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Abstract
The development of lightweight polyhedral compilation
algorithms opens polyhedral loop transformation, paral-
lelization and code generation to a larger class or pro-
grams. The Pluto scheduling algorithm plays a major
role in state-of-the-art polyhedral compilers, aiming for
the simultaneous enhancement of locality and the ex-
ploitation of coarse-grain parallelism through loop tiling.
Reducing the run time of affine scheduling algorithms
like Pluto has a significant impact on the overall compi-
lation time of polyhedral compilers. Several approaches
have been proposed to reduce the run time of affine
scheduling while preserving most of the optimization op-
portunities. Yet these works have taken separate rather
than consolidated attempts at the problem. In an at-
tempt to better characterize the potential and limitations
of such approaches, we introduce and evaluate a family
of techniques called offline statement clustering. Pro-
gram statements are clustered into macro-statements
and the dependence graph is projected onto these macro-
statements before affine scheduling. Offline statement
clustering integrates transparently into the flow of a
state-of-the-art polyhedral compiler and can reduce the
scheduling time by a factor of 6 (median) without induc-
ing a significant loss in optimization opportunities. We
also study the theoretical and experimental properties
of statement clustering, shedding new light on the lead-
ing syntax-driven heuristic [14]. Our work-in-progress
study confirms the surprising finding that the simpler,
apparently more fragile and syntax-dependent methods
tend to perform well on a wide range of benchmarks.

1 Introduction
The Pluto algorithm [7] is widely used for affine schedul-
ing. It reorders (schedules) the instances of statements
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in order to enhance the locality of memory accesses and
expose parallelism. Reducing the execution time of this
algorithm is an important step towards reducing the
overall compilation time in many polyhedral compilers.
Indeed, besides the Pluto source-to-source compiler, the
algorithm has been adapted into Graphite [17, 21] and
Polly [11], the polyhedral compilation passes of GCC
and LLVM, respectively, as well as Tiramisu [6] and
PPCG [2–4, 23] source-to-source compilers.

To find a new schedule of a group of statements in a
loop nest, the Pluto algorithm proceeds level by level,
progressing inwards starting from the outermost level.
The constructed schedule is multidimensional (a multidi-
mensional schedule defines the logical time of execution
of a statement instance compared to the other statement
instances). The Pluto algorithm computes one dimen-
sion of the multidimensional schedule of each one of the
program statements at each loop level.

Our work originates from the following observation:
at a given loop level, when the Pluto algorithm looks
for a schedule, i.e. when it looks for a new execution
order statement instances, it is very likely to assign the
same schedule to the statements that are a part of the
same strongly connected component (SCC) in the de-
pendence graph at that loop level. If the schedules of
some statements are identical, or almost equal, a natural
question is to ask whether one can take advantage of this
observation in order to accelerate affine scheduling. In
fact, there is no point in computing a separate schedule
for each one of these statements. It would be less expen-
sive to represent all of them as a single macro-statement
and only schedule that macro-statement. This naturally
leads to statement clustering.

In statement clustering, the polyhedral representation
of a program is transformed into a new one where groups
of statements are clustered into macro-statements. De-
ciding which statements should be clustered is done
through a clustering heuristic. Then, instead of schedul-
ing the original statements of the program, we schedule
the macro-statements.

Assuming that 𝐷 is the set of the program statements,
the Pluto affine scheduling algorithm is estimated to
have an average complexity of 𝒪|𝐷|5 [22], i.e., a power
five complexity in the number of statements on average.
Since the number of macro-statements is lower than or
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equal to the number of the original statements of the pro-
gram, it is expected that scheduling macro-statements
may take less time than scheduling the original state-
ments. This can be explained in more detail as follows:
the Pluto affine scheduling algorithm relies on integer
linear programming (ILP) and on an ILP solver. To find
a new schedule for the program statements, it creates an
ILP system of constraints and solves that system. The
number of variables in the ILP system of constraints is
proportional to the number of statements and the num-
ber of constraints is roughly proportional to the number
of dependences of the program [7]. Using statement clus-
tering, we create a new representation of the program
that has fewer statements and fewer dependences, which
reduces the total number of variables and the total num-
ber of constraints in the ILP problem. It is expected
that the new simplified system of constraints, which is
smaller that the original system of constraints, is more
likely to be solved more quickly by the ILP solver. Note
that this is not automatic however. It is well known that
the practical complexity of ILP is not easily correlated to
the size of the input problem. Indeed, although reducing
the size of the input of the scheduling algorithm reduces
the scheduling time in general (as we show experimen-
tally), there is no theoretical guarantee about this. The
reason is that the time needed by the ILP solver to find
new schedules does not depend only on the number of
variables and on the number of constraints in the con-
straint system but depends also on other factors, such
as the sparsity of the constraint matrix and the absolute
values of the coefficients. All in all, it is difficult to vali-
date the effectiveness of clustering approaches without
a careful experimental evaluation, considering different
optimization objectives and diverse benchmarks.

Independently, several other works considered another,
more syntax-directed approach to statement cluster-
ing (although they do not call it statement cluster-
ing). From their original inception, the Graphite pass in
GCC [17, 21] and the Polly pass in LLVM [11] have been
considering basic blocks of the compiler’s intermediate
representation as macro-statements. Mehta and Yew [14]
proposed an algorithm to project a statement-wise de-
pendence graph onto these macro-statements. They pre-
sented the first systematic evaluation of the impact of
basic block clustering, and successfully scheduled larger
benchmarks of unprecedented size from the NAS and
SPEC CPU suites. Yet this syntax-directed approach
remains controversial among compiler experts, for its
intrinsic fragility, and because no general framework has
been proposed to compare its effectiveness and robust-
ness with alternative methods. Moreover, the previous
approaches are not designed to decouple the exploration
of the clustering heuristics from the correctness and the
transformation. Decoupling these heuristics and allowing

for a fair comparison is the main purpose of our work:
starting from the SCC-based observation, we propose a
general framework for statement clustering that is inde-
pendent from the clustering heuristic, and we use it to
evaluate two clustering heuristics.

Note that we only focus on reducing the time for the
step of affine scheduling. Reducing the time of the other
steps is not in the scope of this work. Note also that we do
not change the complexity of the Pluto affine scheduling
algorithm, we rather suggest a practical technique to
reduce its execution time.

As a summary, we introduce a general framework to
improve the scalability of affine scheduling algorithms
called offline statement clustering. The contributions of
this paper are the following:

∙ We present a general framework for statement clus-
tering. We make a clear distinction between the
correctness of statement clustering and heuristics
to decide which statements should be grouped into
a single macro-statement for affine scheduling.

∙ We present two clustering heuristics: the “syntac-
tic” basic-block (BB) heuristic and the “seman-
tic” strongly-connected-component (SCC) heuris-
tic. These heuristics derive from different observa-
tions about the likelihood of individual program
statements to be assigned an identical affine sched-
ule. While the semantic heuristic comes with theo-
retical guarantees about the preservation of prof-
itable affine transformations, it is more complex
and is slightly less aggressive at simplifying the
scheduling problem than the syntactic one.

∙ Our experiments show that statement clustering
reduces affine scheduling time by a factor of 6
(median) without a significant loss in optimization
opportunities.

∙ Despite its fragile ground and sensitivity to syn-
tactic choices in the source program, basic block
clustering is remarkably effective at improving com-
pilation time without impacting the performance of
the generated code. This last result provides an in-
dependent cross-validation of the results of Mehta
and Yew. This is also confirmed, surprisingly, when
applying loop-distribution affine scheduling heuris-
tics, an option Mehta and Yew did not consider.

Still, a syntactic technique cannot be a long-term answer
to such an essential problem for scalable polyhedral
compilation. Our work-in-progress results show that the
study of more robust clustering methods is not going to
be an easy one with low-hanging fruits in compilation or
application execution time. The paper concludes with
the sketch of one promising direction.
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2 Background and Notations
A macro-statement is a virtual statement representing a
cluster of statements. A macro-statement is represented
using an iteration domain. We say that a statement
𝑆 corresponds to a macro-statement 𝑀 if the macro-
statement 𝑀 was created by clustering 𝑆 with zero or
more statements in the same macro-statement.

A clustering heuristic decides which statements should
be grouped together. The output of the heuristic algo-
rithm is a clustering decision. It is a set of clusters, where
each cluster represents a macro-statement. Each cluster
is a set of iteration domains (i.e., a set of statements).

3 Example of Statement Clustering
Let us introduce statement clustering on the simple
example in Figure 1.

for (i = 0; i < N; i++)
for (j = 0; j < N; j++) {

𝑆1 temp1 = A[i][j] * B[i][j];
𝑆2 C[i][j] = temp1;

𝑆3 temp2 = A[i][j] * C[i][j];
𝑆4 D[i][j] = temp2;

}

Figure 1. Illustrative example for statement clustering.

This program has 4 statements and 7 dependence
relations. Figure 2 shows the skeleton of the dependence
graph, without polyhedral annotations on the edges. To
apply statement clustering one first needs to select a
clustering heuristic. Let us suppose that the heuristic
suggests the following clustering decision:

{{𝐷𝑆1 ; 𝐷𝑆2}; {𝐷𝑆3 ; 𝐷𝑆4}}
This clustering decision indicates that the two statement
domains 𝐷𝑆1 and 𝐷𝑆2 should be clustered together and
that the two statement domains 𝐷𝑆3 and 𝐷𝑆4 should be
clustered together.

Applying this clustering decision yields new iteration
domains and a new dependence graph for the program.
The skeleton of the new dependence graph is presented
in Figure 3. Vertices are the macro-statements and edges
are the projection of the original dependences onto these
macro-statements. The clustered dependence graph has 3
dependence relations and 2 macro-statements: 𝑀1 which
represents the clustering of 𝐷𝑆1 and 𝐷𝑆2 and 𝑀2 which
represents the clustering of 𝐷𝑆3 and 𝐷𝑆4 .

4 Clustering Framework
The goal of a clustering algorithm is to construct a set
of macro-statements and a dependence graph between
these macro-statements. For now, we are not interested in
deciding which statements should be clustered together,
such a decision will be taken by a separate heuristic and
will be the subject of Section 6. We restrict ourselves

Figure 2. Original depen-
dence graph.

Figure 3. Dependence
graph after clustering.

to clustering algorithms that group statements that are
a part of the same basic-block, i.e., that do not cluster
across basic blocks. The study of Mehta and Yew and our
study of the swim benchmark shows that this already
opens to large factors of reduction in the size of the
dependence graphs. A more generic clustering approach
considering statements that are not a part of the same
basic-block is left for future work.

A clustering algorithm takes as input (1) the set of
statement iteration domains of the original program; (2)
the graph of dependences between these statements; and
(3) a clustering decision: a set of clusters of statements
(where each cluster is a set of iteration domains).

A clustering algorithm returns (1) the set of macro-
statement domains; and (2) the graph of dependences
between the macro-statements.

Since we consider clusters of statements within the
same basic block, we assume that all statements that
are clustered together have the same number enclosing
loops, or dimensions.

Under these hypotheses, offline statement clustering
obeys the general structure of Algorithm 1.

1. First, create a mapping, 𝑀 from the iteration do-
main of each statement to the iteration domain
of the corresponding macro-statement. This map-
ping will be used to transform the statements into
macro-statements. It is created as follows: for each
cluster in the clustering decision, generate a new
name for the macro-statement (let us assume that
𝑁 is the generated name), for each statement in
the cluster, create a map from the iteration domain
of that statement into a new iteration domain that
has the same dimensions but has 𝑁 as a name.
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This is the iteration domain of the corresponding
macro-statement.

2. In the second step, create the set 𝐷′ of iteration
domains of the macro-statements. This is done by
applying the mapping 𝑀 to the iteration domains
of the program statements. 𝐷′ is the union of all
the resulting iteration domains.

3. In the third step, create the set ∆′ of dependences
between the macro-statements. This is done by
applying the mapping 𝑀 to each one of the depen-
dences of the program. ∆′ is the union of all the
resulting dependences. The number of dependences
in ∆′ is less than the number of dependences in
the original dependence graph because after trans-
forming the original dependences of the program,
we may get some redundant dependences.

Input:
𝐷: a set of the iteration domains of the program statements.
∆: a set of the dependences between the program statements.
ClusteringDecision: a set of sets of iteration domains.
Output:
𝐷′: a set of the macro-statement iteration domains.
∆′: a set of the dependences between the macro-statements.
// Step 1: create a mapping
foreach cluster ∈ ClusteringDecision do

// Generate a name (identifier) for the new
macro-statement

N ← GenerateName();
𝑀 ← {} ;
foreach 𝐷𝑆 ∈ cluster do

// We assume that 𝑆 is the name of the statement
represented by 𝐷𝑆, and 𝑛 is the number of
dimensions of 𝐷𝑆

// Create a map 𝑀 that maps the iteration domain
of 𝑆 into a new iteration domain
(macro-statement’s iteration domain)

𝑚← {𝑆𝑖1, . . . , 𝑖𝑛 → 𝑁𝑖1, . . . , 𝑖𝑛};
𝑀 ←𝑀 ∪𝑚 ;

end
end
// Step 2: create macro-statements
foreach cluster ∈ ClusteringDecision do

𝐷′ ← {} ;
foreach 𝐷𝑆 ∈ cluster do

// apply 𝑀 to 𝐷𝑆

𝐷′
𝑆 ←𝑀𝐷𝑆 ;

𝐷′ ← 𝐷′ ∪𝐷′
𝑆 ;

end
end
// Step 3: transform ∆ from a graph of dependences

between statements into a graph of dependences between
macro-statements

∆′ ← {} ;
foreach 𝛿 ∈ ∆ do

𝛿′ ← apply 𝑀 to the source and sink of 𝛿; // this
returns a map from 𝑀𝑆𝑜𝑢𝑟𝑐𝑒𝛿 to 𝑀𝑆𝑖𝑛𝑘𝛿

∆′ ← ∆′ ∪ 𝛿′;
end

Algorithm 1: Clustering algorithm template.

5 Applying Offline Clustering to the Pluto
Affine Scheduling Algorithm

No modification of the Pluto affine scheduling algorithm
is needed to take advantage of offline clustering. One

only needs to apply offline clustering before solving the
affine scheduling problem:

1. Apply the clustering heuristic. This heuristic cre-
ates a clustering decision. The output of this step is
passed as an argument to the clustering algorithm.

2. Perform offline clustering to create a new depen-
dence graph with a set of macro-statements.

3. Apply the Pluto affine scheduling algorithm on
the macro-statements and clustered dependence
graph. This results in a new schedule for the macro-
statements.

4. Deduce the schedule of the original statements of
the program as follows:
∙ For each macro-statement 𝑀 :

– For each statement 𝑆 that corresponds to 𝑀 ,
the schedule of 𝑆 is equal to the schedule of 𝑀
except that a static dimension is added to the
schedule of 𝑆. This static dimension is used
to order the statements of the same macro-
statement among themselves lexicographically
in the same basic-block according to their orig-
inal lexicographical order (or in any order that
satisfies the dependences between these state-
ments).

5. The original representation along with the newly
computed schedule of the program are used in the
rest of the polyhedral compilation flow.

Correctness of Transformations after Clustering A loop
transformation is correct if it does not violate the execu-
tion order imposed by the dependences of the program.
Let us assume that a statement 𝑆1 is part of a macro-
statement 𝑀1 and that the statement 𝑆1 is the source
(or the sink) of a dependence 𝛿 in the original program
dependence graph. When clustering, the source of the
dependence 𝛿 (or its sink) becomes 𝑀1 and the schedule
of 𝑀1 will be constrained by the dependence 𝛿 which
means that the schedules of all the statements that cor-
respond to 𝑀1 are constrained also by the dependence
𝛿. This means that statement clustering, in fact, only
adds additional constraints to the schedules but does not
remove any existing constraint. In any case, a statement
is never going to be less constrained than it should be
and thus a correct transformation is still assured after
statement clustering.

6 Clustering Heuristics
The goal of a clustering heuristic is to decide which
statements should be clustered together in the same
macro-statement. The clustering heuristic only clusters
statements that belong to the same basic-block together
and thus it needs to know which statement belongs to
which basic-block. This information is not encoded in
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the iteration domains of the statements but is extracted
from the original AST of the program.

6.1 Clustering Decision Validity
Clustering a given set of statements together is not al-
ways valid. In this section we show when is it valid to
cluster a given set of statements in the same macro-
statement. Although we only consider the case where
statements are a part of the same basic-block, the valid-
ity criterion is defined for the general case (i.e., when
statements to be clustered together are not necessarily
in the same basic-block).

To reason about the correctness of a given clustering,
let us consider the following example:

for (i = 0; i < N; i++)
𝑆1 A[i] = B[i] + 1;

for (i = 0; i < N; i++)
𝑆2 C[i] = A[i] + C[i - 1];

for (i = 0; i < N; i++)
𝑆3 D[i] = A[i] + C[i];

Figure 4 shows the flow dependences between the
statements 𝑆1, 𝑆2 and 𝑆3. If the two statements 𝑆1 and
𝑆3 are clustered together, there are two possibilities
regarding the order of execution of 𝑆2 with regard to the
two statements 𝑆1 and 𝑆3: 𝑆2 may be scheduled to be
executed before the two statements or after them. Either
ordering violates a dependence and thus clustering 𝑆1
and 𝑆3 is not valid in this case.

In general, given a dependence graph, it is not possible
to cluster two statements if this would yield a cycle in
the dependence graph or if the resulting cluster is not
convex (i.e., a path of dependences between these two
statements passes by a third one that does not belong
to the cluster.

This criterion always needs to be verified to check
whether a given clustering decision is valid unless the
clustering heuristic is guaranteed always to produce valid
clustering decisions (such as the SCC clustering heuris-
tic).

s1(i)

s2(i) s3(i)

Figure 4. Flow dependence graph.

In the following two sections we present examples of
clustering heuristics.

6.2 SCC Clustering
The SCC clustering heuristic relies on analyzing the prop-
erties of the dependence graph of the program (which
represents the semantics of the program). The SCC clus-
tering heuristic proceeds as follows: for each loop level

𝑘 in a given loop nest (𝑘 is between 1 and the maximal
depth of the loop), we restrict the dependence graph on
the statements of that loop nest and on the loop level 𝑘.
Then, we compute the strongly connected components
of the restricted dependence graph. If a set of statements
are strongly connected together at all the loop levels,
then the SCC clustering heuristic decides to cluster them
together. The remaining of this section provides a more
formal description of the SCC heuristic.

Let ∆𝑘 = 𝑉, 𝐸 be the dependence graph of the program
restricted to the statements that belong to one basic-
block (let us call it BB1) and restricted to the loop depth
𝑘 (𝑘 is between 1 and the maximal depth of the loop).
The vertices 𝑉 of ∆𝑘 are the statements of BB1 and
the edges 𝐸 are the dependence relations between these
statements projected on the 𝑘 dimension.

Let ∆′𝑘 = 𝑉 ′, 𝐸′ be a dependence restricted also to
the statements of BB1 and to the loop level 𝑘. This
graph is the graph of dependences between the execution
instances of the statements of BB1 (unlike ∆𝑘 which
is the graph of dependences between the statements of
BB1). The vertices 𝑉 ′ of ∆′𝑘 are the execution instances
of the statements of BB1 and the edges 𝐸′ are the
dependences between these execution instances.

Let us assume that ∆𝑘 has an SCC that we call 𝜔. Let
𝑉𝜔 be the set of vertices (statements) of this SCC. We
say that 𝜔 is dense if for each two statements in 𝑉𝜔, for
each two instances of these two statements, there is a
directed path in ∆′𝑘 between these two instances.

To perform SCC based clustering, we compute Ω, the
set of strongly connected components (SCCs) in the
dependence graph ∆𝑘. For each 𝜔 ∈ Ω (i.e., for each
SCC in Ω), if 𝜔 is dense, we mark the statements of 𝜔
as candidates for clustering together at depth 𝑘. If a set
of statements are marked as candidates for clustering
together at all the loop depths of a given loop, then those
statements are marked by the heuristic to be actually
clustered together. We do the previous procedure for all
the basic-blocks of the program.

Validity of SCC Clustering The SCC clustering heuris-
tic always produces valid clustering decisions. To verify
this, we need to verify that for any two statement in-
stances 𝑆𝐼 and 𝑆′𝐼 ′ that are a part of an SCC, any third
statement instance 𝑆′′𝐼 ′′ that is a part of a path that
goes from 𝑆𝐼 to 𝑆′𝐼 ′ must also be clustered with 𝑆𝐼 and
𝑆′𝐼 ′. Indeed, this is the case because if there is a path
that goes from 𝑆𝐼 to 𝑆′𝐼 ′ that includes 𝑆′′𝐼 ′′ then 𝑆′′𝐼 ′′

is also a part of the SCC and thus 𝑆′′𝐼 ′′ is also clustered
with 𝑆𝐼 and 𝑆′𝐼 ′.
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6.3 Basic-block Clustering
In this syntactic-based clustering heuristic, all the state-
ments that are a part of the same basic-block are clus-
tered together in one macro-statement. We abbreviate
the basic-block clustering with BB clustering.

Let us consider the example in Figure 5, applying the
basic-block clustering heuristic on this code gives the
following clustering: {{𝐷𝑆0 , 𝐷𝑆1}, {𝐷𝑆2 , 𝐷𝑆3}, {𝐷𝑆4}}

for (i=0; i<N; i++) {
𝑆0;
𝑆1;
for (j=0; j<N; j++) {

𝑆2;
𝑆3;
if (l>0)

𝑆4;
}

}

Figure 5. Illustrative example for basic-block clustering.

Possible Losses in Optimization Opportunities Basic-
block clustering prevents the scheduler from assigning
different schedule coefficients to the statements that
are a part of the same basic-block. The same schedule
coefficients (for the dynamic schedule dimensions) must
be assigned to all the statements of a basic-block. Loop
transformations such as loop distribution, loop shifting
of only some statements of the basic-block are no more
possible when such clustering is applied. The next section
studies the concrete impact of the different clustering
methods.

7 Experiments
We implemented offline statement clustering on top of
the PPCG source-to-source polyhedral compiler (version
0.02) [23]. We modified PPCG to perform offline clustering
immediately after dependence analysis and before affine
scheduling. The clustering step itself is implemented
using a python wrapper around isl.

We evaluate offline statement clustering on a set of
benchmarks that represent a variety of applications in-
cluding linear algebra, image processing, stencils, etc.
We compare performance with and without statement
clustering, and considering the extreme fusion/distri-
bution heuristics of the Pluto algorithm, min-fuse and
max-fuse, as implemented in isl.

The benchmarks are the following:

Image processing kernels. This is a set of benchmarks
that includes 7 image processing kernels (color conver-
sion, dilate, 2D convolution, gaussian smoothing, basic
histogram, resize and affine warping).

Polybench-3AC. When a program is transformed into
three address code (3AC), the number of statements
increases considerably. It is interesting to assess how

much statement clustering helps in such a production-
like context. Since PPCG is a source-to-source compiler
that does not convert its input code into three address
form internally, and we could not find an automatic
tool that converts C code into source-form 3AC, we
manually converted Polybench 3.2 into 3AC. The process
of converting Polybench into 3AC is described in [5].1

Swim benchmark. A benchmark extracted from SPEC
CPU 2000 [12] rewritten in C.

Dist kernel. A kernel extracted from the Allen and Kennedy
textbook [13], where it was selected to illustrate the im-
portance of loop distribution to expose parallelism.

Machine configuration The experiments were conducted
on a system with a 64 bit Intel Core i5 CPU U470 at
1.33 GHz, with 2 cores (and 4 threads) and 2 GB of
RAM, running Ubuntu GNU/Linux.

We set a 10 minute maximal compilation time for
PPCG, killing the process when a timeout occurs.

SCC-clustering BB-clustering
Benchmark macro stmts deps macro stmts deps
2mm 3.5 5.86 3.5 5.86
3mm 3.33 6.33 3.33 6.33
atax 3.5 8.2 3.5 8.2
bicg 3.5 10 4.67 13.33
cholesky 1.83 1.59 1.83 1.59
doitgen 1.67 3.67 1.67 3.67
gemm 2.5 6 2.5 6
gemver 3.75 5 3.75 5
gesummv 2.2 4.43 2.2 4.43
mvt 3 7 3 7
symm 3 3.18 4 3.89
syr2k 3.5 7.5 3.5 7.5
syrk 3 5 3 5
trisolv 2 2.83 2 2.83
trmm 4 12 4 12
durbin 2.14 2.6 2.5 2.6
dynprog 1.6 1.56 1.6 1.56
gramschmidt 1.86 2.06 1.86 2.06
lu 2.5 3.5 2.5 3.5
ludcmp 1.5 1.42 1.5 1.42
correlation 1.57 2.13 1.83 2.33
fwarshall 2 4 2 4
fdtd-2d 3.5 4.6 3.5 4.6
fdtd-apml 12.5 12.1 18.75 22
jacobi-1d-imper 2 3.5 2 3.5
jacobi-2d-imper 3 5.5 3 5.5
seidel-2d 9 35 9 35
color conversion 1 1 1 1
dilate 3.33 2 3.33 2
2D convolution 1.67 1.86 1.67 1.86
gaussian smoothing 1.33 1.33 1.33 1.33
basic histogram 1.5 2.5 1.5 2.5
resize 17 64 17 64
affine warping 25 72 25 72
dist 1 1 2 1
Swim 1 1 17.33 84.44
Median 2.5 3.67 3 4
Average 3.83 8.5 4.6 11.22

Table 1. The reduction factor in the number of state-
ments and dependences after statement clustering.

1Polybench-3AC is publicly available: https://github.com/
rbaghdadi/polybench-3.2-3AC.
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Table 1 shows the impact of offline statement cluster-
ing on the number of statements—SCC and BB cluster-
ing: A value of 4 for the trmm kernel (SCC-clustering)
indicates that the number of program statements is di-
vided by 4, i.e., for every 4 statements of the original
program, one macro-statement is created. A high value
in the table indicates an aggressive reduction in the num-
ber of statements of the original program after statement
clustering.

The median number of macro-statements is 2.5× less
than the original number of statements with SCC clus-
tering, and it is 3× less than the original number of
statements with BB clustering. The number of depen-
dences is 3.67× less than the unclustered original with
SCC clustering and it is 4× less with BB clustering.
Statement clustering reduces the number of statements
by up to 17× and 25× for resize and affine warping,
respectively.

Table 1 confirms that BB clustering is more aggres-
sive than SCC clustering since the SCC heuristic only
considers clustering SCCs that are a part of the same
basic-block and in general one basic-block may contain
multiple SCCs. Therefore it is natural that the number
of statements is further reduced with BB clustering.

Also, in both SCC and BB clustering, the clusters (i.e.,
the macro-statements) are identical in all the benchmarks
except bicg, symm, durbin, correlation, fdtd-apml, swim
and dist. This means that, in 28 benchmarks out of 35,
the two clustering heuristics yield exactly the same result.
This is because in these benchmarks all the statements
of a basic-block are a part of the same SCC. Only in
6 kernels and the larger swim application, the clusters
produced by the SCC heuristic differ from the clusters
produced by the BB heuristic.

There are extreme cases. In color conversion, state-
ment clustering does not reduce the original number
of statements and dependences because this kernel is
composed of only one statement. In affine warping, state-
ment clustering reduces the number of statements from
25 statements into only 1 macro-statement and reduces
the number of dependences from 72 into 1.

In swim, which is a complex, periodically wrapped
time-iterated stencil The default PPCG fails to compile
the Swim benchmark before the 10 minutes time-out.
SCC clustering does not help in reducing the number of
statements: there are no SCCs at inner levels, only at
the outermost time iteration. BB statement clustering
succeeds in reducing the number of statements by a factor
of 17.33 which enables PPCG to compile the benchmark
in 25 seconds only.

We did not quantitatively other large benchmarks
for lack of time, and because we noticed the pattern
detected with swim is a general one: the NAS and SPEC
benchmarks ported by Mehta and Yew display a similar

lack of interesting SCCs at the level of innermost loops.
SCCs are generally limited to small isolated kernels.
This tells that the applicability of SCC-based clustering
is too limited in practice to be applicable to practical
problems, despite its theoretical guarantees. Another,
more practical “semantical” clustering heuristic remains
to be invented.
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Figure 6. Improved scheduling time after clustering.

Figure 6 shows the affine scheduling time, comparing
the case of statement clustering with the default PPCG.
We take in count the overhead of the clustering algorithm,
summing up the scheduling time and the clustering time.
The baseline is the scheduling time without clustering:
speedups higher than 1 indicate that statement clustering
succeeded in reducing compilation time.

For the image processing benchmarks (Figure 6), the
scheduling time for the BB and SCC heuristics are iden-
tical. This is in line with the previous results indicating
that the two heuristics (SCC and BB) yield exactly the
same clustering decisions in the image processing bench-
marks (and also in most of the remaining benchmarks).
Statement clustering for resize reduces the scheduling
time by a factor of 82, and the reduction reaches a factor
of 149 for affine warping. The median factor is 5.61× for
all image processing benchmarks.

In the Polybench-3AC suite (Figure 6), the speedups
of the BB and SCC heuristics are identical, except for
5 kernels: symm, durbin, correlation, fdtd-apml and dist
where BB yields a higher acceleration, because BB clus-
tering is more aggressive than SCC clustering in reducing
the number of the statements in these cases.

In dynprog, although statement clustering reduces the
number of statements by a factor of 1.6×, affine sched-
uling of the clustered program is slower than on the
original program. This paradoxical result confirms that
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the scheduling time does not depend only on the number
of statements and on the number of constraints but also
depends on other factors. Thus reducing the number
of statements does not guarantee a reduction in the
scheduling time, although it is almost always the case.

In all but one of the kernels, the benefits of statement
clustering amortize the overhead of the clustering al-
gorithm itself. The only exception is color conversion
where statement clustering does not reduce the number
of statements.
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Figure 7. Improvement in execution time when SCC
clustering is enabled over the case where SCC clustering
is not enabled. In both cases loop fusion is enabled.
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Figure 8. Improvement in execution time when SCC
clustering is enabled over the case where SCC clustering
is not enabled. In both cases loop distribution is enabled.

Figures 7, 8, 9 and 10 measure the effect of state-
ment clustering on the quality of the code generated by
PPCG. Figure 7 shows the speedup of the PPCG generated
code when SCC statement clustering is enabled over the
case where statement clustering is not enabled. In both
cases, the PPCG option favoring loop fusion is enabled
(–isl-schedule-fuse=max).
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Figure 9. Improvement in execution time when BB clus-
tering is enabled over the case where BB clustering is
not enabled. In both cases loop fusion is enabled.
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Figure 10. Improvement in execution time when BB
clustering is enabled over the case where BB clustering
is not enabled. In both cases loop distributed is enabled.

The goal here is to evaluate whether SCC clustering
prevents PPCG from applying loop tiling and fusion. If
the loops are fused or distributed when clustering is
disabled but are not fused or distributed when clustering
is enabled, we will notice a difference in the performance
(a value different from 1 on the y axis). Values that are
equal to 1 indicate that PPCG performed identically with
or without clustering.

Figure 7 indicates that the performance of the code
generated when statement clustering is applied is almost
identical to the baseline version without clustering. In a
few cases, there is a small difference but it is not due to
a loss in loop tiling or fusion opportunities. In fact, we
checked that PPCG with clustering could apply loop tiling
and fusion in cases where PPCG without clustering can.
The only difference in these benchmarks is in the order
of statements within the loop body in the generated
code. This difference is orthogonal to the application of
statement clustering and results from choices performed
by PPCG w.r.t. statement ordering in loop bodies. This
ordering is arbitrary as long as it does not lead to a
violation of the program dependences. In some kernels,
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the statement ordering differ, inducing a small difference
in the performance of the generated code.

The previous comment on Figure 7 applies also to
Figures 8, 9 and 10. The only benchmark that requires
attention in these experiments is dist in Figure 10. The
code of the dist kernel is illustrated in Figure 11. The
BB clustering heuristic with the max-fuse option yields
a slowdown. This is due to the fact that BB clustering
prevents loop distribution in this benchmark. Due to the
loop carried dependences between the write to A[i][j]
and the read from A[i-1][j-1], the Pluto scheduler is
not able to find outermost, synchronization-free paral-
lelism. In contrast, synchronization-free parallelism can
be found easily when applying loop distribution. This is
possible with SCC clustering, where statements 𝑆0 and
𝑆1 will be clustered into one macro-statement while 𝑆2
and 𝑆3 will be clustered into another macro-statement.
But with BB clustering, all statements will be clustered
together. This is an example showing that loop distri-
bution is actually needed to expose parallelism. SCC
clustering does not prevent loop distribution while BB
clustering does.

for (i=1; i<N; i++)
for (i=1; i<N; i++) {

𝑆0 t1 = B[i][j] + C[i][j];
𝑆1 A[i][j] = t1;
𝑆3 t2 = 2 * A[i-1][j-1];
𝑆4 D[i][j] = t2;

}

Figure 11. On the importance of loop distribution.
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Figure 12. Improvement in execution time of SCC or BB
clustering, comparing loop distribution and fusion.

Figure 12 shows the execution time of the code gen-
erated by PPCG when SCC and BB clustering are used
along with the loop distribution/fusion-oriented options
of PPCG. The baseline is the execution time of the PPCG-
generated code without statement clustering. The figure

shows the performance impact of loop fusion/distribu-
tion. It confirms that SCC clustering never prevents loop
distribution, that both SCC and BB clustering do not
prevent loop fusion, and that BB clustering occasionally
prevents loop distribution (see Figures 7, 8, 9 and 10).

Although, SCC clustering is more powerful, our exper-
iments so far confirm Mehta and Yew’s finding that BB
clustering should be used by default in any compiler that
implements statement clustering—it is simple, effective
in most case, and leaves sufficient room for applying prof-
itable affine transformations. Our comparative study for
the two clustering heuristics concludes that the simpler,
syntax-based clustering heuristic tends to perform well
on a wide range of benchmarks compared to the SCC
clustering heuristic.

Yet this finding is only very temporary. Our study of
larger applications is very partial and while it tells that
SCC clustering is impractical due to the absence of inter-
esting SCCs, it does not tell that a better semantically-
grounded heuristic cannot be designed. It also does not
tell that loop distribution is not important, in part be-
cause we did not conduct any array expansion (renaming,
privatization) that is often necessary to expose loop dis-
tribution potential. Our work sheds light on the state of
the art, with a sound basis to compare heuristics, but
it does not allow to give a definite answer on statement
clustering. We will hint at another direction to design a
more satisfactory online heuristic in the conclusion.

8 Related Work
Many alternative solutions can be applied to reduce the
complexity of affine scheduling. The first category of
approaches has been to avoid solving a general affine
scheduling problem, which generally involved integer lin-
ear programming.2 Most scheduling algorithms in the
90s chose to address this by lowering the complexity
of the dependence abstraction [8], yet the more gen-
eral setting of affine dependence polyhedra, involving
the affine form of the Farkas lemma has taken the up-
per hand as tools and heuristics matured [1, 7, 18, 19].
Other approaches focus the search on a predefined set
of loop transformations [10, 20]. A more recent example
is PolyMage [16], a domain-specific polyhedral compiler
for a image-processing pipelines. Such approaches may
gain in scalability or effectiveness, yet they are either
semi-automatic or restricted to a particular context or
application domain.

The Graphite pass in GCC [17, 21] and the Polly pass
in LLVM [11] both consider basic blocks of the compiler’s

2In theory many instances can be relaxed to rationals, such as
Feautrier’s algorithm and Pluto. Yet such relaxations induce dif-
ficult optimization and code generation challenges and have not
been exploited in practice.
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intermediate representation as a macro-statements. Yet
these production compilers do not implement a clustering
algorithm: they construct the polyhedral representation
at the basic block level directly. This cannot be gener-
alized transparently to other clustering heuristics such
as SCC clustering. Moreover, this does not help con-
ducting systematic experiments on the relevance and
expressiveness-scalability trade-off of syntax-driven clus-
tering. In effect, no Graphite- and Polly-based study
investigated the the effects of basic block clustering.

In a similar way, Mehta and Yew [14] represent ba-
sic blocks as macro-statements (they call them super-
statements), and they and propose an algorithm to
project a statement-wise dependence graph onto these
macro-statements. While their paper starts by consid-
ering multiple alternatives, they end up choosing basic
block clustering as the only heuristic and do not pro-
vide a framework for comparison with other alternatives.
Their experimental methodology is very systematic and
establishes new records in terms of the size of the control
flow regions amenable to affine scheduling. Similarly, our
approach starts with a statement-wise polyhedral repre-
sentation. Yet unlike their work, we propose a general
setting enabling the exploration of more diverse heuris-
tics, such as SCC clustering, with a generic criterion to
establish the correctness of a given clustering decision.

Feautrier proposes the use of Communicating Regular
Processes (CRP) [9]. He uses a C-like specification lan-
guage in which smaller modules, comparable to functions
communicate through indexed multidimensional chan-
nels. Feautrier’s technique sees processes as gray boxes,
exposing constraints for coarse grained scheduling of
the CRP. It attempts to reduce complexity and increase
scalability while preserving the existence of a global
schedule. In practice the coarse grained constraints are
much simpler than the original, flat scheduling problem
for the full program, as coefficients and Farkas multipli-
ers internal to the processes have been eliminated. Yet
the constraints on the communication channels remain.
The modules in CRP may be scheduled independently,
leading to smaller size linear programs.

Most recently, Zinenko et al. [24] proposed a clustering
heuristic as part of a more ambitious scheduling frame-
work. The scheduler groups statements whose schedule
dimensions can be completely aligned, while avoiding
counterproductive cases where this would increase depen-
dence distance or reduce the number of parallel dimen-
sions. This fundamentally different approach is tightly
linked with isl’s scheduling algorithm, and it is not easy
to reproduce it in isolation in our framework (or vice
versa). It was not enabled in our experiments. Other
recent clustering heuristics include the algorithm pro-
posed by Meister et al. [15]. Like the former it adapts
to the profitability and required flexibility in forming

or breaking clusters according to the locality and paral-
lelism needs. We were not aware of this technique at the
time of defining our experimental methodology.

9 Conclusion and Future Work
We presented a general setting to study and compare
statement clustering algorithms for the acceleration of
affine scheduling. We defined a generic criterion to decide
whether a given clustering decision is valid or not. We
also proposed two clustering heuristics that integrate
transparently with the widely-used Pluto algorithm:

∙ a “syntactic” heuristic similar to the block cluster-
ing of Graphite and Polly, allowing to revisiting
the evaluation by Mehta and Yew [14] on a larger
set of benchmarks and more diverse optimization
objectives;

∙ a “semantic” heuristic follows the structure of the
dependence graph and its SCCs.

While the latter comes with strong theoretical guaran-
tees on the optimization space, its applicability is lower
than the former in practice, due to the lack of “interest-
ing” strongly connected components at the innermost
nesting depth of the dependence graphs of real applica-
tions. The syntactic approach, owing to its simplicity
and to higher compilation time improvements, appears
as a very practical solution, albeit a very unsatisfactory
one from a programming language stand point: it pro-
viding no guarantees on the preservation of profitable
affine transformations for optimization tools.

Our evaluation considers multiple optimization objec-
tives, with some configurations intentionally challenging
the more fragile syntactic heuristic. Except for rare and
synthetic cases, we confirm Mehta and Yew’s finding that
basic-block statement clustering is effective. It succeeds
in reducing scheduling time by more than 10× in several
benchmarks and by a median factor of 6× overall. And
it does so without a significant loss in optimization op-
portunities: the performance of the unclustered code was
matched for all the 33 benchmarks considered (except for
the synthetic kernel highlighting the importance of loop
distribution). Our experiments with PPCG illustrate the
versatility of the method.

A logical next step would be to explore online cluster-
ing, an extension where it would be possible to uncluster
and re-cluster statements on demand during the affine
scheduling algorithm. For example, the Pluto algorithm
computes schedule dimensions iteratively; if at some
schedule dimension it is not able to compute a valid
schedule due to statement clustering, the whole opti-
mization would fail with offline clustering. In online
clustering, it would be possible to uncluster the macro-
statements at that dimension, reconsider affine transfor-
mations at a finer statement-granularity and then cluster
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back. Such an approach has the potential of reconciling
syntax with semantics, avoiding unrecoverable choices
in offline clustering.
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A Characterization of Possible Losses in
Optimization Opportunities

Without statement clustering, the scheduling algorithm
is free to assign any valid schedule to the statements
of the program. But with statement clustering, this is
not the case anymore. The use of statement clustering
implies that all the statements that are a part of the same
cluster will have the same schedule (more precisely, these
statements will have the same schedule coefficients for the
dynamic schedule dimensions). This means that one may
miss optimization opportunities. An important question
is to quantify how many optimization opportunities may
be lost.

Let us consider the following program:
for (i = 0; i < N; i++) {
𝑆1 t = A[i];
𝑆2 B[i] = t;
}

The dependence graph of this program, restricted on
the two statements 𝑆1 and 𝑆2 at the loop level 1, has a
dense SCC. Since the two statements 𝑆1 and 𝑆2 are part
of the SCC, and since the SCC is dense, then there exists
𝛿𝑆1𝐼→𝑆2𝐼′ , a dependence (or a path of dependences)
from 𝑆1𝐼 to 𝑆2𝐼 ′ and there exists 𝛿𝑆2𝐼′→𝑆1𝐼′′ , another
dependence (or a path of dependences) from 𝑆2𝐼 ′ to
𝑆1𝐼 ′′. This is true for any 𝑆1𝐼 ∈ 𝐷𝑆1 , 𝑆2𝐼 ′ ∈ 𝐷𝑆2 and
𝑆1𝐼 ′′ ∈ 𝐷𝑆1 such that 𝑆1𝐼 ≪ 𝑆2𝐼 ′ ≪ 𝑆1𝐼 ′′. This means
that 𝑆2𝐼 ′ has to be executed between 𝑆1𝐼 and 𝑆1𝐼 ′′. Any
schedule for 𝑆1 and 𝑆2 must preserve this property.

Supposing that statement clustering is not used, one
of the possible transformation that the Pluto algorithm
can do in the previous example, without violating the
previous property, is to shift 𝑆2 one or more iterations
as in the following example

for (i = 0; i < 2*N; i++)
if (i%2 == 0)

𝑆1 t = A[i];
else

𝑆2 B[i] = t;

Such an optimization is not possible if statement clus-
tering is applied. In fact, the only optimization oppor-
tunity that we may lose if we apply SCC clustering is
the ability to assign schedule coefficients to some of the
statements that are a part of the SCC without assigning
the same coefficients to all the other statements (for
example, shifting one statement without shifting the

others). In practice, this is not a harmful restriction as
we show in Section 7.

Note that, when we apply SCC clustering, we do not
lose the ability to distribute statements into separate
loops, since it is not possible to distribute statements
that are a part of the same SCC into two separate loops
anyway [13].
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