
Private Alternating Least Squares:
Practical Private Matrix Completion with Tighter Rates

Steve Chien 1 Prateek Jain 1 Walid Krichene * 1 Steffen Rendle 1

Shuang Song 1 Abhradeep Thakurta * 1 Li Zhang 1

Abstract

We study the problem of differentially private
(DP) matrix completion under user-level privacy.
We design a joint differentially private variant
of the popular Alternating-Least-Squares (ALS)
method that achieves: i) (nearly) optimal sam-
ple complexity for matrix completion (in terms of
number of items, users), and ii) the best known pri-
vacy/utility trade-off both theoretically, as well as
on benchmark data sets. In particular, we provide
the first global convergence analysis of ALS with
noise introduced to ensure DP, and show that, in
comparison to the best known alternative (the Pri-
vate Frank-Wolfe algorithm by Jain et al. (2018)),
our error bounds scale significantly better with
respect to the number of items and users, which
is critical in practical problems. Extensive vali-
dation on standard benchmarks demonstrate that
the algorithm, in combination with carefully de-
signed sampling procedures, is significantly more
accurate than existing techniques, thus promising
to be the first practical DP embedding model.

1. Introduction
Given M ij , (i, j) ∈ Ω where Ω ⊆ [n]× [m] is a set of ob-
served user-item ratings, and assuming M ≈ U∗(V ∗)> ∈
Rn×m to be a nearly low-rank matrix, the goal of low-rank
matrix completion (LRMC) is to efficiently learn Û ∈ Rn×r
and V̂ ∈ Rm×r, such that M ≈ Û V̂ >.

LRMC, a.k.a. matrix factorization, is a cornerstone tech-
nique for building recommendation systems (Koren & Bell,
2015; Hu et al., 2008), and though proposed over a decade
ago, it remains highly competitive (Rendle et al., 2019).
In the recommendation setting, M represents a mostly un-

1Google Research. Correspondence to: Walid
Krichene <walidk@google.com>, Abhradeep Thakurta
<athakurta@google.com>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

known user-item ratings matrix and Û and V̂ capture the
user and item embeddings. Using the learned (Û , V̂), the
system computes rating predictions M̂ ij = (Û V̂ >)ij to
recommend items for the users. To ensure good generaliza-
tion, one would set the rank r � min(m,n).

Such models, while highly successful in practice, have the
risk of leaking users’ ratings through model parameters or
their recommendations. The privacy risk of similar models
has been well documented, and the protection against it has
been intensively studied (Dinur & Nissim, 2003; Dwork
et al., 2007; Korolova, 2010; Calandrino et al., 2011; Shokri
et al., 2017; Carlini et al., 2019; 2020a;b; Thakkar et al.,
2020). In this paper, we focus on learning user and item
embeddings, and consequently user-item recommendations,
while ensuring privacy of users’ ratings.

We conform to the well-established formal notion of dif-
ferential privacy (DP) (Dwork et al., 2006a;b) to protect
users’ ratings. We operate in the setting of user-level pri-
vacy (Dwork & Roth, 2014; Jain et al., 2018), where we in-
tend to protect all the ratings by the user, a much harder task
than protecting a single rating from the user (a.k.a. entry-
level privacy) (Hardt & Roth, 2013; Meng et al., 2018).
Note that user-level privacy is critical in this problem, as
the ratings from a single user tend to be correlated and can
thus be used to fingerprint a user (Calandrino et al., 2011).
As is standard in the user-level privacy literature (Jain et al.,
2018), we estimate the shared item embeddings V̂ while
preserving privacy with respect to the users. In contrast,
each user independently computes their embedding (a row
of Û) as a function of their own ratings and the privacy
preserving item embeddings V̂ . Formally, this setup is
called joint differential privacy (Kearns et al., 2014), and it
is well-established (Hardt & Roth, 2012; 2013) that such a
relaxation is necessary to learn non-trivial recommendations
while ensuring user-level privacy.

While several works have studied LRMC under joint-
differential privacy (McSherry & Mironov, 2009; Liu et al.,
2015; Jain et al., 2018), most of the existing techniques do
not provide satisfactory empirical performance compared
to the state-of-the-art (SOTA) non-private LRMC methods.
Furthermore, these works either lack a rigorous performance

Private Alternating Least Squares

analysis (McSherry & Mironov, 2009; Liu et al., 2015) or
provide guarantees that are significantly weaker (Jain et al.,
2018) than that of non-private LRMC algorithms. Matrix
factorization can also be solved using other first-order meth-
ods such as stochastic gradient descent (Ge et al., 2016)
or alternating gradient descent (Lu et al., 2019), so one
may apply the differentially private SGD (DPSGD) algo-
rithm (Song et al., 2013; Bassily et al., 2014; Abadi et al.,
2016) to achieve privacy. However, applying DPSGD to
LRMC is challenging as SGD typically requires many steps
to converge, thus increasing privacy cost.

In this work, we design and analyze a differentially pri-
vate version of the widely used alternating least squares
(ALS) algorithm for LRMC (Koren et al., 2009; Jain et al.,
2013). ALS alternates between optimizing over the user
embeddings Û and the item embeddings V̂ , each through
least squares minimization. One important property of ALS
is that when solving for one side, the optimization can be
done independently for each user or item, which makes ALS
highly scalable. Our key insight is that this decoupling of the
solution is also useful for privacy-preserving computation,
since there is no accumulation of noise when solving for the
embeddings of different users (or items). Besides, ALS is
known to require few iterations to converge in practice, mak-
ing it particularly suitable for privacy preserving LRMC.

Indeed, we present a differentially private variant of ALS,
which we refer to as DPALS, and demonstrate that it enjoys
much tighter error rates (see Table 1) and better empirical
performance than the current SOTA, the differentially pri-
vate Frank-Wolfe (DPFW) method of Jain et al. (2018). Fur-
thermore, on the large scale benchmark of MovieLens 20M,
DPALS produces the first realistic DP embedding model
with competitive recall metric under moderate privacy loss.

More specifically, our contributions are the following.

Private alternating least squares for matrix completion.
We provide the first differentially private version of alter-
nating least squares (DPALS) for matrix completion with
user-level privacy guarantee (Section 3). The algorithm is
conceptually simple, efficient, and highly scalable. We pro-
vide rigorous analysis on its privacy guarantee under the
notion of Joint Rényi Differential Privacy.

Initizlization via noisy power iteration. For convergence
of DPALS algorithm, we need it to be initialized with a
V̂

0
close to V ∗ in spectral norm. The standard approach

based on private PCA (Dwork et al., 2014) would require
n = Ω̃

(
m
√
m
ε

)
to achieve the initialization condition. In-

stead, we show that with a careful analysis, initializing
with noisy power iteration only requires n = Ω̃

(
m
ε

)
. Our

analysis shows in particular that it suffices that the top-r
eigenspace of A := PΩ(M)>PΩ(M) be incoherent, and
that there be a Ω(log2m) gap between the top-r eigenvalues

Table 1. Sample complexity bounds for various algorithms, assum-
ing constant Frobenius norm error. Here, n is the number of users,
m is the number of items, and Ω̃(·) hides polylog(n,m, 1/δ). (*)
assumes additional property of M being incoherent.

Algorithm Bound on n Bound on |Ω|/n Iterations
Trace Norm (*) (non-priv.)

(Candès & Recht, 2009) Ω̃(m) Ω̃(log2 n) poly(n,m)

ALS (*) (non-priv.) (Jain et al., 2013) Ω̃(m) Ω̃(log2 n) polylog(n,m)

Private SVD(*)
(McSherry & Mironov, 2009) - - -

Private SGLD (Liu et al., 2015) - - -
Private FW (Jain et al., 2018) Ω̃(m5/4) Ω̃(

√
m) poly(n,m)

Private ALS (*) (this work) Ω̃(m) Ω̃(log3 n) polylog(n,m)

and the rest. This result improves on (Hardt & Price, 2013)
which required all the eigenvectors of A to be incoherent, a
condition that is hard to guarantee in our setting (Dekel et al.,
2011; Vu & Wang, 2015; Rudelson & Vershynin, 2015).

Tighter privacy/utility/computation trade-offs. We
prove theoretical guarantees on the sample complexity and
the error bounds of DPALS under standard assumptions
(Section 4). These bounds are much tighter than the cur-
rent SOTA, the DPFW method (Jain et al., 2018). In par-
ticular, we show the following. First, DPALS requires
only O(logO(1) n) samples per user to guarantee its con-
vergence. In contrast, DPFW requires

√
m ratings per user.

Second, to achieve a Frobenius norm error of ζ, DPALS
requires n = Ω̃

(
m
√
m

ζε +m
)

users, which is nearly op-
timal in terms of ζ and ε. In contrast, DPFW’s sample
complexity is n = Ω̃

(
m5/4/(ζ5ε)

)
; note a significant im-

provement in terms of ζ. Finally, Private SVD (McSherry
& Mironov, 2009) is not even consistent, i.e., for a fixed
ε,m, |Ω| = n

√
m, even if we scale n→∞, the Frobenius

norm error bound does not converge to 0 (see Theorem B.3
of Jain et al. (2018)).

Practical techniques to improve accuracy. One main dif-
ficulty in applying DPALS to practical problems comes
from a heavy skew in the item distribution. We propose two
heuristics to reduce the skew while preserving privacy (Sec-
tion 5). Experiments on real-world benchmarks show that
these techniques can significantly improve model quality.

Strong empirical results using DPALS. We carry out an
extensive study of DPALS on synthetic and real-world
benchmarks. Aided by the aforementioned practical tech-
niques, DPALS achieves significant gains over the current
SOTA method. In particular, on the MovieLens 10M rating
prediction benchmark, DPALS achieves the same error rate
as the current SOTA even when trained on a fraction (23%)
of users. When trained on all users, it achieves a relative
decrease in RMSE of at least 7%. DPALS also achieves
remarkably good performance on the MovieLens 20M item
recommendation benchmark with modest privacy loss, and
remains competitive even with non-private ALS, the first DP
private embedding model to achieve such strong results.

Private Alternating Least Squares

2. Background
2.1. Notation

Let [m] denote the set {1, 2, · · · ,m}. Let Rn×m denote the
set of n×m matrices. Throughout the paper, we use bold
face uppercase letters to represent matrices and lowercase
letters for vectors. For any matrix A = (Aij) ∈ Rn×m, let
Ai be the i-th row vector of A. Denote by ‖A‖F , ‖A‖∞
the Frobenius norm and the max norm of A. For Ω ⊆ [n]×
[m], define the projection PΩ(A) ∈ Rn×m as PΩ(A)ij =
Aij if (i, j) ∈ Ω and 0 otherwise. For i ∈ [n], define
Ωi := {j : (i, j) ∈ Ω}. Similarly, for j ∈ [m], let Ωj =
{i : (i, j) ∈ Ω}. For u,v ∈ Rr, we use u ·v ∈ R to denote
their dot product, and u⊗ v ∈ Rr×r for their outer product.

2.2. Matrix Completion, Alternating Least Squares

Let M ∈ Rn×m be a rank r matrix, such that each entry
M ij (i ∈ [n], j ∈ [m]) represents the preference/affinity of
user i for item j. Given a set of observed entries PΩ(M),
Ω ⊆ [n]× [m], the goal of LRMC is to reconstruct M with
minimal error. This can be achieved by finding Û ∈ Rn×r
and V̂ ∈ Rm×r such that the regularized squared error
‖PΩ

(
M − Û V̂ >

)
‖2F + λ‖Û‖2F + λ‖V̂ ‖2F is minimized.

This minimization problem is NP-hard in general (Hardt
et al., 2014). But the alternating least squares (ALS) algo-
rithm has proved to work well in practice.

ALS alternatingly computes Û , V̂ by minimizing the above
objective while assuming the other embeddings fixed. Each
step can be solved efficiently through the standard least
squares algorithm with the following closed form solution.

∀i Û
t

i = (λI +
∑
j∈Ωi

V̂
t

j ⊗ V̂
t

j)
−1
∑
j∈Ωi

M ijV̂
t

j , (1)

∀j V̂
t+1

j = (λI +
∑
i∈Ωj

Û
t

i ⊗ Û
t

i)
−1
∑
i∈Ωj

M ijÛ
t

i. (2)

While ALS does not guarantee convergence to the global
optimum in general, it works remarkably well in practice
and often produces Û and V̂ such that Û V̂ > is a good
approximation of M . The practical success of ALS has in-
spired many theoretical analyses, which make the following
additional assumptions on M and Ω.

Assumption 1 (µ-incoherence). Let M = U∗Σ∗(V ∗)>

be the singular value decomposition of M , i.e. U∗ ∈
Rn×r,V ∗ ∈ Rm×r are orthonormal matrices, and Σ∗ ∈
Rr×r is the diagonal matrix of the singular values of M .
We assume that M is µ-incoherent, that is, ∀i ∈ [n],
‖U∗i ‖2 ≤

µ
√
r√
n

; and ∀j ∈ [m],
∥∥V ∗j∥∥2

≤ µ
√
r√
m

.

Assumption 2 (Random Ω). We assume that Ω are random
observations with probability p, that is, Ω = {(i, j) ∈
[n]× [m] : δij = 1}, where δij ∈ {0, 1} are i.i.d. random
variables with Pr[δij = 1] = p.

Jain et al. (2013); Hardt & Wootters (2014) showed that ALS
converges to M with high probability if M is µ-incoherent
and p = Ω̃

(
logn
m

)
, where n ≥ m and Ω̃ hides polynomial

dependence on µ, r, and the condition number of M . In this
work, we make the same assumptions on M and Ω. Our
key theoretical contribution is a similar convergence result
for DPALS, under the additional requirements of user-level
differential privacy.

2.3. Joint Differential Privacy

Differential privacy (Dwork et al., 2006b;a) is a widely
adopted privacy notion. We use the variant of user-level
joint differential privacy (Joint DP). Intuitively, Joint DP
requires any information which may cross different users
to be differentially private, but allows each individual user
to use her own private information to her full advantage,
for example, when computing the embeddings for generat-
ing recommendations to herself. This notion was already
implicit in (McSherry & Mironov, 2009) and made formal
in (Kearns et al., 2014; Jain et al., 2018).

Let D = {d1, . . . , dn} be a data set of n records, where
each sample di is drawn from a domain τ and belongs to
individual i (which we also refer to as a user). Let A :
τ∗ → Sn be an algorithm that produces n outputs in some
space S, one for each user i. Let D−i be the data set with
the i-th user removed, and let A−i(D) be the set of outputs
without that of the i-th user. Also, let (di;D−i) be the data
set obtained by adding di (for user i) to the data set D−i.
Joint DP and its Rényi differential privacy (Mironov, 2017)
(Joint RDP) variant are defined as follows.
Definition 3 (Joint Differential Privacy (Kearns et al.,
2014)). An Algorithm A is (ε, δ)-jointly differentially pri-
vate if for any user i, for any possible value of data entry
di, d

′
i ∈ τ , for any instantiation of the data set for other

users D−i ∈ τn−1, and for any set of outputs S ⊆ Sn, the
following two inequalities hold simultaneously:

Pr
A

[A−i((di;D−i)) ∈ S] ≤ eε Pr
A

[A−i(D−i) ∈ S] + δ

Pr
A

[A−i(D−i) ∈ S] ≤ eε Pr
A

[A−i((di;D−i)) ∈ S] + δ.

An algorithm A is (α, ε)-joint Rényi differentially private
(Joint RDP) if Dα (A−i((di;D−i))||A−i(D−i)) ≤ ε and
Dα (A−i(D−i)||A−i((di;D−i))) ≤ ε, where Dα is the
Rényi divergence of order α.

If we replaceA−i withA in the definition, we would recover
the standard definition of DP and RDP. We note that the
joint DP (resp. joint RDP) enjoys the same composability
properties as the notion of DP (resp. RDP).

3. DPALS: Private Alternating Least Squares
We now provide the details of the DPALS algorithm and
prove its privacy guarantee in the joint DP model.

Private Alternating Least Squares

Algorithm 1 DPALS: Private Matrix Completion via Alter-
nating Minimization
Required: PΩ(M): observed ratings, σ: noise standard
deviation, Γu: row clipping parameter, ΓM : entry clipping
parameter, T : number of steps, λ: regularization parameter,
r: rank, k: maximum number of ratings per user in Aitem ,
V̂

0
: initial V̂ .

1 Clip entries in PΩ(M) so that ‖PΩ(M)‖∞ ≤ ΓM

for 0 ≤ t ≤ T do
for 1 ≤ i ≤ n do

2 Û
t

i ← Auser (V̂
t
,Ωi,PΩ(M)i, T, λ,Γu)

end
3 Û

t
← [Û

t

1, · · · , Û
t

n]>

4 V̂
t+1
← Aitem (Û

t
,Ω,PΩ(M), k, λ,Γu,ΓM)

end

5 return Û
T
, V̂

T

Procedure Aitem (U , Ω, PΩ(M), k, λ, Γu, ΓM)
6 Ω′ ← up to k random samples of (i, j) ∈ Ω, ∀i ∈ [n].

for 1 ≤ j ≤ m do
7 Gj ← Nsym

(
0,Γ4

u · σ2
)r×r

8 gj ← N
(
0,Γ2

uΓ2
M · σ2

)r
9 Xj ← λI +

∑
i∈Ω′j

U i ⊗U i + Gj

10 V j ← ΠPSD (Xj)
+
(∑

i∈Ω′j
M ij ·U i + gj

)
end

11 Ṽ = [V 1, · · · ,V m]>

12 return V = Ṽ (Ṽ
>
Ṽ)−1/2

Procedure Auser (V , Ωi, PΩ(M)i, T , λ, Γu)
13 Ω′i ← random samples of 1/T fraction of j ∈ Ωi
14 u← (λI +

∑
j∈Ω′i

V j ⊗ V j)
−1 ∑

j∈Ω′i
M ijV j

15 return clip (u,Γu)

Notation. LetN (0, σ2) be the Gaussian distribution of vari-
ance σ2, andNsym(0, σ2)r×r be the distribution of symmet-
ric matrices where each entry in the upper triangle is drawn
i.i.d. from N (0, σ2). For a symmetric A, let ΠPSD (A)
be its projection to the positive semi-definite cone, ob-
tained by replacing its negative eigenvalues with 0. Define
clip (u, c) = u ·max(1, c/‖u‖2), i.e., the projection of u
on an `2 ball of radius c. Let A+ be the pseudoinverse of A.

3.1. Algorithm

The private alternating least squares algorithm, DPALS,
is described in Algorithm 1. It follows the standard ALS
steps, i.e. it alternatingly solves the least squares problem
to obtain Û and V̂ using (1) and (2). To guarantee joint DP,
we compute differentially private item embeddings V̂ t+1

(using procedure Aitem) by solving a private variant of (2),

User 1 User 2 User 𝑛
Compute

$𝑼!" using ratings
𝑃# 𝑴 ! and $𝑽

Compute
$𝑼$" using ratings
𝑃# 𝑴 $ and $𝑽

Compute
$𝑼%" using ratings
𝑃# 𝑴 % and $𝑽

𝒜&'() 𝒜&'() 𝒜&'()

𝒜*+(,: Privately solve

argmin!𝑽||𝑃# 𝑴− +𝑼 +𝑽$ ||%& +𝑽

Output

Broadcast

......

Figure 1. Block schematic of Joint differentially private alternating
least squares algorithm. Solid lines and boxes represent privileged
computations not visible to an adversary or other users. Dashed
boxes and lines are public information accessible to anyone.

and compute each row of Û t+1 independently without any
noise using procedure Auser . A block schematic of the
algorithm is presented in Figure 1.

Here we describe how the privacy is guaranteed in Aitem ;
see Theorem 1 for a formal statement. For a given j ∈
[m], write Ht

j = λI +
∑
i∈Ωj

Û t
i ⊗ Û t

i and wt
j =∑

i∈Ωj
M ijÛ

t
i. Then the non-private update (2) can be

written as V̂ t+1
j =

(
Ht

j

)−1
wt
j . In the private version,

we need to add noise to protect both Ht
j and wt

j . To en-
sure sufficient noise, we limit the influence of each user by
“clipping” each Û t

i to a bounded `2 norm Γu (Line 15 in
Auser) and resampling Ω such that each user participates in
at most k items’ computation (Line 6 in Aitem). We then
apply the Gaussian mechanism to Ht

j and wt
j before using

them to compute V̂ t+1
j in Aitem (Lines 9–12).

While the above procedure is sufficient to guarantee privacy,
we need a few additional modifications for utility analysis.

Initialization. Random initialization has worked well for
our empirical study. For the utility analysis, we need
V̂

0
to be reasonably close to V ∗ (in terms of spectral

norm). We show that by using the noisy power iteration
process, we are able to obtain V̂

0
within the required bound

with n almost linear in m, an improvement compared to
private PCA (Dwork et al., 2014), which would require
n = Ω̃(m

√
m). See Section 4.1 for details.

Sampling from Ω. To ease the analysis, we require the
observed values to be independent across different steps.
This is achieved by resampling from Ω at the beginning of
Aitem (Line 6) and Auser (Line 13). The sampling in Aitem

is more important as it also limits the number of items per
user, for privacy purposes. In practice, we omit the sampling
in Auser , and sample only once for Aitem . The sampling
distribution used in the latter has a significant impact in
practice, as discussed in Section 5.1.

Private Alternating Least Squares

3.2. Computational Complexity

The computational complexity of DPALS is comparable to
that of ALS. More precisely, the V step of ALS involves
computing Ht

j and wt
j , in O(|Ω′|r2), then solving the m

linear systems V̂ t+1
j =

(
Ht

j

)−1
wt
j in O(mr3), for a total

complexity of O(|Ω′|r2 + mr3) (and similarly for the U
step). This scales linearly in the number of observations |Ω′|
and the number of items m. In the private version (Auser),
the only additional operations are forming the noise matri-
ces (Lines 7–8) in O(mr2), and projecting Xj (Line 10), in
O(mr3), so the complexity per iteration is the same as ALS.
In comparison, the complexity of DPFW isO(Γ(m+ |Ω′|)),
using Oja’s method. The per-iteration complexity also scales
linearly in m and |Ω′|. Even though the per-iteration com-
plexity of DPFW and DPALS are comparable, DPALS con-
verges in much fewer iterations (see Appendix D.4 for an
example), which makes it more scalable in practice.

3.3. Privacy Guarantee

We now provide the privacy guarantee for DPALS. As each
subroutine in DPALS is a variant of the Gaussian mecha-
nism, we can apply the Rényi accounting (Mironov, 2017)
and convert to (ε, δ)-DP. See Appendix A for the proof.

Theorem 1 (Privacy guarantee). Excluding the initializa-

tion of V̂
0
, Algorithm 1 is

(
α, αρ2

)
-joint RDP with ρ2 =

kT
2σ2 . Hence for any ε > 0 and δ ∈ (0, 1), Algorithm 1 is

(ε, δ)-joint DP if we set σ =

√
(2kT)(ε+log(1/δ))

ε .

The guarantee holds for all values of the parameters Γu,
ΓM , T , λ, r, k. Note in particular that the scale of the
noise (Lines 7–8 in Algorithm 1) is normalized so that the
expression of σ in Theorem 1 does not depend on Γu, ΓM .

In the above guarantee, we have excluded the initialization
process. With random initialization, which we use in prac-
tice, there is no extra privacy cost. However, for the utility
guarantee, we need an extra DP procedure, detailed in Sec-
tion 4.1, so that V̂

0
is sufficiently close to V ∗. This can be

done within the same privacy bound as the main procedure.

4. Convergence Guarantee for DPALS
We now show that under standard low-rank matrix com-
pletion assumptions (Assumptions 1 and 2), Algorithm 1,
initialized with the noisy power method, solves the matrix
completion problem. We will first present the results as-
suming that V̂

0
is close to V ∗. We will then present the

guarantee of the initialization procedure.

Theorem 2 (Utility guarantee). Suppose that M is a µ-
incoherent rank-r matrix, and Ω consists of random ob-
servations with probability p. Let σ∗1 ≥ · · ·σ∗r > 0 be the

singular values of M and κ := σ∗1/σ
∗
r its condition number.

There exists a universal constant C > 0, such that for
all δ ∈ (0, 1), ε ∈ (0, log(1/δ)), if p ≥ µ6κ12r6 · log3 n

m

and
√
pn ≥ C

γ
√

log(1/δ)

ε , where γ = Cκ6µ3r2
√
m ·

log2(κ · n), then DPALS, initialized with V̂
0

s.t. ‖(I −
V ∗(V ∗)>)V̂

0
‖ ≤ C

κ2r2 logn , with parameters k = C ·

m · p log n, T = log(µκn/ε), σ =
C
√
kT log(1/δ)

ε , Γu =
Cµσ∗1

√
r√

n
, ΓM =

µ2rσ∗1√
mn

and λ = 0, returns Û
T

and V̂
T

such that the following holds:

• The distribution of (Û
T
, V̂

T
) satisfies (ε, δ)-joint DP.

• ‖M−Û
T

(V̂
T

)>‖F ≤ C ·
√
m log(1/δ)

ε·n · κγ√p‖M‖F , with
probability ≥ 1− 1/n10.

• Similarly, ‖M − Û
T

(V̂
T

)>‖∞ ≤ C ·
√
m log(1/δ)

ε·n · κγ√p ·
µ2r‖M‖2√

mn
, with probability ≥ 1− 1/n10.

Remark 1. The choice of hyper-parameters in Theorem 2
assumes knowledge of certain quantities such as r, µ, κ. In
practice, these quantities are unknown, but one can use stan-
dard DP hyper-parameter search techniques (Liu & Talwar,
2019) to search for optimal hyper-parameter values.
Remark 2. The number of samples needed per user is about
p ·m = O(µ6κ12r6 log3 n) which is nearly optimal with
respect to m and n. This represents a significant improve-
ment over the DPFW algorithm in (Jain et al., 2018) which
requires Ω(

√
m) samples per user.

Remark 3. We did not optimize bounds for dependence
on the rank r and condition number κ. Prior work tends to
focus on the dependence on the size (m and n) and polyno-
mial dependence on r, κ is common even in the non-private
setting, for example (Jain et al., 2013; Sun & Luo, 2015;
Ge et al., 2016). Our main goal is to provide a guarantee in
the private setting that is competitive with the non-private
setting, so we inherit the focus on the size m,n. Further-
more, dependence on κ can be removed (up to log factors)
by using a stagewise ALS method similar to (Hardt & Woot-
ters, 2014). However, this further complicates the proof and
the practical performance of standard ALS is comparable to
such stagewise methods.
Remark 4. Our Frobenius norm error bound is significantly
smaller than the bound for the DPFW algorithm, which is

given by ‖M−Û
T

(V̂
T

)>‖F ≤
(
m5/4

nε

)1/5‖M‖F . In par-

ticular, to ensure an error ‖M − Û
T

(V̂
T

)>‖F ≤ ζ‖M‖F ,
DPALS requires n ≥ Cm

ζ·ε , while DPFW requires n ≥
Cm5/4

ζ5·ε , which is significantly worse in terms of ζ. Fur-
thermore, the DPFW bound is a generalization bound, i.e.,
there is an additional bias term which can be large, and to
the best of our knowledge, existing techniques (even in the
non-private setting) require incoherence to control this term.

Private Alternating Least Squares

Remark 5. Consider a set of m linear regression problems
in r-dimensions:

{
y(i) = Xθ∗(i)

}m
i=1

, with X ∈ Rn×r.
One can use a single iteration of DPALS with (Û = X and
PΩ(M) = [y(1), . . . ,y(m)]) to solve these linear regression
problems. Assuming the conditions on M are satisfied, we
can obtain an excess empirical risk of Õ(

√
m/(εn)). This

matches the best known upper bound for solving a set of
linear regressions with privacy (Sheffet, 2019; Smith et al.,
2017). So, a better convergence rate of DPALS would lead
to a tighter bound on solving a set of linear regressions with
a common feature matrix. For m = O(1), we know that the
lower bound for private linear regression is Ω̃(1/εn) (Smith
et al., 2017). Thus, we conjecture that the error for DPALS
is tight w.r.t. m and εn.
Remark 6. Instead of using the perturbed objective func-
tion to estimate V̂

t
in DPALS, one can use DPSGD (Bassily

et al., 2014) to do the same (solving a least squares prob-
lem with Û

t
fixed). We leave the empirical comparison of

this approach to future work. However, we know that for
least-square losses, perturbing the objective is known to be
theoretically optimal (Smith et al., 2017).

Proof sketch: First, we show that under the assumptions
in Theorem 2, w.h.p., clipping and sampling operations in
DPALS have no effect. Note, using k ≥ Cp ·m log n, w.p.
≥ 1− 1/n100, ∀i, |Ωi| ≤ k. Furthermore, using Lemma 3,

‖Û
t

i‖ ≤ Γu. Similarly, using Lemma 3, σmin(X) ≥ p/4−
‖G‖2 ≥ p/4− Γ2

uσ
√
r ≥ p/8. That is, X � 0.

The above observation implies that, under the assumptions
of the theorem, Algorithm 1 is essentially performing the
following iterative steps:
i) Û

t
= arg min

Û
‖PΩ(M − Û(V̂

t
)>)‖2F , and

ii) V̂
t+1

j =
(
I+

∑
i∈Ω′j

Û
t

i⊗Û
t

i+G
)−1(∑

i∈Ω′j

M ijÛ
t

i+g
)

.

Let U t (resp. V t) be the Q part in the QR decomposition of
Û
t

(resp. V̂
t
). Using Lemma 4, we get Err(V ∗,V t+1) ≤

1
4Err(V ∗,V t) + α, where Err(V ∗,V) = ‖(I −
V ∗(V ∗)>)V ‖F and α ≤ Cκ6·µ3r2√logn√

pn

√
m logn·T log 1/δ

ε .

That is, after T iterations, Err(V ∗,V T) ≤ 2α. The second
claim of the theorem now follows from the above observa-
tion and Lemma 3. Similarly, the third claim follows by
using the bound on Err(V ∗,V T) and incoherence of UT ,
V T (Lemma 3). See Appendix B for a detailed proof.

Lemma 3. Suppose the assumptions of Theorem 2 hold.
Then, w.p. ≥ 1 − 5T/n100, we have: a) each iterate Û

t
,

V̂
t

is 16κµ-incoherent, b) 1/2 ≤ σq(Û
t
(Σ∗)−1) ≤ 2 for

all q ∈ [r], c) 1/4 ≤ σq(1
p

∑
i:(i,j)∈Ωv,t û

t
i(û

t
i)
>) ≤ 4.

Lemma 4. Suppose the assumptions of Theorem 2 hold.
Also, let V t be 16κµ-incoherent s.t. Err(V ∗,V t) ≤

1
κ2 log2 n

. Then, w.p. ≥ 1 − 5T/n100, we have

Err(U∗,U t) ≤ 1
2Err(V ∗,V t), and Err(V ∗,V t+1) ≤

1
2Err(U∗,U t) + Cκ6·µ3r2√logn√

pn

√
m logn·T log 1/δ

ε , where

Err(V ∗,V) = ‖(I − V ∗(V ∗)>)V ‖F .

4.1. Noisy Power Iteration Initialization

Theorem 2 requires that DPALS be initialized with V̂
0

such
that ‖(I − V ∗(V ∗)>)V̂

0
‖ = O(1/ log n). One may apply

Algorithm 1 of (Dwork et al., 2014), i.e. compute the top-
r eigenvectors of A + G, where A := PΩ(M)>PΩ(M)
and G ∼ Nsym(0,Γ4

Mσ2)m×m. This would require n =

Ω̃(m
√
m/ε). However, this turns out to be suboptimal in

our setting as it doesn’t take advantage of the the sparsity of
PΩ(M). Instead, the noisy power iteration method, devel-
oped in (Hardt & Roth, 2012; 2013; Hardt & Price, 2013) for
per-entry privacy protection, turns out to be more suitable.

One difficulty in applying noisy power iteration is that prior
work requires incoherence of A, which may not hold in our
setting. To overcome this difficulty, we show that it suffices
to have incoherence of the top-r eigenspace of A, together
with a (moderate) gap between the top eigenvalues and the
rest, both of which we are able to establish. This gives a
tighter analysis of noisy power iteration which may be of
independent interest, detailed in Appendix B.4. We apply
this result to our setting in the next theorem.

Theorem 5 (Initialization guarantee). There exists con-
stant C0, C1, C2 > 0, such that for any δ ∈ (0, 1), ε ∈
(0, log(1/δ)), if p ≥ C1γ log3m/m and

√
pn ≥

C2

√
log(1/δ)

ε γ
√
m log5/2m, where γ = (µκr)C0 , the noisy

power iteration method is (ε, δ)-differentially private, and

with high probability returns a V̂
0

which is close to V ∗ as
defined in Theorem 2.

5. Heuristic Improvements to DPALS
We introduce heuristics to improve the privacy/utility trade-
off of DPALS in practice. We describe each heuristic, its
motivation, and how to implement it differentially privately.

5.1. Reducing Distribution Skew

The first heuristics are motivated by the observation that,
in practice, the elements of Ω are not sampled uniformly
at random (Marlin et al., 2007). In particular, the number
of observed ratings per item typically follows a power-law
distribution, and is heavily skewed towards popular items.
For example, Figure 2 shows the fraction of observations vs.
fraction of top movies in the MovieLens 10M data set. It
shows, for instance, that the top 20% of the movies account
for more than 85% of the observations.

Private Alternating Least Squares

0.0 0.2 0.4 0.6 0.8 1.0
Movie fraction

0.0

0.2

0.4

0.6

0.8

1.0

Da
ta

 fr
ac

tio
n

ML10M (unsampled)
Uniform sampling (k = 50)
Adaptive sampling (k = 50)

Figure 2. Fraction of observations contributed by the top movies
in MovieLens 10M. Adaptive sampling reduces popularity bias.

Due to this popularity bias, some items may have very few
observations, and for such rare items j, the embedding V j

learned by DPALS may not be useful: The noise terms in
Line 10 of Algorithm 1 do not scale with the number of ob-
servations |Ω′j | – for otherwise we may lose the protection
on users who rated rare items – thus, items with a smaller
|Ω′j | have a lower signal-to-noise ratio. In our experiments,
we found that such noisy embeddings may have a further
cascading effect and lead to quality degradation in the em-
beddings of other movies and users. To alleviate this issue,
we propose two techniques.

Learning on frequent items. The first strategy is to par-
tition the items into two sets, based on an estimate of the
item counts, which we denote by c̃ ∈ Rn. We introduce a
hyper-parameter β representing the fraction of movies to
train on. Define the set Frequent to be the dmβe items with
the largest c̃, and let Infrequent be its complement. We
learn embeddings V̂ j only for j ∈ Frequent , by running
Algorithm ADPALS on those items. When making predic-
tions for any missing entry M ij , if j ∈ Frequent , we use
the dot product Û i · V̂ j , and if j ∈ Infrequent we use the
average observed rating of PΩ(M)i.

To compute c̃ privately, notice that since each user con-
tributes at most k items, the exact item count c has `2
sensitivity

√
k. Thus, c̃ := c + N (0, kσ2) guarantees(

α, α/2σ2
)
-RDP.

Adaptive sampling. To further reduce the popularity
bias, we propose to use an adaptive distribution when sub-
sampling Ω. Recall that in Line 6 of Aitem , we pick k items
per user in Ω, in order to limit the privacy loss. We propose
to sample rare items with higher probability, as follows.
Given the count estimate c̃, for each user i, we pick the k
items in Ωi∩Frequent with the lowest count estimates. This
heuristic effectively reduces the distribution skew and gives
a significant utility gain compared to uniform sampling, see
Section 6.3. Figure 2 illustrates the resulting distribution
for a sample size of k = 50 per user. It’s interesting to
observe that under uniform sampling, the popularity bias
is worse than in the unsampled data set, this is due to a
negative correlation between user counts and item counts:

conditioned on a light user, the probability to observe a rare
item is lower; see Appendix C for further discussion.

5.2. Additional Heuristics

A common heuristic, used for example by (McSherry &
Mironov, 2009), is to center the observed matrix PΩ(M),
by subtracting an estimate of the global average, denoted
by m̃. To compute m̃ privately, since ‖PΩ(M)‖∞ ≤ ΓM

and each user contributes at most k items, publishing m̃ =∑
(i,j)∈Ω Mij+N (0,kΓ2

Mσ2)

|Ω|+N (0,kσ2) guarantees
(
α, α/σ2

)
-RDP.

Another practice, commonly used in some benchmarks, is
to modify the loss function in Section 2.2 by adding the
term λ0‖Û V̂ >‖2F , where λ0 is a hyper-parameter. This
is particularly important for item recommendation tasks,
such as the MovieLens 20M benchmark. This modification
introduces an additional term K := λ0

∑
i∈[n] Û i ⊗ Û i to

X in Line 9 of Aitem . To maintain privacy, we use a noisy
version K̃ obtained by adding Gaussian noise to K. Since
K is independent of j, we reuse the same K̃ for all j ∈ [m],
thus limiting the additional privacy loss due to this term.

Finally, we project the matrix Xj = Hj + Gj to the PSD
cone (Line 9) to improve stability. In our analysis, we show
that Xj is positive definite with high probability, but in
practice, the projection improves performance.

We account for the privacy cost in the computation of m̃, c̃,
and K̃, along with that in Theorem 1, by standard composi-
tion properties of RDP (Mironov, 2017). For completeness,
the privacy accounting of the full algorithm including data
pre-processing, is given in Appendix C.

6. Empirical Evaluation
We run experiments on synthetic data and two benchmark
tasks on the widely used MovieLens data sets (Harper &
Konstan, 2016). The synthetic task follows the assumptions
of our theoretical analysis, and serves to illustrate the guaran-
tees of Theorem 2. The MovieLens benchmark tasks serve
as an evaluation of the empirical privacy/utility trade-off on
a more realistic application, and to provide some practical
insights into DPALS. We use current SOTA method DPFW
as the main baseline as it is already demonstrated to be
more accurate than techniques like Private SVD (McSherry
& Mironov, 2009). Similar to (Jain et al., 2018), we do
not compare against (Liu & Talwar, 2019) as the privacy
parameters are unclear, and might require (exponential time)
Markov chain based sampling methods to compute them.

6.1. Metrics and Data Sets

Metrics. The quality of a learned model (Û , V̂) will be
measured either using the RMSE or the Recall@k, de-

Private Alternating Least Squares

1 4 8 12 16
ε

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10
te

st
 e

rro
r (

RM
SE

)

1 5 10 15 20
ε

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

te
st

 e
rro

r (
RM

SE
)

1 5 10 15 20
ε

0.15

0.20

0.25

0.30

0.35

te
st

 q
ua

lit
y

(R
ec

al
l@

20
)

DPSVD Simple baseline DPFW DPALS ALS

(a) ML-10M (top 400 movies) (b) ML-10M (c) ML-20M

Figure 3. Privacy/utility trade-off of different methods. We observe that DPALS is significantly more accurate than DPFW method, and
the loss in accuracy for DPALS compared to ALS is relatively small, especially for ε ≥ 10.

1 5 10 15 20
ε

10−2

10−1

100

te
st

 e
rro

r (
RM

SE
)

DPFW, n=5K
DPFW, n=10K
DPFW, n=20K
DPFW, n=50K
DPALS, n=5K
DPALS, n=10K
DPALS, n=20K
DPALS, n=50K

Figure 4. Comparison of DPFW and DPALS on synthetic data with
different number of rows/users n.

pending on the benchmark. The RMSE is defined as
RMSE = ‖PΩtest(Û V̂ > −M)‖F /

√
|Ωtest|, where Ωtest is

the set of test ratings held out from Ω. Recall@k is defined
as follows. For each user i, letRi be the set of k movies with
the highest scores, where the score of movie j is Û i · V̂ j .
Then Recall@k = 1

n

∑n
i=1 |Ri ∩ Ωtest

i |/min(k, |Ωtest
i |).

Synthetic data. We generate a rank 5 ground truth ma-
trix as the product of two random orthogonal matrices
U∗ ∈ Rn×5,V ∗ ∈ Rm×5, where m = 1000, and
n ∈ {5000, 10000, 20000, 50000}. We scaled the ground
truth matrix such that the standard deviation of the obser-
vations is 1, in other words, a trivial model which always
predicts the global average has a RMSE of 1. The observed
entries Ω are obtained by sampling each entry independently
with probability p = 20 log(n)/m.

MovieLens data sets. We apply our method to two com-
mon recommender benchmarks: (i) rating prediction on
MovieLens 10M (ML-10M) following Lee et al. (2013),
where the task is to predict the value of a user’s rating, and
performance is measured using the RMSE, (ii) item recom-
mendation on MovieLens 20M (ML-20M) following Liang
et al. (2018), where the task is to select k movies for each
user and performance is measured using Recall@k. For
comparison to DPFW, we use a variant of the ML-10M task
following Jain et al. (2018), where the movies are restricted

to the 400 most popular movies (DPFW did not scale to the
full data set with all movies, unlike DPALS).

Experimental protocol. Each data set is partitioned into
training, validation and test sets. Hyper-parameters are
chosen on the validation set, and the final performance is
measured on the test set. The privacy loss accounting is
done using RDP, then translated to (ε, δ)-DP with δ = 10−5

for the synthetic data and ML-10M and δ = 1/n for ML-
20M. When training DPALS models on synthetic data, we
use the basic Algorithm 1, without heuristics. When train-
ing on MovieLens, we use the heuristics described in Sec-
tion 5. Note that even when training on Frequent items
(Section 5.1), evaluation is always done on the full set of
items, so that the reported metrics are comparable to pre-
viously published numbers. Additional details on the ex-
perimental setup are in Appendix D, including a list of
hyper-parameters and the ranges we used for each.

6.2. Privacy-Utility Trade-Off

DPALS vs. DPFW on synthetic data. On synthetic data
(Figure 4) we observe: First, as expected, the trade-off of
both algorithms improves as the number of users increases.
Second, for ε = 1, the quality of the DPFW models is
no better than the trivial model (RMSE equal to 1), while
DPALS has a lower RMSE, which significantly improves
with larger n. Third, for the largest data set (n = 50K), the
relative improvement in RMSE between DPALS and DPFW
is at least 7-fold across all values of ε. To further illustrate
the difference between DPALS and DPFW, we show in
Appendix D.4 the RMSE against number of iterations, both
for the private and non-private variants (Figure 7).

DPALS vs. DPFW on ML10M. Next, we compare the two
methods on ML-10M-top400 (Figure 3a). For DPFW and
DPSVD, the numbers are taken directly from (Jain et al.,
2018). For reference, we include the test RMSE of non-
private ALS, and a simple baseline model that always pre-

Private Alternating Least Squares

dicts the global average rating. The performance of DPSVD
is worse than that of the simple baseline. DPALS performs
best, with a relative improvement in RMSE (compared to
DPFW) that ranges from 7% to 11.6%, and that increases
with ε. In Appendix D.4, we show that DPALS achieves per-
formance better than DPFW even when trained on a small
fraction of the users (23%).

Finally, Figure 3b shows the privacy/utility trade-off on
the full ML-10M data. In order to scale DPFW to the
the full data, we use the same procedure described in Sec-
tion 5: DPFW is trained on the top movies, and for remain-
ing movies the model predicts the user’s average rating.
Compared to the restricted data set (ML-10M-top400), the
privacy-utility trade-off is worse on the full data. This in-
dicates that a smaller ratio between number of users and
number of items makes the task harder – a result that is in
line with the theory.

The results on synthetic data and ML10M suggest that
DPALS exhibits a much better privacy/utility trade-off than
DPFW, and a better dependence on the number of rows n,
which is consistent with the theoretical analysis.

DPALS on MovieLens 20M. Figure 3c shows the pri-
vacy/utility trade-off of DPALS on the ML-20M data set.
We include as a reference the non-private ALS, and a simple
baseline model that always returns the k most rated movies.

On this task, the performance of the private model is re-
markably good. Indeed, the best previously reported Re-
call@20 numbers for non-private models on this benchmark
are 36.0% for ALS (Liang et al., 2018) and 41.4% using
a sophisticated auto-encoder model (Shenbin et al., 2020).
Our results show that DPALS can achieve performance com-
parable to the previously reported state of the art numbers
for (non-private) matrix completion, and the utility does not
significantly degrade, even at small ε.

6.3. Importance of Adaptive Sampling and Projection

In this section, we give additional insights into the effect of
the heuristics introduced in Section 5. We run a study on
ML-10M for ε = 10, r = 128 and a sample size k = 50
(both correspond to the best overall model); other hyper-
parameters are re-tuned. According to Section 5.1, we par-
tition the set of movies into Frequent and Infrequent and
train only on Frequent . The results are reported in Fig-
ure 5, where the movie fraction is simply |Frequent |/n. We
make the following observations. First, for non-private ALS,
we get the highest RMSE by training on all movies, while
there is a benefit for training on a subset of the movies for
the private models. Second, when training the non-private
model on sub-sampled data (red and purple lines), there is a
considerable increase in RMSE, from 0.785 to 0.812. This
gives an indication that part of the utility loss is due to sub-

0.0 0.2 0.4 0.6 0.8 1.0
Movie fraction

0.75

0.80

0.85

0.90

0.95

1.00

1.05

te
st

 e
rro

r (
RM

SE
)

DPALS, no projection
DPALS, uniform
DPALS, adaptive
ALS, uniform
ALS, adaptive
ALS

Figure 5. RMSE vs. movie fraction for ε = 10 on ML-10M.

sampling, and not simply due to the addition of noise. Third,
the sampling strategy has a significant impact on the per-
formance of the private DPALS model: adaptive sampling
improves the RMSE from 0.870 to 0.854, in contrast, the
sampling strategy appears to have little effect on non-private
models (i.e. models trained without noise). Finally, training
the private model without PSD projection (ΠPSD in Line 10
of Algorithm 1) results in a terrible performance. We find
that while the projection is not technically necessary for the
theoretical analysis, it is essential in practice.

Training on a subset of the movies appears to have only
a marginal effect when combined with adaptive sampling.
However, as detailed in the appendix, the effect is much
more significant for smaller ε, as well as on ML-20M.

Additional experiments are presented in Appendix D, to
explore the effect of other hyper-parameters, such as the
rank and the regularization of the objective function.

7. Conclusion
We presented DPALS for solving low-rank matrix com-
pletion with user-level privacy protection. We show that
DPALS provably converges to high accuracy outputs under
standard assumptions and, with careful implementation, sig-
nificantly outperforms existing privacy preserving matrix
completion methods. In fact, DPALS achieves competitive
metrics on benchmark data compared to non-private models
and scales well with data set size.

The efficiency of DPALS shows that by taking advantage of
the structure of the problem, one can achieve a much higher
utility for privacy-preserving model training. In this case,
the alternating structure of ALS, along with the decoupling
of the least squares solution, were essential in the design of
an efficient method. These insights may be applicable to a
broader class of problems and optimization algorithms.

Acknowledgments
We would like to thank Om Thakkar and the anonymous
reviewers for insightful comments and discussion.

Private Alternating Least Squares

References
Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B.,

Mironov, I., Talwar, K., and Zhang, L. Deep learning
with differential privacy. In Proceedings of the 2016 ACM
SIGSAC conference on computer and communications
security, pp. 308–318, 2016.

Bassily, R., Smith, A., and Thakurta, A. Private empirical
risk minimization: Efficient algorithms and tight error
bounds. In Proc. of the 2014 IEEE 55th Annual Symp. on
Foundations of Computer Science (FOCS), 2014.

Bhatia, R. Matrix analysis, volume 169. Springer Science
& Business Media, 2013.

Calandrino, J. A., Kilzer, A., Narayanan, A., Felten, E. W.,
and Shmatikov, V. “you might also like:” privacy risks
of collaborative filtering. In 2011 IEEE symposium on
security and privacy, pp. 231–246. IEEE, 2011.

Candès, E. J. and Recht, B. Exact matrix completion via con-
vex optimization. Foundations of Computational mathe-
matics, 9(6):717–772, 2009.

Carlini, N., Liu, C., Erlingsson, Ú., Kos, J., and Song,
D. The secret sharer: Evaluating and testing unintended
memorization in neural networks. In 28th USENIX Se-
curity Symposium (USENIX Security 19), pp. 267–284,
2019.

Carlini, N., Deng, S., Garg, S., Jha, S., Mahloujifar, S.,
Mahmoody, M., Song, S., Thakurta, A., and Tramer, F.
An attack on instahide: Is private learning possible with
instance encoding? arXiv preprint arXiv:2011.05315,
2020a.

Carlini, N., Tramer, F., Wallace, E., Jagielski, M., Herbert-
Voss, A., Lee, K., Roberts, A., Brown, T., Song, D., Er-
lingsson, U., et al. Extracting training data from large lan-
guage models. arXiv preprint arXiv:2012.07805, 2020b.

Dekel, Y., Lee, J. R., and Linial, N. Eigenvectors of random
graphs: Nodal domains. Random Structures & Algo-
rithms, 39(1):39–58, 2011.

Dinur, I. and Nissim, K. Revealing information while pre-
serving privacy. In Proceedings of the twenty-second
ACM SIGMOD-SIGACT-SIGART symposium on Princi-
ples of database systems, pp. 202–210, 2003.

Dwork, C. and Roth, A. The algorithmic foundations of dif-
ferential privacy. Foundations and Trends in Theoretical
Computer Science, 9(3–4):211–407, 2014.

Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I.,
and Naor, M. Our data, ourselves: Privacy via dis-
tributed noise generation. In Advances in Cryptology—
EUROCRYPT, pp. 486–503, 2006a.

Dwork, C., McSherry, F., Nissim, K., and Smith, A. Calibrat-
ing noise to sensitivity in private data analysis. In Proc.
of the Third Conf. on Theory of Cryptography (TCC), pp.
265–284, 2006b.

Dwork, C., McSherry, F., and Talwar, K. The price of
privacy and the limits of lp decoding. In Proceedings of
the thirty-ninth annual ACM Symposium on Theory of
Computing, pp. 85–94, 2007.

Dwork, C., Talwar, K., Thakurta, A., and Zhang, L. Analyze
gauss: optimal bounds for privacy-preserving principal
component analysis. In Proceedings of the forty-sixth
annual ACM symposium on Theory of computing, pp.
11–20, 2014.

Erdős, L., Knowles, A., Yau, H.-T., and Yin, J. Spectral
statistics of erdős–rényi graphs i: Local semicircle law.
The Annals of Probability, 41(3B):2279–2375, 2013.

Ge, R., Lee, J. D., and Ma, T. Matrix completion has no
spurious local minimum. Advances in Neural Information
Processing Systems, pp. 2981–2989, 2016.

Hardt, M. and Price, E. The noisy power method:
A meta algorithm with applications. arXiv preprint
arXiv:1311.2495, 2013.

Hardt, M. and Roth, A. Beating randomized response on
incoherent matrices. In Proceedings of the forty-fourth
annual ACM symposium on Theory of computing, pp.
1255–1268, 2012.

Hardt, M. and Roth, A. Beyond worst-case analysis in pri-
vate singular vector computation. In Proceedings of the
forty-fifth annual ACM symposium on Theory of comput-
ing, pp. 331–340, 2013.

Hardt, M. and Wootters, M. Fast matrix completion without
the condition number. In Conference on learning theory,
pp. 638–678. PMLR, 2014.

Hardt, M., Meka, R., Raghavendra, P., and Weitz, B. Com-
putational limits for matrix completion. In Conference
on Learning Theory, pp. 703–725. PMLR, 2014.

Harper, F. M. and Konstan, J. A. The movielens datasets:
History and context. Acm Transactions on Interactive
Intelligent Systems (TiiS), 5(4):19, 2016.

Hu, Y., Koren, Y., and Volinsky, C. Collaborative filtering
for implicit feedback datasets. In Proceedings of the 2008
Eighth IEEE International Conference on Data Mining,
ICDM ’08, pp. 263–272, 2008.

Jain, P. and Netrapalli, P. Fast exact matrix completion with
finite samples. In Conference on Learning Theory, pp.
1007–1034. PMLR, 2015.

Private Alternating Least Squares

Jain, P., Netrapalli, P., and Sanghavi, S. Low-rank matrix
completion using alternating minimization. In Proceed-
ings of the forty-fifth annual ACM symposium on Theory
of computing, pp. 665–674, 2013.

Jain, P., Thakkar, O. D., and Thakurta, A. Differentially
private matrix completion revisited. In International Con-
ference on Machine Learning, pp. 2215–2224. PMLR,
2018.

Kearns, M., Pai, M., Roth, A., and Ullman, J. Mechanism
design in large games: Incentives and privacy. In Proceed-
ings of the 5th conference on Innovations in theoretical
computer science, pp. 403–410, 2014.

Koren, Y. and Bell, R. Advances in collaborative filtering.
Recommender systems handbook, pp. 77–118, 2015.

Koren, Y., Bell, R., and Volinsky, C. Matrix factorization
techniques for recommender systems. Computer, 42(8):
30–37, 2009.

Korolova, A. Privacy violations using microtargeted ads: A
case study. In 2010 IEEE International Conference on
Data Mining Workshops, pp. 474–482. IEEE, 2010.

Lee, J., Kim, S., Lebanon, G., and Singer, Y. Local low-
rank matrix approximation. In Proceedings of the 30th
International Conference on International Conference on
Machine Learning - Volume 28, ICML’13, pp. II–82–II–
90. JMLR.org, 2013.

Liang, D., Krishnan, R. G., Hoffman, M. D., and Jebara,
T. Variational autoencoders for collaborative filtering.
WWW ’18, pp. 689–698, 2018.

Liu, J. and Talwar, K. Private selection from private candi-
dates. In Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing, pp. 298–309, 2019.

Liu, Z., Wang, Y.-X., and Smola, A. Fast differentially
private matrix factorization. In Proceedings of the 9th
ACM Conference on Recommender Systems, pp. 171–178,
2015.

Lu, S., Hong, M., and Wang, Z. PA-GD: On the convergence
of perturbed alternating gradient descent to second-order
stationary points for structured nonconvex optimization.
In Proceedings of the 36th International Conference on
Machine Learning, pp. 4134–4143, 2019.

Marlin, B. M., Zemel, R. S., Roweis, S., and Slaney, M. Col-
laborative filtering and the missing at random assumption.
In Proceedings of the Twenty-Third Conference on Un-
certainty in Artificial Intelligence, UAI’07, pp. 267–275,
Arlington, Virginia, USA, 2007. AUAI Press.

McSherry, F. and Mironov, I. Differentially private recom-
mender systems: Building privacy into the netflix prize
contenders. In Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pp. 627–636, 2009.

Meng, X., Wang, S., Shu, K., Li, J., Chen, B., Liu, H.,
and Zhang, Y. Personalized privacy-preserving social
recommendation. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 32, 2018.

Mironov, I. Rényi differential privacy. In 2017 IEEE 30th
Computer Security Foundations Symposium (CSF), pp.
263–275. IEEE, 2017.

Recht, B. A simpler approach to matrix completion. Journal
of Machine Learning Research, 12(12), 2011.

Rendle, S., Zhang, L., and Koren, Y. On the difficulty of
evaluating baselines: A study on recommender systems.
CoRR, abs/1905.01395, 2019.

Rudelson, M. and Vershynin, R. Delocalization of eigenvec-
tors of random matrices with independent entries. Duke
Mathematical Journal, 164(13):2507–2538, 2015.

Sheffet, O. Old techniques in differentially private linear
regression. In Algorithmic Learning Theory, pp. 789–827.
PMLR, 2019.

Shenbin, I., Alekseev, A., Tutubalina, E., Malykh, V., and
Nikolenko, S. I. Recvae: A new variational autoencoder
for top-n recommendations with implicit feedback. In
Proceedings of the 13th International Conference on Web
Search and Data Mining, WSDM ’20, pp. 528–536, 2020.

Shokri, R., Stronati, M., Song, C., and Shmatikov, V. Mem-
bership inference attacks against machine learning mod-
els. In 2017 IEEE Symposium on Security and Privacy
(SP), pp. 3–18. IEEE, 2017.

Smith, A., Thakurta, A., and Upadhyay, J. Is interaction nec-
essary for distributed private learning? In 2017 IEEE Sym-
posium on Security and Privacy (SP), pp. 58–77. IEEE,
2017.

Song, S., Chaudhuri, K., and Sarwate, A. D. Stochastic
gradient descent with differentially private updates. In
2013 IEEE Global Conference on Signal and Information
Processing, pp. 245–248. IEEE, 2013.

Sun, R. and Luo, Z. Guaranteed matrix completion via
nonconvex factorization. In FOCS, 2015.

Thakkar, O., Ramaswamy, S., Mathews, R., and Beaufays,
F. Understanding unintended memorization in federated
learning. arXiv preprint arXiv:2006.07490, 2020.

Private Alternating Least Squares

Tropp, J. A. An introduction to matrix concentration in-
equalities. arXiv preprint arXiv:1501.01571, 2015.

Vershynin, R. Introduction to the non-asymptotic analysis
of random matrices. arXiv preprint arXiv:1011.3027,
2010.

Vu, V. and Wang, K. Random weighted projections, ran-
dom quadratic forms and random eigenvectors. Random
Structures & Algorithms, 47(4):792–821, 2015.

Zhu, Y. and Wang, Y.-X. Improving sparse vector tech-
nique with renyi differential privacy. Advances in Neural
Information Processing Systems, 33, 2020.

Private Alternating Least Squares

A. Proof of Theorem 1
Proof. To prove the guarantee for Algorithm 1, it suffices to show the following claim: that at each time step t ∈ [T], the
computations of X and

∑
i∈Ω′j

M ij ·U i, for all j ∈ [m] satisfy
(
α, α k

2σ2

)
-RDP. One can then compose the privacy losses

via simple Rényi composition (Mironov, 2017) to obtain the overall RDP-cost to be
(
α, α kT

2σ2

)
.

To prove the claim, notice that at each time step t ∈ [T], there are m computations of X and
∑
i∈Ω′j

M ij ·U i. Since each
user i ∈ [n] can affect only k of those computations, by Gaussian mechanism (Dwork et al., 2006a; Mironov, 2017) and
the generalization of standard composition property of RDP (Mironov, 2017, Proposition 1) to the joint RDP, we have the
required guarantee.

We now translate joint-RDP to join-DP. By the first part of the theorem, Algorithm 1 is (α, αρ2)-joint RDP with ρ2 = kT
2σ2 .

Thus by (Mironov, 2017, Proposition 3) it is (ε, δ)-joint DP with ε = αρ2 + log(1/δ)
α−1 for any α > 1. The latter expression is

minimized when α = 1+

√
log(1/δ)

ρ , which yields εmin(ρ) = αρ2+ log(1/δ)
α−1 = 2

√
log(1/δ)ρ+ρ2. Now fix ε > 0, δ ∈ (0, 1).

To guarantee (ε, δ)-joint DP while minimizing the noise (which scales as 1/ρ by definition of ρ), it suffices to maximize
ρ subject to εmin(ρ) ≤ ε, but since εmin is increasing in ρ, ρ is maximized when εmin(ρ) = ε. This is a second-order
polynomial in ρ, and it has a positive root at ρ+ =

√
log(1/δ) + ε−

√
log(1/δ). Therefore, setting

σ =

√
kT/2

ρ+
=

√
kT/2√

log(1/δ) + ε−
√

log(1/δ)
=

√
kT/2(

√
log(1/δ) + ε+

√
log(1/δ))

ε
≤
√

2kT (log(1/δ) + ε)

ε

suffices to guarantee (ε, δ)-joint DP. This completes the proof.

B. Proofs from Section 4
Recall the problem setting. M = U∗Σ∗(V ∗)> where (U∗)>U∗ = I and (V ∗)>V ∗ = I . Also, U∗ and V ∗ are
µ-incoherent by assumption. That is, ‖U∗i ‖2 ≤ µ

√
r/
√
n and ‖V ∗j‖2 ≤ µ

√
r/
√
m. The set of observations is Ω =

{(i, j) s.t. δij = 1}, where δij are i.i.d. Bernoulli random variables with Pr[δij = 1] = p. We sample a new set of
observations before every update.

We now present a basic lemma.

Lemma 6. Let U∗ and U t be µ and µ1-incoherent, orthonormal matrices where µ1 ≥ µ and n · p ≥ µµ1r
2. Then, the

following holds for all j ∈ [m] (w.p. ≥ 1−mβ):∥∥∥∥∥1

p

n∑
i=1

δijU
∗
i (U

t
i)
> − (U∗)>U t

∥∥∥∥∥
F

≤ C

√
µ2

1r

n · p
· log

r

β
.

Proof. The proof follows from the matrix Bernstein inequality (Tropp, 2015, Theorem 6.1.1) and incoherence of U∗,
U t.

Lemma 7. Let δij be i.i.d. Bernoulli random variables with Pr[δij = 1] = p. Then, the following holds (w.p. ≥ 1− δ):∥∥∥∥1

p
PΩ(M)−M

∥∥∥∥
F

≤ C
(√

n

p
log

1

β
+

1

p
log

1

β

)
· ‖M‖∞.

Proof. The lemma is similar to Theorem 7 of (Recht, 2011) and follows by the matrix Bernstein inequality (Tropp, 2015,
Theorem 6.1.1).

B.1. Rank-1 Case

Simplifying the notation, denote M = σ∗u∗(v∗)> where (u∗)>u∗ = 1 and (v∗)>v∗ = 1.

Note that as k = C · p ·m log n w.p. ≥ 1− T/n100, we do not throw any tuples in Line 6 of Algorithm 1. Similarly, using
incoherence we have: ‖M‖∞ ≤ ΓM . So, we do not clip any sample in Line 1 of Algorithm 1.

Private Alternating Least Squares

Now, we use mathematical induction to show the incoherence of resulting vt and ût, and to show that the clipping operations
do not really apply in our setting with the selected hyper-parameters.

For the base case (t = 0), initialization of v0 ensures that Err(v∗,v0) ≤ C
logn . Now, using (Jain et al., 2013, Lemma C.2)

that uses clipping only in the first step to ensure incoherence, we get that v0 is 16µ-incoherent.

In the induction step, assuming the Lemma holds for vt, we prove the claim for ût and vt+1. Dropping superscripts of Ω′i
for notation simplicity and using λ = 0, we have: ût = arg min

u

∥∥PΩ

(
M − u(vt)>

)∥∥2

F
. The update of ut = ût/‖ût‖2.

So using (Jain et al., 2013, Lemma 5.5, Lemma 5.7, Theorem 5.1), we get w.p. ≥ 1− 1/n100:

ut is 16µ-incoherent,

‖ût‖2 ≥ σ∗/16,

Err(ut,u∗) ≤ 1

4
Err(vt,v∗). (3)

To complete the claim, we only need to study the update for vt+1, which is a noisy version of the ALS update:

v̂t+1 = (D + Gt)−1
(
PΩ(M)ût + g

)
,

where D and Gt are diagonal matrices s.t. Djj =
∑

(i,j)∈Ω(ûti)
2 and Gt

jj ∼ Γ2
uσ · N (0, 1).

We first prove that D + Gt is indeed invertible, and has lower-bounded smallest eigenvalue. Using Lemma 6, and
pn ≥ µ2 log n log(1/δ), we have w.p. ≥ 1−mδ,

1

p
Djj ≥ ‖ût‖22

(
1−

√
1

log n

)
.

Also, using maximum of Gaussians, we have w.p. ≥ 1−mβ,

1

p

∥∥Gt
∥∥

2
≤

Γ2
uσ
√

log(n/β)

p
≤
µ2(σ∗)2σ

√
log(n/β)

np
≤ ‖ût‖22

16× 256
,

where the final inequality follows by the assumption on p.

So,

‖(D + Gt)−1‖2 ≤
2

p · ‖ût‖22
. (4)

We now conduct error analysis for v̂t+1:
v̂t+1 = α · v∗ −E,

where α = σ∗·(u∗)>ut

‖ût‖2
. Furthermore, for a matrix C with Cjj =

∑
(i,j)∈Ω ûtiu

∗
i , we have E = E1 + E2 with

E1
j = (Djj + Gt

jj)
−1(αDjj − σ∗Cjj)v

∗
j , E2

j = (Djj + Gt
jj)
−1(αGt

jjv
∗
j − gj).

This step follows from the observation that (PΩ(M)ût)j = σ∗Cjjv
∗
j . (We note that E is a vector but we use upper case to

be consistent with Section B.2.)

Note that E[αDjj − σ∗Cjj] = 0. Furthermore, using incoherence of v∗,
∥∥∥ût∥∥∥

2
≥ σ∗/16, and the Bernstein’s inequality,

we have:
‖E1‖2 ≤

1

64
Err(ut,u∗). (5)

Now,

‖E2‖2 ≤
2
√

log n

p ·
∥∥∥ût∥∥∥2

2

·
(
16Γ2

uσ + ΓMΓuσ
√
m
)
≤ Cµ4

√
log n

np
· σ. (6)

Private Alternating Least Squares

Using (5) and (6),
∥∥∥v̂t+1

∥∥∥
2
≥ 3/4.

Thus, we get:

Err(v∗,vt+1) ≤ 1

32
Err(u∗,ut+1) +

Cµ4
√

log n

np
· σ.

Similarly, by incoherence of v∗ and using bound on E1
j and E2

j , we get:

‖v̂t+1‖∞ ≤ 3µ.

Therefore

vt+1 is 16µ-incoherent,

Err(vt+1,v∗) ≤ 1

32
Err(ut,u∗) +

Cµ4
√

log n

np
· σ. (7)

So, the inductive hypothesis holds. Furthermore, we get Theorem 2, by combining the error terms of ut and vt+1.

B.2. Rank-r Case

B.2.1. PROOF OF LEMMA 3

Note that as k = C · p ·m log n, w.p. ≥ 1− T/n100, we do not throw any tuples in Line 6 of Algorithm 1. Similarly, using
incoherence we have: ‖M‖∞ ≤ ΓM . So, we do not clip any samples in Line 1 of Algorithm 1.

Now, we use mathematical induction to show the incoherence of resulting V̂
t

and Û
t
, and to show that the clipping

operations do not really apply in our setting with the selected hyperparamters.

For the base case (t = 0), initialization of V̂
0

ensures that (V̂
0
)>V̂

0
= I and Err(V ∗, V̂

0
) ≤ C

κ2r2 logn . Now, using (Jain

et al., 2013, Lemma C.2) that uses clipping only in the first step to ensure incoherence, we get that V̂
0

is 16µ
√
r-incoherent.

For the induction step, assuming the Lemma holds for V̂
t
, we prove the claim for Û

t
and V̂

t+1
. Dropping superscripts

of Ω′i for notation simplicity and using λ = 0, we have: Û
t

= arg min
U

∥∥PΩ

(
M −U(V t)>

)∥∥2

F
. That is, the update of

Û
t

= U tRU , with U t being the Q part of QR-decomposition, is identical to the standard non-noisy ALS. So using (Jain
et al., 2013, Lemma 5.5, Lemma 5.7, Theorem 5.1)1, we get w.p. ≥ 1− 1/n100,

U t is 16κµ-incoherent,

‖Σ∗R−1
U ‖2 ≤ 16κ, i.e., ‖R−1

U ‖2 ≤
∥∥(Σ∗)−1

∥∥
2
‖Σ∗R−1

U ‖2 ≤ 16‖(Σ∗)−1‖2κ,

Err(U t,U∗) ≤ 1

4
Err(V t,V ∗). (8)

That is, now to complete the claim we only need to study the update for V̂
t+1

, which is a noisy version of the ALS update.

Now consider,

Xt
j = (Û

t
)>

 ∑
i:(i,j)∈Ω

eie
>
i

 Û
t

+ Gt
j = p ·RU

(U t)>

1

p

∑
i:(i,j)∈Ω

eie
>
i

U t + N t
j

RU , (9)

where Gt is the noise added in Line 9 of Algorithm 1 at time step t, Dt
j = (U t)>

(
1
p

∑
i:(i,j)∈Ω eie

>
i

)
U t and N t

j =
1
pR
−1
U Gt

jR
−1
U . Note that using Gaussian eigenvalue bound (Vershynin, 2010) and Weyl’s inequality (Bhatia, 2013), we

have w.p. ≥ 1− 1/n100,

σmin(Dt
j + N t

j) ≥

(
1− C

√
µ2κ2r

n · p
· log n− 2Γ2

uσ
√
r

p · σmin(RU)2

)
≥ 1

2
, (10)

1Lemma 5.5 of (Jain et al., 2013) has a redundant
√
r term in incoherence claim

Private Alternating Least Squares

where the last inequality follows from: np ≥ Cµ2κ2r log2 n and n
√
p ≥ Cµ2κ6r

√
r ·
√
m logn·(T log(1/δ))

ε .

Next, we argue that Xt
j is PSD. Observe that

σmin(Xt
j) ≥

1

2
p · σmin(RU)2 ≥ C p · σmin(Σ∗)2

κ2
> 0, (11)

where the last inequality follows from (8).

This shows that X used in update of V̂
t+1

is PSD, and hence the update for V̂
t+1

is given by:

RU (V̂
t+1

)>j (12)

=(Dj + N t
j)
−1
(
CjΣ

∗(V ∗)>j + ḡtj
)

(13)

=(U t)>U∗Σ∗(V ∗)>j (14)

− (Dj + N t
j)
−1(Dj(U

t)>U∗ −Cj)Σ
∗(V ∗)>j − (Dj + N t

j)
−1(N t

j(U
t)>U∗Σ∗(V ∗)>j − ḡtj), (15)

where Dj = (U t)>
(

1
p

∑
i:(i,j)∈Ω eie

>
i

)
U t, Cj = (U t)>

(
1
p

∑
i:(i,j)∈Ω eie

>
i

)
U∗, and ḡtj = 1

pR
−1
U gtj .

That is,

V̂
t+1

RU = V ∗Σ∗(U∗)>U t −E>, Ej = E1
j + E2

j ,

E1
j = (Dj + N t

j)
−1(Dj(U

t)>U∗ −Cj)Σ
∗(V ∗)>j , E2

j = (Dj + N t
j)
−1(N t

j(U
t)>U∗Σ∗(V ∗)>j − ḡtj). (16)

Let V̂
t+1

= V t+1RV . Then,

V t+1RVRU = V ∗Σ∗(U∗)>U t −E>, Ej = E1
j + E2

j ,

E1
j = (Dj + N t

j)
−1(Dj(U

t)>U∗ −Cj)Σ
∗(V ∗)>j , E2

j = (Dj + N t
j)
−1(N t

j(U
t)>U∗Σ∗(V ∗)>j − ḡtj). (17)

Using the technique of (Jain et al., 2013, Lemma 5.6) and the bound on σmin(Dt
j + N t

j) (see (10)), we get:∥∥(Σ∗)−1E1
∥∥
F
≤ C

κ
Err(U t,U∗). (18)

Similarly, w.p. ≥ 1− 1/n100:

‖(Σ∗)−1E2‖F ≤
2

σmin(Σ∗)
·

(
Γ2
uσ

pσmin(RU)2

σmax(Σ∗)µ
√
r2m log n√

m
+

ΓuΓMσ

pσmin(RU)
·
√
mr log n

)
,

≤ Cσ
√

log n

pn
·
(
κ5 · µ3r2 + µ3r2κ3

)
≤ Cκ5 · µ3r2

√
log n

√
pn

·
√
m log n · T

√
log(1/δ)

ε
. (19)

Let β = Cκ5·µ3r2√logn√
pn

√
m logn·T log(1/δ)

ε . Now,

σmin(RVRU) ≥ σmin(Σ∗)
(
1− 2Err(U t,U∗)− κβ

)
≥ σmin(Σ∗)

2
, (20)

where the last inequality holds because:

√
pn ≥ Cκ6µ3r2

√
m
T log n

√
log(1/δ)

ε
.

Using (17), we have:

max
j

∥∥(V t+1)>j
∥∥

2
≤ 2µκ

√
r√

m
+

4µκ
√
r√

m
+

2µκrΓ2
uσ√

mpσmin(RU)2
+

2ΓuΓMσ
√
r

pσmin(Σ∗)σmin(RU)
≤ 16µκ

√
r√

m
, (21)

where the last inequality follows from the assumption that
√
pn ≥ Cκ6µ3r2

√
m
T logn

√
log(1/δ)

ε . This concludes the proof.

Private Alternating Least Squares

B.2.2. PROOF OF LEMMA 4

The proof for this key Lemma follows technique similar to the above proof. That is, using previous lemma, the clipping
operations do not have any effect, and hence we get noisy ALS updates. Now, using (18), (19), (20), and Lemma 8, we have:

Err(V ∗,V t+1) ≤ 1

4
Err(U∗,U t) + 4κβ. (22)

This proves the lemma.

B.3. Proof of Theorem 2

Using Lemma 8, we have:

Err(V ∗,V t) ≤ 1

4
+ Err(V ∗,V t+1) + α,

where α ≤ Cκ6·µ3r2√logn√
pn

√
m logn·T log 1/δ

ε . So, after T = log Err(V ∗,V 0)
α iterations, Err(V ∗,V T) ≤ 2α.

As Û
T

= arg minÛ ‖M − Û
T

(V T)>‖F , we have:

‖M − Û
T

(V T)>‖F ≤ ‖M −U∗Σ∗(V T)>‖F ≤ ‖M‖F ‖V ∗ − V T ‖2 ≤ 2α‖M‖F , (23)

where last inequality follows from the fact that ‖V ∗ − V T ‖2 ≤ 2Err(V ∗,V).

This shows the second claim of the theorem. The third claim follows similarly while using incoherence of V T .

Lemma 8. Let Û = U∗Σ∗W +E and U = ÛR−1 where Σ∗ is a diagonal matrix, W ∈ Rr×r, and R2 = Û
>
Û . Then,

assuming σmin(Σ∗)σmin(W) > ‖Σ∗‖2‖E(Σ∗)−1‖2, the following holds:

‖(I −U∗(U∗)>)U‖2 ≤
‖E · (Σ∗)−1‖2

σmin(Σ∗)
‖Σ∗‖2 σmin(W)− ‖E(Σ∗)−1‖2

.

That is,

‖(I −U∗(U∗)>)U‖2 ≤
κ‖E‖2

σmin(Σ∗)σmin(W)− κ‖E‖2
.

Proof.

‖(I −U∗(U∗)>)U‖2 ≤ ‖E ·R−1‖2 ≤ ‖E(Σ∗)−1‖2‖Σ∗R−1‖2.

Furthermore, ‖Σ∗R−1‖ ≤ ‖Σ∗‖2‖R−1‖2. Now,

1

‖R−1‖2
= σmin(R) ≥ σmin(Σ∗)σmin(W)− ‖Σ∗‖2‖E(Σ∗)−1‖2.

That is,

‖(I −U∗(U∗)>)U‖2 ≤
‖E · (Σ∗)−1‖2

σmin(Σ∗)
‖Σ∗‖2 σmin(W)− ‖E · (Σ∗)−1‖2

.

B.4. Noisy Power Iteration Initialization

In this section, we derive a tighter initialization routine through the noisy power iteration procedure. We will show that it
only requires n = Õ(m) and can succeed with high probability.

Prior work on noisy power iteration requires A = PΩ(M)>PΩ(M) to be incoherent (Hardt & Roth, 2012; 2013; Hardt &
Price, 2013). But whether this is true under our sparsity condition is a difficult problem. For example, related bounds, first

Private Alternating Least Squares

conjectured in (Dekel et al., 2011), have only been shown to hold for constant p (Vu & Wang, 2015; Rudelson & Vershynin,
2015) but still open for p = O(logcm/m) for constant c > 0, the range interesting to us. To overcome this difficulty, we
show that we actually do not need A to be fully incoherent. Instead, we just need A’s top-r eigenspaces to be incoherent,
and the existence of a (moderate) gap between the top eigenspaces and the rest, both of which we are able to establish.
Given these two conditions, we then add the proper amount of noise, with a magnitude in between the top-r eigenvalues and
the rest, such that i) it does not interfere with the “boosting” of the top-r eigenspace; and ii) it “randomizes” the remaining
eigenvectors such that their incoherence is preserved through the power iteration.

For simplicity, we will present a detailed proof in the rank-1 case. Here, we say a vector w ∈ Rm is µ-incoherent if
‖w‖∞ ≤

µ√
m

.

Algorithm 2 Noisy power iteration.
Required: PΩ(M) ∈ Rn×m, number of iterations: T , incoherence parameter: ν, s: threshold for
maximum number of ratings per user, entry clipping parameter: ΓM .

1 w1 ← Random unit vector in m-dimensions.
for 1 ≤ t ≤ T do

2 If wt is not ν-incoherent, then report failure and stop.
3 Compute zt =

(
PΩ(M)>PΩ(M)

)
·wt, and z̃ ← zt + gt, where gt ∼ N

(
0, σ2 · I

)
.

4 Normalize z̃t to obtain wt+1.
end
return wT+1.

Theorem 9 (Privacy guarantee). Algorithm 2 satisfies (α, αρ2)-RDP, where ρ2 =
Ts3Γ4

Mν2

2mσ2 .

The proof follows immediately from `2-sensitivity analysis and the RDP guarantee for Gaussian mechanism (Mironov,
2017).

For the utility guarantee, consider the case where Ω is randomly sampled with probability p (so setting s ≈ mp is sufficient).
Furthermore, since we are in the rank-1 case, we will assume M =

√
mn · u⊗ v, where both u and v are µ-incoherent so

ΓM can be set as µ2. Below we assume µ,ΓM = O(1) for simplicity. Now we will show that we can set p = O(log3m/m)
and n = O(m logm

√
log(1/δ)/ε), with proper choices of ν, σ, such that ρ2 ≤ (ε+log(1/δ))/ε2, and the above procedure

returns a vector w such that |w ·v| > 0.6 with probability 1−o(1), which can be boosted to high probability by the standard
method.

Theorem 10 (Utility guarantee). There exists constant C1, C2 > 0, such that for any δ ∈ (0, 1), ε ∈ (0, log(1/δ)), if

p ≥ C1 log3 m
m and

√
pn ≥ C2

√
log(1/δ)

ε ·
√
m log5/2m, then we can choose settings of incoherence parameter ν, noise

standard deviation σ, and number of time steps T in Algorithm 2 s.t., w.p. 1− o(1), we have |wT+1 · v| > 0.6, where v is
the right singular vector of M , and ρ = ε

2
√

log(1/δ)
, i.e. Algorithm 2 satisfies (ε, δ)-differential privacy. The probability

guarantee can be boosted to high probability 1−m−c for any c > 0 with the private selection algorithm (Liu & Talwar,
2019; Zhu & Wang, 2020).

Proof. We will prove this theorem through a sequence of claims. Write λ = p2mn. The following claim is from previous
work, e.g. (Recht, 2011).

Claim 11. For n = Ω(m), p = Ω(logm
m), with high probability, A = λ(v⊗v)+B, where ‖B‖2 = O(np

√
logm). Hence,

if λ1,h1 are the principal eigenvalue and eigenvector, respectively, of A, then λ1 = (1± o(1))λ and |h1 · v| = 1− o(1).

One key fact we need is that h1 is not only close to v, but also incoherent. The proof essentially follows the arguments in the
proof of Theorem 2.16 in (Erdős et al., 2013). One difference in our case is that the entries in A are not independent because
A = PΩ(M)>PΩ(M). This difficulty was overcome in (Jain & Netrapalli, 2015)(Lemma 6) by using the resampling
technique. Here we present a direct argument, which might be of independent interest.

Claim 12. For n = Ω(m), p = Ω(log2 m
m), with high probability, the principal eigenvector of A is C-incoherent for some

absolute constant C > 0.

Private Alternating Least Squares

Proof. We treat PΩ(M) as the adjacency matrix of a random bipartite graph and apply the techniques similar to (Erdős
et al., 2013; Jain & Netrapalli, 2015). Recall h1 is the principal eigenvector of A with the eigenvalue λ1. Denote by
N = PΩ(M)− p

√
mn(u⊗ v). We will first show that when np� logm, with high probability, there exists w, where

‖w‖∞ = O(1/
√
m), such that

h1 = (1± o(1))

(
I− 1

λ1
N>N

)−1

w . (24)

Since λ1 = (1± o(1))λ,
∥∥∥N>N∥∥∥

2
= o(λ1), we can expand the above equation to:

h1 = (1± o(1))
∑
k≥0

(
1

λ1
N>N

)k
w .

We then apply the method in (Erdős et al., 2013; Jain & Netrapalli, 2015) to show that there exists constant c0 < 1 such that
with high probability: ∥∥∥∥∥

(
1

λ1
N>N

)k
w

∥∥∥∥∥
∞

≤ ck0‖w‖∞ . (25)

These would imply that h1 is O(1)-incoherent. We first prove (24). Since N = PΩ(M)− p
√
mn(u⊗ v), we can write

A = PΩ(M)>PΩ(M) = N>N + p
√
mn(v ⊗ u)PΩ(M) + p

√
mnPΩ(M)>(u⊗ v)− p2mn(v ⊗ v) .

We first observe that with high probability ṽ = 1
p
√
mn

PΩ(M)>u satisfies that

|ṽj − vj | = O

(√
logm

pn
|vj |

)
for all j ∈ [m]. (26)

Since |h1 · v| = 1− o(1), we have that when pn� logm, |h1 · ṽj − h1 · v| = o(1). Hence

p
√
mn(v ⊗ u)PΩ(M)h1 = p

√
mn(PΩ(M)>u · h1)v = p2mn((h1 · v)± o(1))v . (27)

In addition,
p
√
mnPΩ(M)>(u⊗ v)h1 = p2mn(h1 · v)ṽ . (28)

Applying (27) and (28), we have that

Ah1

=(N>N + p
√
mn(v ⊗ u)PΩ(M) + p

√
mnPΩ(M)>(u⊗ v)− p2mn(v ⊗ v))h1

=N>Nh1 + p2mn((h1 · v)± o(1))v + p2mn(h1 · v)ṽ − p2mn(h1 · v)v

=N>Nh1 + λ(h1 · v)(ṽ ± o(1)v) .

Let w = (h1 ·v)(ṽ±o(1)v). Recall ‖v‖∞ = O(1/
√
m). When pn� logm, using (26), we have ‖ṽ‖∞ = O(1/

√
m) too.

Hence ‖w‖∞ = O(1/
√
m). Since Ah1 = λ1h1, we have that N>Nh1 + λw = λ1h1, hence (λ1I−N>N)h1 = λw,

which implies (24).

Now we prove (25). Since we λ1 = (1± o(1))λ, it suffices to prove (25) by replacing λ1 with λ instead. Furthermore, since

‖N>N‖2 = o(λ), it suffices to consider k = O(logm). Let N ′ = 1
p
√
mn

N . Writew′ =
(

1
λN

>N
)k

w = (N ′>N ′)kw.
Following the proof of Lemma 7.10 in (Erdős et al., 2013), we will bound the q-th moment of |w′j | and apply the Markov
inequality. We treat N ′ as the adjacency matrix of a bipartite graph [n]× [m] where each edge is labeled with a random

Private Alternating Least Squares

variable ξij = (1
pχij − 1)uivj where χij’s are independent Bernoulli random variables taking value 1 with probability p.

By its definition E[ξij] = 0, and for r ≥ 2,

E[|ξij |r] = p((
1

p
− 1)|uivj |)r + (1− p)(|uivj |)r = O

(
p

1

(p
√
mn)r

)
. (29)

Let G = [n]× [m] denote the complete bipartite graph with each edge ij labeled with ξij . For j1, j2 ∈ [m], let Pk(j1, j2)
denote all the length 2k paths in G starting from the node j1 and ending at node j2. Then,

w′j =
∑
j1

wj1
∑

P∈Pk(j1,j)

∏
e∈P

ξe .

And
w′j

q
=

∑
j1,j2,··· ,jq

wj1wj2 · · ·wjq
∑

∀` P`∈Pk(j`,j)

∏
e∈∪P`

ξe .

Here ∪`P` is understood as a multiple set. Hence

E[w′j
q
] =

∑
j1,j2,··· ,jq

wj1wj2 · · ·wjq
∑

∀` P`∈Pk(j`,j)

E[
∏

e∈∪`P`

ξe]

≤ ‖w‖q∞
∑

j1,j2,··· ,jq

∑
∀` P`∈Pk(j`,j)

|E[
∏

e∈∪`P`

ξe]| .

We will now bound ∑
j1,j2,··· ,jq

∑
∀` P`∈Pk(j`,j)

|E[
∏

e∈∪`P`

ξe]| . (30)

Since E[ξij] = 0 and ξij’s are independent random variables, for E[
∏
e∈∪`P`

ξe] 6= 0, it must be that every edge in ∪`P`
appears at least twice. The bound on E[|w′j |q] is by counting the number of such paths and applying the moments bound
(29).

The argument follows (Erdős et al., 2013). We give it here for completeness. Let P denote the set of edges, without
multiplicity, in ∪`P`. Write t = |P |. Then t ≤ kq since every edge in ∪`P` has to appear at least twice. In addition, the
edges in P form a connected component because all the paths are connected to node j. Hence there are at most t+ 1 vertices.
Since the set must include j, there are at most

(
m+n
t

)
choices of the set of vertices. Among t+ 1 vertices, we can make at

most
(
t+2k

2k

)
(2k)! different paths of length 2k. Hence the total number of paths is bounded by(

m+ n

t

)((
t+ 2k

2k

)
(2k)!

)q
≤ nt(c1kq)2kq ,

for some c1 > 0. In the last inequality, we used that n = Ω(m) and t ≤ kq.

Suppose that P = {e1, e2, · · · , et}, and the multiplicity of these edges in ∪`P` are s1, s2, · · · , st respectively. So∑
i si = 2kq. Using (29),

E

[∏
e∈∪`P`

|ξe|

]
= E[|ξe1 |s1] E[|ξe2 |s2] · · ·E[|ξet |st]

=

(
p

1

(p
√
mn)s1

)
· · ·
(
p

1

(p
√
mn)st

)
= pt

1

(p
√
mn)2kq

.

Hence the contribution to (30) by the case of |P | = t is bounded by:

nt(c1kq)
2kqpt

1

(p
√
mn)2kq

=
(c1kq)

2kq

(pm)kq(pn)kq−t
.

Private Alternating Least Squares

Since t ≤ kq, (30) is bounded by

O

(
(c1kq)

2kq

(pm)kq

)
.

Fix c0 = 1/2. For any c > 0 and k = O(logm), we can choose q = logm/(2k) and p ≥ c′ log2m/m for some c′ > 0 such
that (30) is bounded by ckq0 m−c. Applying Markov inequality, we have that with probability 1−m−c, |w′j | = O(ck0‖w‖∞).
Since c can be chosen arbitrarily, we have that with high probability this holds for all k = O(logm). This completes the
proof.

The following summarizes the above claims and the conditions we need in our proof.

Claim 13. Assume n = Ω(m), p = Ω(log3 m
m). Let A =

∑
i

λi(hi ⊗ hi) be the eigen-decomposition of A where

λ1 ≥ λ2 ≥ . . . λm ≥ 0. Then λ1 = (1 ± o(1))p2mn, and for i ≥ 2, λi = O(np
√

logm) = o(λ1/ log2m). In addition
h1 · v = 1− o(1), and ‖h1‖∞ ≤ C/

√
m.

Now we show that

Claim 14. There exists c2, c3 > 0, such that if σ ≥ c2 λ√
m log3/2 m

, then ∀t ∈ [T], wt’s are c3
√

logm-incoherent.

Proof. For notation convenience, we set w0 = 0, hence w1 is a random unit vector. Write wt =
∑
i αtihi. Then

Awt =
∑
i λiαtihi and z̃t = Awt + gt =

∑
i(λiαti + gti)hi, where gti = gt · hi. Hence α(t+1)i = (λiαti + gti)/‖z̃t‖2.

Since gt is sampled fromN (0, σ2I), gti’s are i.i.d Gaussian fromN (0, σ2). In addition α0i = 0. By induction, we have that
E[αti] = 0, and the signs sign(αt1), · · · , sign(αtm) are uniformly distributed in {−1, 1}m, independent of their values, by
the same argument in (Hardt & Price, 2013) Lemma 4.13. We will now first show, by induction, that with high probability,
maxi≥2 |λiαti| = O(σ).

When t = 0, this is clearly true. Now suppose this holds for wt. All the following statements hold with high probability.
Note in the following αti’s are random variables. By ‖z̃t‖2 =

∑
i(λiαti + gti)

2 and maxi≥2 |λiαti| = O(σ) with high
probability, we have that with high probability,

‖z̃t‖22 = Ω(λ2
1α

2
t1 +mσ2) . (31)

By induction hypothesis for any i ≥ 2, |λiαti| = O(σ), hence |λiαti + gti| = O(
√

logmσ). Since ‖z̃t‖ = Ω(
√
mσ),

|α(t+1),i| = |λiαti + gti|/‖z̃t‖ = O(
√

logm√
m

), hence |λiα(t+1),i| = O(λ
log2 m

·
√

logm√
m

) = O(λ
log3/2 m

√
m

) = O(σ). We
can clearly choose c3 large enough to make sure the induction goes through.

The j-th coordinate of z̃t is z̃t(j) =
∑
i(λiαti + gti)hi(j). Consider z̃t(j)′ =

∑
i≥2(λiαti + gti)hi(j). Clearly gti’s are

independent Gaussian variables. In addition, sign(αt1), · · · , sign(αtm) are uniformly distributed over {−1, 1}m. Since
|λiαti| = O(σ) for i ≥ 2, and

∑
i hi(j)

2 ≤ 1, by applying the concentration bound, we have that with high probability

|z̃t(j)′| = O
(√

logm
∑
i≥2 σ

2hi(j)
2
)

= O(σ
√

logm) .

Hence, with high probability,

z̃t(j)
2 = O(λ2

1α
2
t1h1(j)2 + (logm)σ2) = O(λ2

1α
2
t1/m+ (logm)σ2) . (32)

The last inequality is by ‖h1‖∞ ≤ C/
√
m. Combining with Equation (31), by distinguishing the cases of |λ1αt1| ≤

√
mσ

and |λ1αt1| ≥
√
mσ, we have that |z̃t(j)|

‖z̃‖2 = O(
√

logm√
m

), i.e wt is O
(√

logm
)
-incoherent.

Now, we show that we need only O(logm) round to get a constant approximation to v. Note that here we cannot get high
probability bound because we need the initial |α01| to be Ω(1/

√
m logm) to bootstrap the process. But it does happen with

probability 1− o(1).

Private Alternating Least Squares

Claim 15. There exists c4, c5 > 0, such that with n, p, σ, ν as set above, if T ≥ c4 logm, |wT · v| ≥ 1 − c5/ logm w.p.
1− o(1).

Proof. It suffices to show that |αT1| = Ω(1). Because λ2 = O(λ1/ log2m) and
√
m logmσ = O(λ1/ logm), once

|αT1| = Ω(1), with one more round we would have |αT+1,1| = 1−O(1/ logm).

Suppose that |α01| = Ω(1/
√
m logm), which happens with probability 1 − o(1). Then |λ1α01| = Ω(logm)σ. We

can prove by induction that |λ1αt1| = Ω(logm)σ with high probability. By α(t+1)1 = (λ1αt1 + gt1)/‖z̃t‖2, we have
|α(t+1)1| ≥ 1

2 |λ1αt1|/‖z̃t‖2 with high probability. By Equation (32), we can bound

‖z̃t‖22 = O
(
λ2

1α
2
t1 + (m logm)σ2

)
.

Hence,

|α(t+1)1| ≥
1

2
|λ1αt1|/‖z̃t‖2 = Ω(|λ1αt1|/(|λ1αt1|+

√
m logmσ)) . (33)

Now if |λ1αt1| ≥
√
m logm · σ, then |α(t+1)1| = Ω(1) so we are done. Otherwise, |α(t+1)1| = Ω(|λ1αt1|/(

√
m logm ·

σ)) = Ω(logm)|αt1|, by σ = O
(

λ√
m log3/2 m

)
. Hence within O(logm) rounds, αt1 ≥ c for some constant c > 0.

Now, gather the assumption ΓM = µ2 = O(1) and the conditions ν = O(
√

logm), σ = Ω(p2mn√
m log3/2 m

), T = O(logm)

and plug them into the formula in Theorem 9. We have that

ρ2 =
T (mp)3Γ4

Mν2

2mσ2
= O

(
m log5m

pn2

)
. (34)

Hence we can set n = O

(√
log(1/δ)

ε

√
m/p log5/2m

)
, such that ρ2 = ε2

4 log(1/δ) . This completes the proof. We note that

when p = O(log3m/m), n = Õ(m logm) which is nearly optimal.

Note that the only reason that prevents the high probability guarantee is due to the choice of the initial random vector. It can
be boosted to high probability guarantee by running the process O(logm) times and privately releasing the vector w with
‖PΩ(M)w‖2 above a threshold. This can be done through the private selection algorithm (Liu & Talwar, 2019) with an
extra constant factor in ε.

Private Alternating Least Squares

C. Additional Details on Heuristic Improvements
Algorithm 3 summarizes the data pre-processing and sampling heuristics described in Section 5.

Algorithm 3 Data pre-processing heuristics.
Required: PΩ(M): Observed ratings, ΓM : entry clipping parameter, k: maximum
number of ratings per user, σp: standard deviation of the pre-processing noise, β:
fraction of movies to train on.

1 Clip entries in PΩ(M) so that ‖PΩ(M)‖∞ ≤ ΓM

2 Uniformly sample Ω′:
for 1 ≤ i ≤ n do

Ω′i ← sample k items from Ωi uniformly.
end

3 Compute movie counts c̃← Counts(Ω′).
4 Partition movies:

Let Frequent be the dβme movies with the largest c̃, and let Infrequent be the rest.
5 Adaptively sample Ω′′:

for 1 ≤ i ≤ n do
Ω′′i ← the k items in (Ωi ∩ Frequent) with the lowest count c̃.

end
6 Recompute movie counts c̃← Counts(Ω′′)

7 Center the data PΩ′′(M)← PΩ′′(M)− m̃, where m̃ =
∑

(i,j)∈Ω′′ Mij+N (0,kΓ2
Mσ2

p)

|Ω′′|+N (0,kσ2
p)

return PΩ′′(M), c̃

Procedure Counts(Ω)
for 1 ≤ j ≤ m do

c̃j ← |Ωj |+N (0, σ2
p)

return c̃
end

First, we compute differentially private movie counts (Line 3) using a uniform sample Ω′, and use it to partition the movies
(Line 4) and to perform adaptive sampling (Line 5). The final subset used for training is Ω′′, which consists only of Frequent
movies. Finally, to have a more accurate estimate of the counts, we recompute c̃ on Ω′′ (Line 6). We redo this computation
as the counts are also used during optimization, as described in the next section. Note that in both computations of c̃, we use
a subset of Ω that contains at most k movies per user, in order to guarantee user-level differential privacy.

Privacy accounting. As we saw in Theorem 1, Algorithm 1 with random initialization satisfies
(
α, α(kT)

2σ2

)
-joint RDP. The

data processing heuristics in Algorithm 3 satisfy
(
α, α(2k+2)

2σ2
p

)
-RDP. So, by standard composition of RDP, we have the

total privacy cost at any order α > 1 to be:
(
α, α ·

(
kT
2σ2 + k+1

σ2
p

))
. We can obtain the final (ε, δ)-joint differential privacy

guarantee by optimizing for α, similarly to Appendix A.

Loss function. We minimize the following loss in practice.

f(Û , V̂) = ‖PΩ

(
M − Û V̂ >

)
‖2F + λ0‖Û V̂ >‖2F + λ

n∑
i=1

cνi
Z
‖Û i‖2 + λ

m∑
j=1

c̃µj
Z ′
‖V̂ j‖2, (35)

where λ0, λ, µ, and ν are hyper-parameters. The loss function used in the description of Algorithm 1 is a special case of (35)
where λ0 = µ = ν = 0. The additional terms in (35) do not change the essence of the algorithm, but we find that they make
a significant difference in practice.

First, the term λ0‖Û V̂ >‖2F is often used in problems with implicit feedback, as in (Hu et al., 2008). In such problems, the
observed entries are often binary, and minimizing the objective ‖PΩ

(
M − Û V̂ >

)
‖2F can yield a trivial solution – the matrix

of all ones. The addition of the second term penalizes non-zero predictions outside of Ω, leading to better generalization.
One of the benchmarks we use is an implicit feedback task, in which the use of the second term is necessary. As described
in Section 5.2, this results in an additional term K in Line 9 of Aitem , and care is needed when adding privacy protection to

Private Alternating Least Squares

this term, since it involves a sum over all user embeddings. The key observation is that this term is constant for all items, so
we only need to compute a noisy version of K once and use it for all items, thus limiting the privacy loss it incurs.

Second, we use a weighted `2 regularization, where the weights are defined as follows. The weight of movie j is c̃µj /Z
′,

where c̃ is the vector of approximate counts (computed in Algorithm 3), µ is a non-negative hyper-parameter and Z ′ is the
normalizing constant Z ′ = 1

m

∑m
j=1 c̃

µ
j . When µ is positive, this corresponds to applying heavier regularization to more

frequent items, and we found in our experiments that this can significantly help generalization. The weights for the users are
defined similarly, with one main difference: instead of using approximate counts c̃, we use the exact counts c, as this term
only affects the solution in Auser , which is a privileged computation as illustrated in Figure 1.

102 103

User count
101

102

103

104

M
ov

ie
 c

ou
nt

100

101

102

103

(a) ML-10M (unsampled)

102 103

User count
101

102

103

104

M
ov

ie
 c

ou
nt

(b) Uniform sampling (k = 50)

102 103

User count
101

102

103

104

M
ov

ie
 c

ou
nt

(c) Adaptive sampling (k = 50)

Figure 6. Histogram of user and movie counts in ML-10M, in the original data, and under uniform and adaptive sampling. The color bars
in Figures 6b and 6c show the difference in marginal probability compared to the original data in 6a. Red indicates an increase in marginal
probability, while blue indicates a decrease. Note that the probability of frequent movies increases under uniform sampling, and decreases
under adaptive sampling.

Effect of uniform and adaptive sampling. As observed in Figure 2, the movie count distribution of the MovieLens data
set is heavily skewed. We also observed that, perhaps surprisingly, uniformly sampling k items per user tangibly increases
the skew. This can be explained by a negative correlation between user counts and movie counts; we computed a correlation
coefficient of −0.243. This is also visible in Figure 6a, which shows the joint histogram of {(ci, cj), (i, j) ∈ Ω}, where
ci = |Ωi| is the user count (the number of ratings this user produced) and cj = |Ωj | is the movie count (the number of
ratings the movie received). The figure illustrates that infrequent users are more likely to rate frequent movies than the
average user. By uniformly sampling a constant number of movies per user (Figure 6b), we are, by definition, increasing
the probability of infrequent users, hence increasing the probability of frequent movies (due to the negative correlation).
This is made clear by the color bar left of Figure 6b, which shows the change in movie count probability with respect to the
original data set. This increase in the probability of frequent movies aggravates the skew of the movie distribution, as seen
in Figure 2.

Adaptive sampling has the opposite effect: Figure 6c shows that the probability of frequent movies decreases under adaptive
sampling, while that of infrequent movies increases. This leads to a decrease in bias toward frequent movies, as shown in
Figure 2, and results in a significant improvement in the privacy/utility trade-off as discussed in Section 6.3.

D. Additional Details on Experiments
D.1. Details on the Experimental Setup

Table 2 shows the statistics of the MovieLens data sets.

Table 2. Statistics of the experiment data sets.
ML-10M-top400 ML-10M ML-20M

n (number of users) 69,692 69,878 136,677
m (number of items) 400 10,677 20,108

|Ω| (number of observations) 4.49M 10M 9.99M

Private Alternating Least Squares

For each data set, we partition the set of observations Ω into Ω = ΩtraintΩvalidtΩtest. Hyper-parameter tuning is performed
on Ωvalid, and the final results are reported on Ωtest. The pre-processing described in Algorithm 3 is only applied to Ωtrain.

In the ML-10M benchmark, we follow the setup of (Lee et al., 2013) and use a 80-10-10 split (random uniform over Ω). In
the ML-10M-top400 benchmark, we follow the setup of (Jain et al., 2018) and use a 98-1-1 split (random uniform over Ω).
In the ML-20M benchmark, we follow the setup of (Liang et al., 2018) and partition the set by users, that is, a set of 20K
random users are held-out, half of which are used for validation, and the other half for testing. Note that since held-out
users are never seen in training, the protocol is to further split each user’s observations Ωtest

i (uniformly at random) into
Ωtest query
i t Ωtest target

i . At test time, the model is allowed access to Ωtest query
i to compute a user embedding and make a

prediction for the user, and Ωtest target
i is used as the ground truth target. The user embedding Û i is computed at test time

simply by minimizing the loss in Eq. (35) given the learned movie embeddings V̂ , that is,

Û i = arg min
u∈Rr

‖PΩtest query
i

(
M i − uV̂ >

)
‖2F + λ0‖uV̂ >‖2F + λ

cνi
Z ′
‖u‖2.

The resulting Û i is used to generate predictions for user i. Note that this procedure is consistent with the Joint-DP setting:
the computation of Û i corresponds to one step ofAuser in Algorithm 1, and is considered privileged (see Figure 1). Besides,
since the resulting embedding is not further used for training, it is unnecessary to clip the embedding norm. Avoiding norm
clipping at test time could result in better predictions.

Finally the recall for user i is computed as follows. Let Ωprediction
i be the top k items that are not in Ωtest query

i . Then

Recall@k =
|Ωprediction

i ∩Ωtest target
i |

min(k,|Ωtest target
i |) .

D.2. Hyper-Parameter Description and Ranges

Table 3 summarizes the complete list of hyper-parameters used in Algorithm 1, Algorithm 3, and in the loss function (35),
and specifies the ranges used in our experiments. We make several remarks about hyper-parameters:

Table 3. Hyper-parameter description and ranges.

Symbol Description Range

Model and training parameters
r rank [2, 128]
λ `2 regularization coefficient [0.1, 100]
λ0 coefficient of the global penalty term [0.1, 5]
µ item regularization exponent {0, 0.5, 1}
ν user regularization exponent {0, 0.5, 1}
T number of steps [1, 5]

Privacy parameters
Γu row clipping parameter 1
ΓM entry clipping parameter {1, 5}
k maximum number of ratings per user [20, 150]
σ noise standard deviation see remark below

Pre-processing parameters
β fraction of items to train on [0, 1]
σp standard deviation of pre-processing noise [10, 200]

– In the non-private baselines, only the model and training parameters are tuned.

– Pre-processing (Algorithm 3) is not used in synthetic experiments. Indeed, these heuristics are designed to deal with
the non-uniform distribution of observations in practice. In synthetic experiments, the distribution is uniform by design.

– In the MovieLens experiments, the maximum value in M is known by definition of the task: In ML-10M, entries
represent ratings in the interval [0.5, 5], and in ML-20M the entries are binary. Thus, we simply set ΓM to this value
without tuning.

Private Alternating Least Squares

– We find that carefully tuning the model parameters, including the regularization coefficients λ, λ0 and the exponents
µ, ν is important and can have a significant effect.

– For the rating prediction tasks (ML-10M and ML-10M-top400), we find that setting λ0 to a positive number is
detrimental, so we always use 0. For the item recommendation task (ML-20M), using a non-zero λ0 is important.

– The partitioning of the movies into Frequent and Infrequent is important for the private models, especially at lower
values of ε (see Figure 10), but does not help for the non-private baselines.

– To set the standard deviation σ, we use the simple observation that when all hyper-parameters except σ are fixed, ε is a
decreasing function of σ that can be computed in closed form. Therefore, in each experiment, we set a target value of ε
and do a binary search over σ to select the smallest value that achieves the target ε.

– Finally, note that in Algorithm 1, the parameter σ determines the standard deviation of two noise terms: G in Line 7
and g in Line 8. While this is sufficient for the analysis, we find in practice that the model is often more sensitive to g,
thus it can be advantageous to use different scales of noise. We will use the symbols σG, σg to specify the scales of
each term.

The optimal hyper-parameter values for each experiment and each value of ε are given in Table 4. These values are obtained
through cross-validation. We do not include the privacy loss of hyper-parameter search because our main objective is to give
insights into the choice of hyper-parameters at different privacy budgets. In practice, this can be accounted for, for example
by the method in (Liu & Talwar, 2019).

Table 4. Optimal hyper-parameter values for the experiments in Figure 3. The clipping parameter Γu is set to 1 in all experiments.

ML-10M-top400 ML-10M ML-20M

DPALS ALS DPALS ALS DPALS ALS

ε 0.8 4 8 16 - 1 5 10 20 - 1 5 10 20 -

r 50 50 50 50 50 32 128 128 128 128 32 32 32 128 128
λ 90 90 80 80 70 120 80 70 60 70 0.5 0.5 0.1 50 30
λ0 0 0 0 0 0 0 0 0 0 0 2 0.6 0.4 0.4 0.1
µ 0.5 0.5 0.5 0.5 1 0.5 0.5 0.5 0.5 1 - - - - -
ν 1 1 1 1 1 1 1 1 1 1 - - - - -
T 2 2 2 2 15 2 2 2 2 15 1 3 3 1 15
k 40 50 50 50 - 50 50 50 50 - 60 60 100 60 -
σG 126.9 29.0 11.3 5.86 - 125.9 27.8 15.5 7.5 - 64.0 20.2 14.0 3.5 -
σg 63.4 14.5 11.3 5.86 - 63.0 13.9 7.7 3.8 - 64.0 20.2 14.0 3.5 -
β 1 1 1 1 - 0.05 0.4 0.5 0.6 - 0.05 0.1 0.05 0.05 -
σp 200 200 20 20 - 100 20 10 10 - 100 100 100 100 -

D.3. Standard Deviation

Finally, Table 5 reports the standard deviation of the DPALS metrics in Figure 3. For each data point, we repeat the
experiment 20 times, using the same set of hyper-parameters selected on the validation set, and report the mean and standard
deviation of the metric measured on the test set. In all cases, the standard deviation is less than 0.5% of the mean.

Table 5. Mean and standard deviation of the DPALS metrics in Figure 3.
ML-10M-top400 (test RMSE) ML-10M (test RMSE) ML-20M (test Recall@20)

ε 0.8 4 8 16 1 5 10 20 1 5 10 20
mean 0.8855 0.8321 0.8201 0.8147 0.9398 0.8725 0.8530 0.8373 0.3120 0.3330 0.3368 0.3444
stddev 0.0025 0.0009 0.0011 0.0008 0.0009 0.0006 0.0004 0.0005 0.0016 0.0010 0.0012 0.0013

Private Alternating Least Squares

D.4. Additional Experiments

Convergence plots for DPALS and DPFW. This experiment illustrates the fact that ALS converges faster than FW, both
in its exact and private variants, making it more suitable for training private models. Figure 7 shows the test error (RMSE)
against number of iterations, on the synthetic data set with n = 20K users. We use the vanilla version of DPALS without
the heuristics introduced in Section 5. The hyper-parameters of both methods are tuned on the validation set.

For the non-private baselines, ALS converges significantly faster than FW. For example, the error of ALS after 2 iterations is
lower than the error of FW after 40 iterations. For the private models, we compare the two methods with the same sampling
rate (k = 150) and same noise level (σ = 10 in Figure 7a and σ = 20 in Figure 7b), and tune other parameters. Since
the sampling rate and noise level are fixed, the ε level is directly determined by the number of steps, and the vertical lines
show different levels of ε. We can make the following observations. For both methods, in the presence of noise, the error
decreases for a few iterations at a rate similar to their exact variants, then plateaus at a fixed error. The fixed error for DPALS
the is an order of magnitude lower than DPFW. Furthermore, the error reached by DPALS in 2 iterations is lower than the
error of DPFW after 40 iterations. The faster convergence of DPALS, even in the presence of noise, directly translates to a
better privacy/utility trade-off as demonstrated in Section 6.

0 5 10 15 20 25 30 35 40
step

10−3

10−2

10−1

100

te
st

 e
rro

r (
RM

SE
)

ε
=

10

ε
=

20

DPFW, σ= 10
FW (non-private)
DPALS, σ= 10
ALS (non-private)

(a) σ = 10

0 5 10 15 20 25 30 35 40
step

10−3

10−2

10−1

100

te
st

 e
rro

r (
RM

SE
)

ε
=

5

ε
=

10

DPFW, σ= 20
FW (non-private)
DPALS σ= 20
ALS (non-private)

(b) σ = 20

Figure 7. RMSE against steps on the synthetic data set with n = 20K. Dashed lines correspond to the non-private baselines (without
noise) and solid lines correspond to the private methods with a fixed noise level (left: σ = 10, right: σ = 20).

Varying the number of users. This experiment further illustrates the effect of increasing the number of users. We train
the DPALS on a subset of the ML-10M-top400 data set, obtained by randomly sampling a subset of n users. Figure 8
shows the results for different values of n, and confirms that increasing the number of users (while keeping the number of
movies constant) improves the privacy/utility trade-off. The figure also compares to the DPFW baseline trained on the full
data (n = 69692). Note that DPALS significantly outperforms DPFW even when trained on a small fraction of the users
(n = 16000, or 26.4% of the total users).

0.8 4.0 8.0 12.0 16.0
ε

0.80

0.85

0.90

0.95

1.00

1.05

te
st

 R
M

SE

DPALS, n=4K
DPALS, n=16K
DPALS, n=64K
DPALS, n=69K
DPFW, n=69K

Figure 8. DPALS on ML-10M-top400 with a varying number of users, n.

Private Alternating Least Squares

Effect of the rank. This experiment explores the effect of the rank on the privacy/utility tradeoff. Figure 9 shows the
trade-offs for models of different ranks r on ML-10M and ML-20M. We observe that for non-private ALS, models of higher
rank consistently achieve better performance in the range of ranks that we have tried. This is not always the case for the
private models. For the ML-10M task, the higher rank model (r = 128) performs well for larger values of ε, but not for
ε = 1. On the ML-20M task, the private model with r = 128 gives the best recall for ε ≈ 20 while r = 32 performs the best
for smaller ε. Therefore, unlike in the non-private ALS algorithm where a higher rank is often more desirable given enough
computational and storage resources, when training a private model, one needs to carefully choose the rank to balance model
capacity and utility degradation due to privacy.

1 5 10 15 20
ε

0.80

0.85

0.90

0.95

te
st

 R
M

SE

DPALS, r=32
DPALS, r=64
DPALS, r=128

ALS, r=32
ALS, r=64
ALS, r=128

(a) RMSE on ML-10M (lower is better)

1 5 10 15 20
ε

0.28

0.30

0.32

0.34

0.36

0.38

te
st

 R
ec

al
l@

20

ALS, r=128
ALS, r=64
ALS, r=32

DPALS, r=128
DPALS, r=64
DPALS, r=32

(b) Recall@20 on ML-20M (higher is better)

Figure 9. Privacy/utility trade-off for models of different ranks. For lower values of ε, a lower rank achieves a better privacy/utility.

Training on Frequent movies. This experiment illustrates the effect of partitioning the set movies into (Frequent t
Infrequent) and training only on Frequent movies. Figure 10 shows the test RMSE vs movie fraction, at different levels of
ε. The rank of the model is fixed to r = 32, the sample size is fixed to k = 50, and other hyper-parameters are re-tuned. The
results show that as ε decreases, the optimal fraction of movies decreases. In particular, for ε = 1, the optimal fraction is
5%; note however that this still corresponds to more than 50% of the ratings, as shown on the right sub-figure.

0.0 0.2 0.4 0.6 0.8 1.0
Movie fraction

0.85

0.90

0.95

1.00

1.05

1.10

te
st

 R
M

SE

ε= 1
ε= 5
ε= 10

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Data fraction

0.85

0.90

0.95

1.00

1.05

1.10

te
st

 R
M

SE

ε= 1
ε= 5
ε= 10

Figure 10. RMSE vs movie fraction, for a rank 32 model on ML-10M, at different privacy levels ε. Both figures show the same data,
but with a different x axis. The movie fraction (left figure) is defined as |Frequent |/m. The data fraction (right figure) is defined as
|{(i, j) ∈ Ω : j ∈ Frequent }|/|Ω|. The right figure emphasizes the long-tail distribution of movie counts – a small fraction of Frequent
movies corresponds to a large fraction of data.

Figure 11 shows a similar result for ML-20M. The optimal movie fraction in this example is between 5% and 10% depending
on the rank.

Private Alternating Least Squares

0.00 0.02 0.05 0.10 0.15 0.20
Movie fraction

0.28

0.29

0.30

0.31

0.32

0.33

0.34

0.35

te
st

 R
ec

al
l@

20

DPALS, r=32
DPALS, r=64
DPALS, r=128

Figure 11. Recall@20 vs movie fraction on ML-20M, for ε = 5.

Effect of the regularization exponents. This experiment illustrates the effect of the regularization exponents (ν, µ) in the
loss function (35). We vary (ν, µ) for a rank 128 model with ε = 10 on ML-10M (and re-tune other parameters). The
results are reported in Figure 12. This example indicates that a careful tuning of the `2 regularization can have a significant
impact on utility, and can also make the private models more robust to noise: Notice that with the optimal setting of (ν, µ)
the model can be trained on a much larger fraction of movies, with only a slight degradation in utility.

0.0 0.2 0.4 0.6 0.8 1.0
Movie fraction

0.85

0.90

0.95

1.00

1.05

1.10

te
st

 R
M

SE

ν= 0 μ= 0
ν= . 5 μ= 1
ν= 1 μ= 1
ν= . 5 μ= . 5
ν= 1 μ= . 5

Figure 12. RMSE vs movie fraction on ML-10M, for ε = 10 and r = 128, and for different values of regularization exponents (ν, µ).

