction of
the class under consideration contribute (positive and negative)
training examples to the field classifier. The top features are de-
scribed in Table 2. Similar to the features used for vertical classifiers,
only the tokens that pass privacy thresholds are included.

3.4 Design Choices

An obvious first question is why we train a binary classifier for each
vertical instead of a multi-class (or multi-label) classifier? The latter
approach has two major advantages. First, the multi-class approach
may offer better precision by leveraging labeled data from multiple
verticals. Second, it may be easier to maintain and improve a single
multi-class classifier compared to several binary classifiers. How-
ever, choosing multiple binary classifiers allows us clear separation
of concerns between verticals and makes it possible to develop and
improve verticals in parallel. This also allows us to choose different
tradeoffs in precision and recall for different verticals. Taking on
the cost of maintaining separate binary classifiers actually results
in better experiment velocity without having to debug problems
like a new multi-label classifier improving metrics for one vertical,
but doing worse for a different vertical.

Second, we chose to build an email-level classifier, followed by
template-level aggregation of the scores instead of directly build-
ing a template classifier. Building template-level labels requires us
to deal with the case where an existing extraction approach (say
generic parsers) only extracts from a fraction of the emails (say
30%) in the template. This could either be because the template
is conflated (there are two different underlying templates that are
getting clustered together, and only one of them belongs to the
vertical we're trying to extract), or because the generic parser was
brittle, and only matched some of the emails in the template. By
building email-level classifiers, we are able to better distinguish
between these cases. This approach also lets us leverage existing

Google infrastructure for email classification used for applications
like spam detection and smart folders [21].

Third, we use deep networks instead of simpler model classes like
logistic regression or decision trees that are sometimes considered
more “debuggable” to learn these classifiers. This is in contrast to
the choice made in systems like DeepDive [36] which use carefully
engineered human-understandable features instead of the opaque
features yielded by deep learning. An explicit goal in building an
extraction system over private data is that an engineer must be
able to improve the system without having access to user data
and developing the intuition for complex human-understandable
features. As a result, we rely on simple features like bag-of-words
representations of the document and leverage large training data
sets where deep learning has shown great results. Using simple
features like embedding bag-of-words features allows us to reuse
them for multiple vertical and field classifiers. This also opens
the door to transfer learning techniques by using unsupervised
embeddings such as Word2Vec [31].

4 CHALLENGES

The key challenges encountered in training classifiers as well as
incrementally improving the extraction system fall into two broad
categories: protecting user privacy, and dealing with data quality.

4.1 Protecting User Privacy

Unlike public web pages, email documents are private. Google cares
deeply about protecting users’ privacy. Our team and the engineers
we support are not allowed to view any single email. Yet, evaluating
performance of our classifiers on unlabeled data requires some form
of human assessment.

For sanity-checking, we use a dataset consisting of emails ex-
plicitly donated by users and compute precision and recall against
manually labeled instances in this dataset. As one would expect,
the donated emails are a very small collection, and do not represent
the distribution over which the extraction system will be run.

A second approach is to rely on a larger pool of users who have
opted into a rating program for occasionally answering questions
about their own emails. In order to evaluate a new set of models in
the extraction system, we check to see if there are any extractions
corresponding to the users in the rating program, and ask them
to rate the quality of our extractions. The aggregated results are
used to calculate the precision. This approach, while allowing us
access to more recent emails than the donated corpus, suffers from
the same drawbacks of providing a non-representative distribution
and long delays. The rating program includes only a few thousand
people, and requires that the participants go through training. It is
also not available in all the countries and languages in which Gmail
is available.

In order to conduct more informative evaluations, we built an
anonymized review system where we leverage the templates to
generate a synthetic email with any potential personal information
redacted for each email that we want to evaluate. Since template
induction follows k-anonymity [13], the synthetic email does not
reveal any personal information. During the template induction
process, we identify the boilerplate portions of the email common
across most samples, and mark them as fixed text (e.g. “Thank you



for your order”). The rest of the email is marked as transient text.
When generating a synthetic email for human review, only the
fixed text are kept and the transient text are replaced by suitable
fixed values for dates, numbers, names, addresses, or just obfus-
cated text (“XXXXX”). Given the aggregated nature of the fixed
text, the reviewer will not be exposed to any personal information,
but the fixed text usually allows them to evaluate the extraction
performance. We ask two classes of questions—one to determine
if we identified the category of the email correctly (“Is this email
a hotel reservation confirmation?”), and another to determine if
we correctly extracted each field of interest (“Is this highlight the
check-in date”).

A major problem is that the anonymization may hide several
key parts of the email, making it too difficult to answer a question.
This results in the samples being marked ‘N/A’ and we discard
them from our evaluation. Even for the samples where the human
evaluator determines that the classifier was wrong, anonymization
often makes it difficult to understand what new features might be
useful to improve the classifier.

The human-assessment results reported in the next section are
based on this approach, which we have found to be the most ef-
fective so far. Good evaluation results here often correlate with
application level metrics such as error reports where the extrac-
tions are used.

4.2 Data Quality

A key observation about the training data is that the existing ex-
tractions are often not representative of a random subset of the
overall dataset (templates) we want to classify. Microdata is biased
towards sophisticated senders, and manual and generic parsers are
biased towards popular senders for which our users have donated
emails. As a result, our models are trained on data from popular
and/or sophisticated senders, but need to be applied to the long
tail of smaller senders that in aggregate affect a large volume of
email. This manifests itself as a much lower validation precision on
new templates classified as belonging to the vertical compared to
the precision on a holdout set. For example, a classifier we trained
to detect commercial offers (Section 6.2) had a holdout precision
of 0.993, while assessments on new templates put the precision at
0.85.

Techniques used to deal with this challenge include a mix of strat-
ified sampling by templates (to avoid over-representation for the
large senders), regularization to avoid memorizing features tightly
linked to existing senders, and active learning (to obtain more rep-
resentative training/test data over time). Space constraints prevent
us from describing the details and impact of these techniques in
greater detail.

A second challenge is that the manual parsers and generic parsers
are used to varying degrees in different verticals, and have different
levels of accuracy. An error analysis on the output of these parsers
suggests that they do suffer from false positive errors and, of course,
false negatives. For instance, they may erroneously parse and ex-
tract a bill reminder from an email that doesn’t actually contain
one. This may be because a new template from the same sender is
based on a previous template, and accidentally matches the rules
in a manual or generic parser.
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Figure 5: Workflow to develop an extraction vertical in
Juicer. The left outlines steps to train and improve classifiers.
The right depicts the relationship between template, verti-
cal, and rule coverage to determine where to concentrate the
developer’s efforts.

5 DEVELOPER WORKFLOW

This section outlines the typical developer’s workflow to imple-
ment and improve an extraction task in Juicer. As illustrated in
Figure 5, this involves four major steps: vertical classifier training,
field classifier training, model assessment, and extraction bottleneck
analysis.

Vertical Classifier Training. The first step is to train a binary
classifier which determines if an email belongs to the vertical of in-
terest. The developer’s key task is to write the code that determines
the label (positive or negative) for each email that is sampled from
the template. This is usually done by simply examining if there
is an extraction from one of the existing approaches. The model
described in Section 3 is used for training. No feature-generation
or machine-learning code is required.

Field Classifier Training,. Field classifiers are trained similar to
the vertical classifiers. The key task here is to implement a candidate
generator that can produce positive and negative examples for a
given email. Writing a good candidate generator is vital since it
informs the maximum recall for the final extraction system. Over
the years, we have developed a library of candidate generators
for standard types like dates, currency amounts, addresses, etc.
Some fields, however, can pose challenges. Examples like hotel
name, product name or event description don’t lend themselves to
convenient regular expressions, and require a non-trivial amount
of developer time.

Note that the vertical classifier and field classifier(s) can be up-
dated separately. In other words, developers can update the vertical
classifier while keeping field classifiers unchanged, and vice versa.

Validation. In this step, the developer generates sample extrac-
tions on synthetic anonymized emails (as described in Section 4.1)
on a hold-out set and sends them for assessment. If the resulting
precision of these manually assessed extractions meets the vertical-
specific thresholds, the models for the vertical and field classifiers
are pushed to production.



Statistic Bills | Offers | Hotels
AUC ROC 0.9727 | 0.9995 | 0.9999
AUC Precision Recall | 0.8010 | 0.9998 | 0.8837

Table 3: AUC-ROC and AUC-PR on a 10% holdout when
training the vertical classifier.

Bottleneck Analysis. Most extraction tasks in Juicer require
high precision, so the improvement steps usually entail increasing
coverage of extractions while maintaining high precision. In order
to increase extraction coverage, the developer first identifies the
current bottleneck to determine where to focus her efforts. She
runs a report that computes several key statistics on a sample of
emails. Template coverage is the fraction of emails with existing
extractions which matched a known Juicer template. In the example
in Figure 5, this is 100%. If this value is low, the developer in charge
of implementing the extraction task needs to bring this to our
attention (the team that owns the Juicer platform) to see if additional
templates can be induced to cover the emails that are not matching
known templates. For instance, this may happen for relatively new
templates for which the batch template induction job has not yet
seen enough examples.

Vertical coverage is the fraction of emails with existing extrac-
tions that match a template that was classified as belonging to this
vertical (50% in the example in Figure 5). If this number is low, the
developer should focus her efforts on improving the recall of the
vertical classifier. Rule coverage imposes the additional constraint
that we also have identified extraction rules for the template. (30%
in the example in Figure 5.) Rule coverage can be further refined to
understand which of the fields in the vertical are difficult to learn a
rule for, so the developer’s attention can be focused there. Finally,
extraction coverage is the fraction of extractions recovered by Juicer
(not shown in Figure 5). It may be lower than rule coverage when
online extraction fails. Section 2.3 describes a few scenarios un-
der which online extraction may fail. This tends to be difficult to
address, but a detailed discussion is beyond the scope of this paper.

To improve any of the classifiers, the developer has three choices:
write a better candidate generator, gather additional training data,
or write additional features to feed into the model. None of these
steps require deep machine learning expertise. Additional training
data can be gathered by writing more manual parsers or simply
using the extractions from the templates that Juicer previously
identified.

6 CASE STUDIES

This section describes the details of three extraction tasks that have
been implemented using the Juicer infrastructure: bill payment
reminders, commercial offers, and hotel reservations. The first two
have been in production for over a year, serving over a billion users
of Gmail. The third task is under active development. These tasks
have been chosen to illustrate that while each one poses unique and
interesting challenges, the underlying infrastructure is sufficiently
general that it can be used to solve all of them.

Structural Templates | Sender-Subject Templates
Model — —

Existing New Existing New
Bills 84.6 66.8 94.1 76.2
Offers 100.0 87.8 100.0 87.4
Hotels 97.7 98.7 100.0 78.0

Table 4: Precision on a sample of templates classified pos-
itive both for those templates that correspond to existing
parsers and newly identified templates that do not corre-
spond to existing parsers.

Description Bills | Offers | Hotels
Emails matching a positive tem- | 73.3 70.0 75.9
plate

Emails matching templates with | 58.7 40.0 38.2
rules

New templates discovered asa | 79.0 8.0 57.6
percentage of pre-existing tem-

plates

Table 5: Bottleneck analysis for each of the verticals iden-
tifying lost email-level recall at each stage. The baseline is
the set of emails with extractions from one of the existing
approaches.

6.1 Bills

The first task we describe is one of extracting bill reminders with
two key fields: the amount due and the due date. These extractions
are key to answering questions like “When is my electric bill due?”
and even offering proactive reminders.

For this task, we built two vertical classifiers: one to determine
that the template is a bill email, and a second to determine the
subtype of the bill (payment confirmation, autopay notification,
reminder, and overdue). We focus on reminders and overdue notifi-
cations in this task. The training data for the bill classifier is highly
skewed. It consists of ~1 million positive and ~200 million negative
training examples. The neural network selected by hyperparam-
eter optimization is a 6 layer network with 20 ReLU neurons per
layer. The embedding dimension is set to 50. We use the Adagrad
algorithm[14] for optimizing with an initial learning rate of 0.05.

Table 3 presents the area under the ROC and PR curves for each
of the vertical classifiers. While the AUC-ROC value exceeding 0.97
for the bill classifier might suggest that this is an easy problem; the
extreme imbalance between the positive and negative classes com-
bined with the high precision requirement makes this a challenging
task.

Table 4 reports the precision of the vertical classifiers on a sample
of the templates predicted to be positive (using thresholds corre-
sponding to 90% precision on the holdout set). We stratify the
results for templates known to correspond to existing parsers ver-
sus newly identified parsers and for the two clustering strategies
(sender-subject and structural). These were assessed using the tech-
niques described in Section 4.1. As the table shows, we are only
able to obtain a precision of 66.8% over unseen templates for the
bill classifier. Training a high-quality vertical classifier for Bills is
still a fairly challenging task, and our results suggest that either
the current model does not generalize well or that tail templates
are significantly different from the big senders that comprise our



training data. An example of a false positive error is where the clas-
sifier identified a statement of an account balance as a bill reminder.
The types of the fields (a date and a currency amount) as well as
the high-level language in such an email is fairly similar to what
one expects in a bill reminder, and therefore this presents a difficult
challenge. Improving this model is ongoing work.

Table 5 presents a high-level breakdown of where extraction
recall is lost. Recall that no extraction is performed for emails
matching a template if we are unable to induce a rule for one of
the fields. This snapshot informs the developer where to invest her
time to improve the coverage and quality of extractions. For Bills,
this table shows that the vertical and subtype classifiers are only
able to identify 73.3% of the existing emails as correctly belonging
to the bill reminder class. Of these templates, we are only able to
induce extraction rules for a subset which corresponds to about
58.7% of the existing emails. Further analysis (not presented in
Table 5) showed that the due date field classifier adds extraction
rules for 93.5% of the bill templates while the amount due field
classifier only adds rules to 81.8% of the templates. Thus, the latter
field is another bottleneck for bill extractions.

Table 5 shows that Juicer is able to identify 79% more templates
compared to the existing parsers. Even though the machine-learned
approach does not yet recover 100% of the extractions from the
existing parsers, we are able to expand the recall to new templates
and increase the overall coverage of extractions. Accurately esti-
mating Juicer’s true recall over the emails not covered by existing
parsers is very challenging — we do not tackle that in this paper.
Table 5 indicates that improving the vertical classifier is likely to
yield the broadest benefits.

6.2 Commercial Offers

Offer emails are those that provide an explicit discount or other
savings for the recipient. We currently extract two fields: the expi-
ration date and a coupon code for these emails. These extractions
can be used to power experiences such as proactively letting the
user know about a discount if she is at a store for which she has
received an email offer even if she hasn’t yet read the email.

Constructing the training data set for the offer class poses a
unique problem. Since a large fraction of email consists of com-
mercial promotions, many of the emails that don’t have an offer
extraction from an existing parser may actually be offer emails.
Treating all the unlabeled examples as negatives does not work well
in practice, resulting in much worse precision scores from human
assessments. As a result, we exclude emails tagged as promotional
(a pre-existing classifier in Gmail) from the negative examples. The
resulting training dataset comprises about 2.4 million positives and
21.6 million negatives.

Table 4 shows that the precision of the offer classifier on tem-
plates with existing parsers is 100%, and is substantially lower on
new templates without existing parsers. This suggests that the offer
classification task is particularly challenging for generalizing well
to unseen templates.

The bottleneck analysis in Table 5 shows that coverage decreases
significantly at the rule induction stage. While 70% of emails with ex-
tractions match an offer template, only 40% match an offer template
with extraction rules for the fields of interest. We discovered that

commercial offers tend to have more variability within a cluster,
and learning a fixed extraction XPath may be too restrictive for
these types of templates. We are exploring ways to generalize the
XPath to increase the coverage of the extraction rules learned.

There are two challenges unique to the offer vertical. First, tem-
plates churn frequently. By the time we discover a template, learn
extraction rules, and are ready to deploy the learned rules to produc-
tion, marketers have moved on to using new or modified templates.
Addressing this challenge is ongoing work. Second, offer infor-
mation is often encoded in images instead of text. In a previous
paper [34] we showed that the offer classifier can be improved by
leveraging the text extracted from the images.

6.3 Hotel Reservations

The third task we describe here is to extract hotel reservation con-
firmations. Extracted reservations are used in a variety of appli-
cations like Google Now, automatic updates to the calendar, and
personal queries to the assistant (e.g. “What is the address of my
hotel in Beijing?”). This is the newest extraction task, and is not yet
in production. We extract the hotel name, address, check-in, and
check-out dates.

The training data for vertical classification is, again, highly
skewed. The fraction of positive to negative examples is fewer
than 1 in 1000. The vertical classifier was trained with 190M ex-
amples using 90% of the templates. The negative examples were
downsampled to 1% of all negatives in the training set. The test set
was constructed using 10% of the templates.

Human assessments of the classifier’s predictions show high
precision in Table 4. Table 5 shows that this model only recovers
templates corresponding to 75.9% of the existing extractions. How-
ever, the model also recovers new templates corresponding to 57.6%
more templates than the existing set, helping expand extraction
coverage. The templates where rules are induced for all four fields
correspond to only 38.2% of existing extractions. Additional analy-
sis revealed that over 40% of the templates are missing the rule for
the hotel’s name and address fields. We are currently improving
the candidate generators and classifiers for these fields.

Examining the false positives from the vertical model at lower
thresholds shows that promotional emails from hotels pose one
of the biggest challenges. For instance, consider an email stating
“Enjoy this weekend in Cancun! Special promotional rates at the
Grand Hotel only for this weekend. Check in on Friday the 12th
and check out on Monday the 15th.” This contains a hotel name,
usually a corresponding hotel address, and finally, dates that look
like check-in and check-out dates. The features that distinguish this
email from an actual confirmation require semantic understanding.
Improving this classifier’s performance is ongoing work.

7 RELATED WORK

Template induction is the technique of generating a skeleton of
repeated content based on previously seen examples. It has been
widely used in information extraction over structured web pages [3,
23]. For emails, multiple algorithms for template induction have
been described [2, 4] along with applications like email thread-
ing [2] and hierarchical classification [44]. A technique has also



been suggested for plain text emails [35] where data is not explicitly
structured.

Traditional information extraction techniques focused on super-
vised methods such as hidden Markov Models [19, 38], conditional
random fields [37], or rule learning [40], etc. While these methods
work well on small homogeneous corpora, they are not scalable.
Later systems like KnowItAll [17], TextRunner [6], and OpenlE [18]
allowed information extraction approaches to scale to the diversity
and size of the web. These systems mostly focus on extracting large
collections of facts from the web, and are not specifically designed
for email. Extraction from email presents unique challenges of pri-
vacy and scale and has not been addressed much in the literature.

Recent systems like DeepDive [11] focus on leveraging statisti-
cal inference techniques paired with an iterative developer work-
flow for incrementally constructing knowledge bases. Juicer differs
from systems like DeepDive in that our design is specifically tar-
geted at email, and leverages template induction along with recent
breakthroughs in deep learning in contrast to a custom engine for
statistical inference.

A system for machine-generated email extraction for the Yahoo
mail backend was recently described in [12]. This system uses the
“Mail-Hash” clustering technique [13], and a similar approach to
learning extraction rules. The experiments in the paper [12] focus
on the travel vertical, but, much like Juicer, their techniques are
applicable to other verticals as well. While there are many similari-
ties, a key difference is that in Juicer, we rely on a deep-learning
model with simple bag-of-words features for all our verticals in
contrast to the hand-crafted “light-annotations” that can be tailored
to each vertical as in [12]. An explicit design goal in Juicer is to
not require per-vertical feature-engineering. Another interesting
difference is that [12] creates tens of thousands clusters for each
sender domain, while Juicer only creates tens of clusters for each
domain. This suggests that the Yahoo system may suffer from tem-
plate fragmentation which when combined with k-anonymity leads
to loss in recall.

We build on several techniques from the machine learning litera-
ture such as training from only positive and unlabeled data without
explicit negatives [24, 26-28], using pre-trained vector embeddings
of words [31], and combining multiple noisy sources of training
data [9, 22].

A recent technique for generalizing XPaths using decision trees
to “forgiving XPaths” has been shown to improve extraction ac-
curacy [32]. We expect this technique to be broadly applicable to
email in addition to web pages where it has been previously used.
Recent results in document classification [45] show that using a hi-
erarchical attention mechanism can improve accuracy on a variety
of text classification tasks. While email classification differs from
classifying short text documents, we expect that the techniques
may be adapted to email content with HTML.

Gathering training data is often a major bottleneck in machine
learning. Weak supervision methods are showing success in over-
coming this issue. Weak supervision refers to a broad class of meth-
ods that can be used to programmatically create training sets, such
as using heuristics rules or knowledge-bases [22]. While these weak
supervision methods provide larger scale data set, they are also nois-
ier and with lower quality. Recent techniques leveraging generative

models [5, 36, 43] to combine multiple sources of weak supervi-
sion have shown promise on several information-extraction tasks.
Much like all practical data sets, our training data also contains
noisy supervision, but with a small number of sources. Evaluating
if additional weak supervision is likely to improve the quality of
our models is an interesting avenue for future work.

Privacy is another major challenge when dealing with emails.
Juicer’s template induction follows k-anonymity [41] for privacy
protection. Other methods for privacy protection like I-diversity [30]
and t-closeness [25], overcome the limitations of k-anonymity
and provide stronger privacy guarantees. Juicer mainly focuses
on anonymizing emails to generate synthetic redacted emails for in-
ternal human assessment. Since redacted emails are not published,
we can be sure that they will not be joined with other datasets which
might weaken the privacy expectations from k-anonymity [33, 42].
Consequently, we limit our approach to k-anonymity.

8 SUMMARY AND FUTURE WORK

In this paper, we presented a broad overview of a scalable, privacy-
safe email extraction system. We described how templates are used
to improve extraction accuracy. Our design streamlines the iterative
workflow for improving extraction coverage to enable developers
without deep expertise in machine learning to be productive. The
results from three extraction tasks show the machine-learned ap-
proach is able to extract from many new templates which were
not detected by previous approaches. While the machine-learned
extractions do not yet recover all the extractions from existing
systems, they provide a strong complement and a simpler, more
modular approach for continuing improvements.

For researchers in this area, this opens up several interesting
questions. What’s the right trade-off between model complexity
and robustness so that non-experts can continually improve the
quality of the classifiers? In particular, what model and document
representation requires the least amount of feature-engineering,
which can be particularly challenging in the context of private
email. We are also investigating general approaches to incorporat-
ing additional signals in email that are typically not available in
plain text such as markup tags and knowledge of template-structure
(fixed vs. transient text).

We continue to investigate approaches to better generalize to
the long tail of email-templates given that most of the training data
is for the head templates. Finally, we are exploring the use of trans-
fer learning as well as recent advances in machine translation to
broaden Juicer’s reach to emails in languages with limited training
data.
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