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Abstract

Link prediction is an important problem in online social and col-

laboration networks, for recommending friends and future collabo-

rators. Most of the existing approaches for link prediction are fo-

cused on building unsupervised or supervised classification models

based on the availability of accepts and rejects of the past recom-

mendations. Several of these methods are feature-based and they

construct a large number of network-level features to make the pre-

diction more effective. A more flexible approach is to allow the

model to learn the required features from the network for a specific

task, rather than explicit feature engineering. In addition, most of

the social and collaboration relationships do not happen instantly

and rather build slowly over time through several low cost interac-

tions, such as email and chat. The existing approaches often ignore

the availability of such auxiliary networks to make link prediction

more robust and effective. The main focus of this work is to build a

robust and effective classifier for link prediction using multiple aux-

iliary networks. We develop a supervised random walk model, that

does not require any explicit feature construction, and can be per-

sonalized to each user based on the past accept and reject behavior.

Our approach consistently outperforms several popular baselines in

terms of precision and recall in multiple real-life data sets. Also,

our approach is robust to noise and sparsity in auxiliary networks,

while several popular baselines, specifically feature-based ones, are

inconsistent in their performance under such conditions.

1 Introduction

The problem of link prediction [1, 2] is to predict the edges

(or links) in a graph that will form in the future, given all pre-

vious edge interactions. This problem is fundamental to sev-

eral online social and collaboration networks [1]. It is used in

recommending friends in social networks and collaborators

in academic collaboration networks [3]. These relationships

often do not form instantaneously; they rather slowly build

over time, using several low risk interactions [4], such as

informal chats, emails, and meetings. Given these multiple

sources of other interactions, we hypothesize that the task

of predicting friendship or collaboration in a network can be

improved using these multiple sources of interaction.

In online interactions, single sign-on has made it possi-

ble to have access to a person’s explicit interactions over
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multiple sources (e.g., email, calendar, chat), which can be

tracked over time. The interactions could also be sometimes

implicit, where two users may have high similarity profiles

or interests. We have listed below a few scenarios where

such implicit and explicit networks may be available for link

prediction.

• Researchers from several highly related sub-fields in com-

puter science, such as artificial intelligence, machine

learning, computer vision and data mining, may chose to

collaborate with their peers in the other sub-field. The re-

lationships of an author in multiple related sub-fields act

as a supporting evidence for predicting their future collab-

orations.

• In networks like Twitter one can construct retweet and

mention networks, where repeated sharing and mention-

ing of user posts occur frequently. These networks can

serve as additional evidence to predict new follower rela-

tionships.

These additional interaction networks (often referred to as

auxiliary networks) can be used to understand the relation-

ship similarities between users, in order to predict their fu-

ture links that may form in the primary network of interest.

Currently there is one work [5], as per our knowledge, that

uses these auxiliary sources of information for link predic-

tion. While this work explores the problem of link prediction

from multiple networks, it restricts itself to path-based fea-

tures and constructs paths of length up to three — the authors

use these features for classification using L1 and composite

norm regularizers. In contrast, we want to explore the pos-

sibility of constructing a classifier with no explicit feature

engineering, as several features found interesting in one ap-

plication may not be effective in another. We show this in our

experiments — several of these feature-based classifiers per-

form differently in different time periods, even on the same

data set.

Our focus in this work is on supervised link prediction.

The problem of link prediction can be addressed in both

unsupervised [6, 1] and supervised [5, 7] scenarios. When

the graph is specified until time t1 and the links are predicted

for time after t1, the task is unsupervised. In a supervised

scenario, the graph is given until time t1 and the accepted

and rejected user link information (e.g., friend invitations

accepted or rejected by a user in a social network) between

time t1 and t2 are used to supervise or train the model. The
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trained model is then used to predict the edges that will form

after time t2, using the graph information available until time

t2. In this paper, we focus on supervised link prediction,

where the information about past user accepts and rejects is

available.

In summary, we address the link prediction problem in the

following setting: (1) using multiple auxiliary networks, (2)

with no explicit feature engineering, and (3) supervised using

the past accepts and rejects. To realize our goal of “no ex-

plicit feature engineering”, we need a way to explore the net-

work structure without having to explicitly construct features

like common neighbors, number of possible two-hop paths,

etc. A random walk on the graph is a natural choice. In a tra-

ditional random walk with restart [8], the walker is allowed

to explore the network structure, given the edge probabilities.

However, in our scenario, the walker must be made aware of

users’ accepts and rejects, such that walker decides to walk

along paths that closely reflect the user behavior and inter-

ests. Moreover, we need to accommodate multiple sources

in the random walk process, where the random walker is

allowed to traverse across multiple graphs though different

types of edges connecting a pair of nodes (for instance, a

pair of nodes may have chat and email interactions).

Interestingly, there is a recent work on supervised random

walk model [8], using the accepts and rejects of past link

recommendations. The focus of this work is to learn the edge

propagation probabilities using node and edge level features

for a single network, using a random walk model. However,

our approach uses multiple auxiliary networks and learns

to combine the information from multiple such networks to

perform the task of link prediction.

We set up the link prediction problem in an optimization

setting, where the objective is to train a model that maxi-

mizes the user accepts and minimizes the user rejects (i.e.

maximize the accuracy of link recommendation), while pre-

serving the random walk constraint. Each user is different

and can behave in a unique way — to address that, we need

a personalized version of our approach, where we train the

model specific to individual users. We develop both a gen-

eral and personalized random walk approach — in the gen-

eral approach we learn model parameters at a network-level,

while in the personalized approach we learn parameters at

the user-level.

The key contributions of this paper are as follows. We de-

velop a supervised random walk model for multiple networks

to perform link prediction, with no explicit feature engineer-

ing. We also have developed a personalized version of the

model, where the model trained is specific to each user. We

show that our approach is a generalization of Katz centrality.

We empirically demonstrate the superiority of our approach

in terms of precision and recall. We show that our approach

is robust to sparse and noisy auxiliary networks, compared

to several recent link prediction approaches [5, 9] that use

explicit features and multiple sources.

1.1 Related Work Networks are often heterogeneous in

terms of nodes and edges properties, several techniques have

been proposed to address link prediction for heterogeneous

networks [10, 11, 12, 7]. Several other related works dis-

cuss friendship recommendation using auxiliary sources of

information [13, 14, 15, 16]. In [13] location based recom-

mendation is performed using multiple network interactions,

while assuming the target network is new and sparse. There

are other related works [17, 8] on random walk based ap-

proaches for neighborhood search and recommendation in

heterogeneous networks. Some of these works focus on us-

ing edge or node attributes [8], while others [18] make use of

the sparsity of the multiple networks. There are a few data-

driven approaches [19], to predict links in bibliographic net-

works using meta-paths. However, none of these approaches

tend to learn by supervising a random walk model based on

the past accepts and rejects of links in the networks, espe-

cially with no strong assumptions on the underlying network

structure. A detailed survey of link prediction techniques can

be found in [9, 20, 2]. More discussion on link prediction

for evolving networks can be found in [21].

In a more recent work [5], Lu et al. considers explicit

feature-based classification with L1 and composite norm

regularizers for the problem of link prediction in multiple

networks. The L1 regularizer does feature selection while

performing classification. On the other hand, composite

norm knocks out features and its subsets based on an un-

derlying overlapping group structure [5]. In this approach,

as the length of path k or the number of auxiliary network n
increases, the number of features increases significantly, in

the order of O(nk). In our approach, we avoid explicit ex-

traction of features and do a network-level training. As we

demonstrate through experiments, our approach is robust to

noise as we do not specify any features explicitly.

2 Problem Formulation

Let A1, . . . ,An be the (weighted) adjacency matrix of n
networks with m nodes, where Ak ∈ �m×m

+ . These net-

works represent different interactions between the users. For

instance, A1 could represent email interactions, A2 could

represent calendar invite interactions, and A3 represent chat

interactions, etc. Let Pk denote the normalized row stochas-

tic version of Ak, where Pk(u, v) can be computed as:

(2.1) Pk(u, v) � Pk(v|u) =
Ak(u, v)∑

w∈N(u)

Ak(u,w)

The set of neighbors of node u is denoted by N(u).
A random walk with restart can be performed using Pk

with a restart probability of α — the resulting stationary

distribution of such a random walk, for network k, is given
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in (2.2).

(2.2) π
(k) = (1− α)PT

k π
(k) + αγ

where the bias vector γ ∈ Δm contains probabilities of

restarting at individual nodes at each restart, and Δm denotes

the m-dimensional probability simplex. For our purposes,

we will consider a bias vector specific to each user. In

particular, for user i, we will have γ = ei, where ei is a

vector with the i-th element equal to 1 and the other elements

set to 0. Then, for user i, the stationary distribution is given

by

(2.3) π
(k)
i = (1− α)PT

k π
(k)
i + αei .

Note that ei is the i-th corner of the Δm simplex, and the

random walk with restart corresponding to πi always restarts

from this corner.

Given n networks, with each network containing m users,

the goal of our approach is to make meaningful recommen-

dations by finding similar users, traversing along different

network paths. This can be done by combining these n dif-

ferent networks using a convex combination of row stochas-

tic matrices, equivalently, P(x) =
∑n

k=1 xiPi, where xi ≥
0 and

∑
i xi = 1. The random walk with restarts are per-

formed over this convex combination P, and the resulting

random walk probabilities span multiple networks. In par-

ticular, for user i, the stationary distribution satisfies the fol-

lowing equation: πi = (1− α)
∑n

k=1 xkP
T
k πi + αei .

As an alternative, one might consider doing independent

random walks on n different networks and consider them as

features in a classification model (e.g., logistic regression).

However, this independent treatment may not achieve the

goal of capturing cross-network interactions. Consider an

example where nodes i and j are connected via a chat inter-

action and nodes j and k are connected an email interaction.

Using n independent random walks the two hop closeness

of i to k can never be realized. However, if we overlap the

networks and combine the edge weights using a convex com-

bination, the random walker can traverse from i to k in two

hops. Formally, the convex combination of stationary distri-

butions for multiple network is given by πi =
∑

k xkπ
(k)
i

and by substituting (2.3) in this equation we can easily see

PTπi �=
∑

k xkP
T
k π

(k)
i . Hence it is important to consider

a combination of these networks, rather than treating them

independently.

2.1 Exact and Approximate Formulations Online social

and collaboration networks often have sufficient ground truth

of past accepts of recommendations in the network. Let us

denote this with yi ∈ {−1, 1}m×1, where m is the number

of users in the network, yi(j) = 1 denotes the accept of a

recommendation of user j by user i, and yi(j) = −1 denotes

the rejection. Our model is general enough where yi can

denote accepts, rejects and did-not-care cases with 1, −1 and

0 respectively. In this paper, for simplicity, we deal with 1
and −1 case only. The goal of our link recommendation is

to be consistent with past recommendations, while making

effective future predictions. So, we learn the weights for

the convex combination x = [x1, . . . , xn] such that our new

model is consistent with previous interactions. We set this

up as the following optimization problem, which we refer to

as the exact formulation since (2.2) is used as a constraint:

min
x,Π

−

m∑
i=1

yT
i πi

subject to

πi = (1− α)

(
n∑

k=1

xkP
T
k

)
πi + αei, ∀i

n∑
k=1

xk = 1 ,

xk ≥ 0 , k = 1, . . . , n.

(2.4)

One way to make the top-k recommendations for user i is to

select leading k nodes that have highest k values in terms of

the stationary probabilities in πi. As our model recommen-

dations must also be inline with the previous user accepts

and rejects, we consider a linear objective as shown in (2.4).

The objective of the formulation (2.4) ensures that the ac-

cepted recommendations receive a higher personalized ran-

dom walk score compared to the ones not accepted and the

random walk constraint ensures the coefficients x1, . . . , xk

are adjusted such that the accepted friends are treated closer

than the ones not accepted.

The objective of formulation (2.4) is linear, for a particular

value of x. However, we do not know x and learning it

alongside πi makes the random walk constraint bi-linear and

the underlying problem more challenging. We relax this

problem further, by considering an approximate version of

πi where, πi ≈ (1 − α)
(∑n

k=1 xkP
T
k

)
πi + αei, ∀i .

We consider a specific instantiation of such an approximate

formulation as follows:

min
x,Π

−

m∑
i=1

yT
i πi

subject to

m∑
i=1

∥∥∥∥πi − (1− α)

(
n∑

k=1

xkP
T
k

)
πi − αei

∥∥∥∥
2

≤ ε

n∑
k=1

xk = 1 ,

xk ≥ 0 , k = 1, . . . , n.

(2.5)
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In the inequality constraint, ε determines how strictly the

constraint is enforced, and ε = 0 yields the formulation in

(2.4) as a special case. The approximate formulation has

more flexibility, and a non-zero value of ε may lead to better

predictive performance in practice. We revisit the approxi-

mate formulation in the context of algorithm development in

Section 3 and subsequent empirical evaluation in Section 4.

2.2 Relationship to Katz Similarity The Katz similarity

matrix is defined as
∑

∞

j=0 (βA)
j

[1], where β is a decay

factor that lies between 0 and 1, A is the adjacency matrix of

the underlying graph. An entry in the Katz similarity matrix

Kij for a pair of nodes i and j is the weighted average

of different path lengths reachable from node i to j. The

weights assign decreasing importance to paths of increasing

length.

We show that the objective of the original formulation

in (2.4) reduces to −Tr
(
YT

∑
j (1− α)

j (
PT

)j)
, where

P =
∑

k xkP
T
k , using the closed form solution of Π. When

A = Pi, ∀i and β = (1−α), in this reduced form, Katz sim-

ilarity matrix becomes a special case of the objective used in

our approach. This implies when all the n networks are ex-

actly same as each other which is equal to A and the decay

factor equal (1 - restart probability) then supervised random

walk similarity measure is same as the Katz similarity. But,

in our case we have different networks and we wish to learn

the importance of each network from the underlying ground

truth. Thus, our approach uses a generalized version of Katz

similarity measure, for the multiple network scenario.

3 Algorithms and Analysis

The formulation in (2.4) has a linear objective and a bi-linear

constraint containing x and Π. One can consider a few

different approaches to solve the problem, e.g., considering

the Lagrangian relaxation by introducing dual variables and

doing dual ascent [22] [23], writing π in closed form in terms

of x and subsequently using a projected gradient descent

method on x [22]. For algorithm development, we focus

on the approximate formulation in (2.5), which is arguably

more general. The problem in (2.5) can be equivalently

characterized as follows:

(3.6)

min
x,Π

Lλ(x,Π) = −
m∑
i=1

yT
i πi

+
λ

2

m∑
i=1

∥∥∥∥∥
(
πi − (1− α)

(
n∑

k=1

xkP
T
k

)
πi − αei

)∥∥∥∥∥
2

2

,

where λ = λ(ε) is a suitable non-negative constant cor-

responding to ε. Here λ can be viewed as a Lagrangian

multiplier so that high values of ε correspond to low λ and

low/zero values of ε corresponds to large values of λ. For

our algorithms, we consider λ to be a constant which will

be determined in practice by cross-validation on predictive

performance (see Section 4).

3.1 PLUMS The problem in (3.6) is not jointly convex

in (x,Π), but is convex in each variable while the other is

fixed. Based on such structure, we focus on developing an

alternating minimization algorithm which updates Π and x

alternately. In particular, we focus on an alternating mirror

descent type updates till convergence. For suitable proxi-

mal functions d1, d2 we consider the following alternating

updates:

Πt+1 = argmin
Π

η〈∇ΠLλ(Π
t,xt),Π〉+ d1(Π,Πt)

xt+1 = argmin
x∈Δ

η〈∇xLλ(Π
t+1,xt),x〉+ d2(x,x

t) ,

(3.7)

where η > 0 is the learning rate. Note that the updates

on Π are unconstrained whereas x ∈ Δ, the unit simplex.

For the purposes of our experiments, we choose both the

proximal functions to be the squared Euclidean distance,

which yields a simple gradient descent update for Π and a

projected gradient descent update for x:

Πt+1 = Πt − η∇ΠLλ(Π
t,xt)(3.8)

xt+1 = ProjΔ(x
t − η∇xLλ(Π

t+1,xt)) .(3.9)

The projection step for x is simply an Euclidean projection

to the simplex, for which efficient algorithms exist [24]. The

gradients for Π and x are listed below in (3.10) and (3.11)

respectively.

∇ΠLλ(x,Π) = λΠ− λ(1− α)(P(x)T +P(x))Π

+ λ(1− α)2P(x)P(x)TΠ

+ λα(1− α)P(x)− λαI−Y .(3.10)

∇xk
Lλ(x,Π) = λ(1− α)2 Tr(ΠTP(x)PT

kΠ)

− λ(1− α) Tr(ΠTPT
kΠ)

− λα(1− α) Tr(PT
kΠ) .(3.11)

Putting x = xt and Π = Πt in (3.10) will give the desired

gradient for the Π-update in (3.8). Similarly, setting x = xt

and Π = Πt+1 in (3.11) will give the desired gradient for

the x-update in (3.9)

3.2 pPLUMS: Personalized PLUMS The PLUMS ap-

proach discussed in the previous section may be limited in

terms of its ability to learn specific user likes and dislikes,

as we learn parameters only at a network-level. Consider
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a scenario where a user is actively using the email service

more heavily than the chat service. In such case, the signif-

icance of email network for that user should be higher com-

pared to the chat service. For this purpose, we consider a

personalized PLUMS approach, and refer to it as pPLUMS.

The formulation follows from (3.6) except that the coeffi-

cients xk corresponding to each network are replaced by

diagonal matrix Dk. The entry Dk(i, i) denotes the im-

portance of the node i on the network k, and we assume

Dk(i, i) ≥ 0,
∑

k Dk(i, i) = 1 for all i. The correspond-

ing objective is given by

(3.12)

min
Dk,Π

Lλ(D,Π;λ) = −
∑
i

yT
i πi

+
λ

2

∑
i

∥∥∥∥∥
(
πi − (1− α)

(∑
k

DkP
T
k

)
πi − αei

)∥∥∥∥∥
2

2

We use the same alternating (projected) gradient descent

approach to solve (3.12). Let P(D) =
∑

k DkPk. Then,

following a similar analysis as earlier, the gradient w.r.t. Π

is given by

∇ΠLλ(D,Π)

= λΠ− λ(1− α)(P(D)T +P(D))Π

+ λ(1− α)2P(D)P(D)TΠ

+ λα(1− α)P(D)− λαI−Y .(3.13)

A comparison between (3.10) and (3.13) illustrates the mild

difference between the two updates, where P(x) is replaced

by P(D).
Also, a similar analysis also yields the gradient w.r.t. the

diagonal matrix Dk to be

∇Dk
Lλ(D,Π) = λ(1− α)2 diag

(
ΠΠTP(D)PT

k

)
− λα(1− α) diag

(
ΠPT

k

)
− λ(1− α) diag

(
ΠΠTPT

k

)
.(3.14)

The key difference between (3.14) for pPLUMS and

its simpler counterpart (3.11) in PLUMS is the following:

PLUMs considers an inner product between factors leading

to a scalar gradient for xk, whereas pPLUMS considers an

element-wise product between factors leading to a diagonal

gradient for Dk. The factors involved in the two updates are

the same, except for P(x) being replaced by P(D) and Tr(.)
operator is replaced by the diag(.) operator. The algorithm

for PLUMS is shown in Fig. 1. Replace x with D and cor-

responding gradients, in Fig. 1, for a personalized version of

this algorithm.

4 Experimental Results

In this section, we describe the data sets, baselines, evalua-

tion measures and results of our experiments.

Algorithm PLUMS(P1, . . . , Pn)

begin

Initialize x
(0)
k = 1/n, Π(0) = 1/n · 1, t = 0, λ, max t

Initialize P =
∑

k xkPk, ε1, ε2, converged = false

L(t) = Lλ(Π
(t),x(t))

do

% Compute∇xLλ(Π
(t),x(t))

x(t+1) = ProjΔ(x
(t) − η∇xLλ(Π

(t),x(t)))
% Compute ∇ΠLλ(Π

(t),x(t+1))
Π(t+1) = Π(t) − η∇ΠLλ(Π

(t),x(t+1))
L(t+1) = Lλ(Π

(t+1),x(t+1))
if ((

∥∥x(t+1) − x(t)
∥∥
1
≤ ε1) or

(L(t) − L(t+1) ≤ ε2) or (t >= max t))
converged = true

endif

t = t+ 1
while(not converged)

end

Figure 1: PLUMS Algorithm

4.1 Data Sets We used three kinds of data sets for our

evaluation purposes: (1) DBLP, (2) Protein-Protein (P-P)

interaction and (3) synthetic networks.

4.1.1 Synthetic Data Set We have prepared the synthetic

data set by first constructing the primary network using

a power law graph, as most of the social and biological

networks are scale-free. We used the BTER [25] tool to

construct the synthetic graph for the power law exponent of

2.5 and 3, as the typical value in actual networks is in the

range of 2 to 3. We refer to these two data sets as Synthetic

A and Synthetic B respectively. We then generate two

Auxiliary networks, representing email and chat interaction.

These networks are simulated using a conditional probability

table, where the presence or absence of an edge in the

primary network is the conditioning variable. We generated

graphs with 1000 nodes each. We randomly timestamped

each edge in the all networks in to time bins t1, t2 and t3.

The edges in time t1 are used as the training network and

t2 as the corresponding ground truth for the training period.

Similarly, all edges in t1 and t2 form the testing network,

while edges in t3 are used as the ground truth for the testing

network. We sampled the negative training data uniformly

at random from all possible negative edges available. We

maintained equal number of positive and negative samples

while constructing negative samples [26].

4.1.2 DBLP Data Set In DBLP we extracted all the

publications from 1996 to 2011 for top 5 venues, as listed in

http://academic.research.microsoft.com/,

for four different sub-fields of computer science: Machine

Learning (ML), Information Retrieval (IR), Data Mining

(DM), and Operating Systems (OS). We construct two
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subgroups of data set from these fields: (1) IR (Primary),

ML (Auxiliary 1), DM (Auxiliary 2) and (2) IR (Primary),

DM (Auxiliary 1), OS (Auxiliary 2). Here, “Primary”

indicates the network for which prediction is performed,

while “Auxiliary” indicates the supporting networks that are

used to improve the link prediction performance. For each

of these subgroups, we created partitions of data set over

three time periods: (a) 2001-2005, (b) 2006-2008 and (c)

2009-2011. For five year windows we split them in to 2,

2, and 1 years for time bins t1, t2, and t3 respectively and

for three year window all time bins are of equal size of one

year each. Once the edges are assigned to one of these time

bins, the training and test data preparation follows the same

procedure as described for the synthetic data set. To deal

with non-common authors in each sub-field, we consider the

union of authors in all three networks as the complete set

of authors in our experiments. We refer to the IR∗-ML-DM

data set over the three time periods 2001-2005, 2006-2008

and 2009-2011 as DBLP1a, DBLP1b and DBLP1c respec-

tively. Similarly, we refer the IR∗-DM-OS data set for three

time periods as DBLP2a, DBLP2b, DBLP2c respectively.

We use the superscript ’*’ to denote the primary network.

4.1.3 Protein-Protein Interaction Data Set We down-

loaded the protein-protein interaction data set for the african

aquatic frog (Xenopus laevis) from thebiogrid.org.

We used the following three interaction types to construct the

primary and two Auxiliary networks: Physical Association

(Primary), Direct Interaction (Auxiliary 1), and Colocaliza-

tion (Auxiliary 2). We hypothesize that genetic interactions

in Auxiliary networks can be helpful in finding unknown

interactions in primary network. The edges here are undi-

rected, unweighted and do not have timestamps. We split

them randomly in ratios 40:30:30 to three bins t1, t2 and t3
respectively. Then, the training and test data is prepared us-

ing the same procedure as described for the synthetic data.

4.2 Evaluation Measure We use precision, recall and

area under the precision-recall (P-R) curve to measure the

effectiveness of our approach. The threshold curves, such as

P-R curves, are found to more fair and effective in measuring

the classifier performance for an entire operating range than

looking at a point-wise precision or recall measures [26].

We compute the precision and recall measures as commonly

used in information retrieval applications. We sweep the

top-k from 1 to 500 for each user (i.e. node) to obtain

the top-k predictions (retrieved) for the proposed approach

and each baseline. The relevant predictions are available

from the ground truth. Given the relevant and retrieved

predictions, the precision and recall measures are averaged

over 10 different runs.

4.3 Baselines Our choice of baselines is based on popu-

larity and relevance, for the problem of link prediction using

multiple sources.

LOGISTIC REGRESSION: Each training data point for

the logistic regression classifier is an edge and the features

include both independent and combined network features.

The independent network features are outdegree, common

neighbors, outdegree edge weight, and personalized page

rank scores normalized over all outgoing neighbors. The nor-

malized edge weight score is zero if the members of the edge

are not immediate. The independent network features are

constructed for both primary and Auxiliary networks. The

combined network features are constructed by combining the

networks with equal weights, and the features include, com-

mon neighbors, number of two hop paths, outdegree, and

personalized page rank score. The personalized page rank is

constructed with the restart probability of 0.15.

LASSO: A data point in the Lasso classifier is an edge,

where the features are constructed as described in [5]. The

features constructed were for one, two and three hop paths

across different permutations of the network. For one pri-

mary and two auxiliary networks, there are 39 features that

were constructed for this classifier. In addition, we also used

all the combined network features we created for logistic

classifier.

GROUP LASSO: The group lasso classifier uses the same

set features as LASSO. The composite norm used for this

classifier uses the overlapping group structure, where a sub-

set of path patterns found not useful is used to knock out

supersets containing those subsets. This hierarchical spar-

sity is implemented using a Directed-Acyclic-Graph (DAG)

structure as described in [5].

ONENET: This baseline uses the personalized random

walk scores computed on the primary network structure,

with no auxiliary network information. This is used to

evaluate the benefit obtained by using the additional network

structures. The restart probability of random walk was set to

0.15.

4.4 Experimental Results In this section, we empirically

evaluate the baselines and our approach for model effective-

ness and robustness.

4.4.1 Effectiveness Analysis The effectiveness of our ap-

proach is measured in terms of precision-recall (P-R) curves.

The P-R curves for Synthetic, DBLP and BIOGRID are

shown in Figure 2, where x-axis measures the recall and y-

axis the precision. We computed the values for various points

by sweeping the top-k predictions for each user from 1 to

500. As the number of predictions for each user increases,

the total number of predictions that overlap with ground truth

increases and hence the recall increases. Meanwhile, the to-

tal number of positive predictions increases faster compared

to the true positives and the precision decreases. We aver-

aged the precision recall values for ten runs and show the

deviation as error bars in these charts. The Area Under the
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Figure 2: Experimental results for DBLP, Synthetic and BIOGRID data sets. The primary network is denoted by a superscript ∗ and the Auxiliary

network 1 and 2 are listed next to primary network in that order. The years used for experiments for DBLP data set is listed in the brackets. For synthetic

data set A, the power law exponent was set to 2.5 and for B it was set to 3. The species Xenopus Laevis (Frog), is used for protein-protein interaction

networks.

Curve (AUC) for the P-R curve is shown in brackets in the

legend for each method. Higher the value of AUC, better the

performance of the approach. The maximum value of AUC

is 1 and minimum is 0.

The DBLP1 data set considers IR co-authorship as the

primary network and the auxiliary networks are ML and

DM co-authorship networks. We find that in all our DBLP

experiments pPLUMS approach consistently outperforms all

baseline methods, including our non-personalized version,

PLUMS. We ordered the baselines for DBLP data set using

the average AUC performance and across all three time

periods. Our pPLUMS and PLUMS methods take the

first and second spot respectively, followed by the Lasso

and Group-Lasso baselines. The best performing baseline

Lasso is 26% lesser than pPLUMS in terms average AUC

measure. The Logistic has an average AUC of 0.0365 and

using random walks with restart only in the primary network

performs the worst with an average AUC of 0.0009 — the

main reason for this poor performance is the number of

new connections that are formed in the primary network due

to collaborations in auxiliary interactions are much more

stronger. As preferential attachment plays an important

role in these networks, the leading scientists or researchers

attract a majority of collaborators in the auxiliary network

where they are well-known. The random walk performed

across multiple networks brings together these central people

under one network, in order to make new predictions more

effective. Using one network misses out on several of these

leading researchers that are actually driving the collaboration

through other auxiliary networks, which are not explicitly

visible in the primary network.

In the synthetic data set, we created different networks

each time we ran the algorithm using the BTER model [25].

In Synthetic-A the power law exponent was set to 2.5 and in

B it was set to 3. We see that the performance of pPLUMS

and other baselines considerably decrease, in terms of the

AUC value, as the exponent value increases. The reason for

this is number possible future connections becomes lower as

the graph becomes denser in close neighborhoods. Thus, the

precision drops sharply as we sweep through the threshold

of more than 4 or 5. pPLUMS consistently performed best

in all runs and in average, compared to all baselines, in terms

of AUC.

For protein-protein interaction networks, Group-Lasso

closely competes with our pPLUMS approach — all other

baselines performed poorly compared to pPLUMS. The de-

viation of AUC values in this data set was higher compared

to other data sets — due to the small size and sparsity of

the network, the addition of random edges for negative ex-

amples makes the network structure significantly different in

each run. In spite of that, our approach pPLUMS is consider-

ably robust with smallest average deviation across all points

as 0.048, while Group-Lasso has 0.060. In comparison for

DBLP, pPLUMS or PLUMS has almost close to zero devi-

ation compared to significantly larger deviations for Group-

Lasso and Lasso.

4.4.2 Robustness Analysis We analyze the robustness of

our approach using two types of experiments: (a) by reduc-

ing the information available in auxiliary networks and (b)
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Figure 3: (top row) As the auxiliary network becomes highly sparse, there is very little or no auxiliary information available for prediction. However,

our approach is quite robust and performs the best compared to all baselines, using only the information in the primary network. (bottom row) We analyze

the robustness, by varying the number of random edges in the auxiliary network. When the auxiliary network is complete, it becomes uninformative for

prediction. While the several baselines suffer due to noisy conditions, our approaches are quite robust and pPLUMS performs the best in all scenarios.

by increasing noise in the auxiliary networks. The first type

of experiment indirectly induces sparsity in the network, as it

reduces the number of edges in the auxiliary network. In this

case, when the network is empty, it has no auxiliary infor-

mation to support the prediction in primary network. In the

latter case, we implicitly make the network dense, by adding

more random edges to the auxiliary network to increase the

noise. Under high noise conditions, the auxiliary network is

complete, as every node is connected to every other node —

hence the resulting network is uninformative. We perform

both these experiments using our synthetic data set.

For increasing the sparsity in the auxiliary networks, we

reduce the conditional probabilities of generating an edge in

the auxiliary network, given that it is preset in the primary

network. As the probabilities decrease the auxiliary network

becomes empty. Similarly, for increasing the noise in the

auxiliary networks, we randomly sample edges from pairs

of nodes in the primary network and apply a conditional

distribution for that edge to be present in the auxiliary

network. As the conditional probabilities increase more

number of random edges begin to appear in the auxiliary

network.

In Figure 3 we have shown the robustness of our approach

measured in terms of P-R curves. Under low sparsity condi-

tions, when the auxiliary network is highly informative, our

methods pPLUMS and PLUMS perform at their best. More

importantly, as we increase the sparsity levels, they continue

to perform the best. As one can see, PLUMS, pPLUMS and

ONENET all begin to perform very similarly in high spar-

sity conditions, as there is no auxiliary information. Note

that Group-Lasso is quite robust and performs consistently

well in high sparsity conditions, even though the overall per-

formance is lower than our approach. This is due to the flex-

ibility of the Group-Lasso structure to knock down specific

path patterns and subsets that are not useful for prediction.

Similarly, as we increase the noise levels, in terms of the

number of random edges in the auxiliary networks, our ap-

proach is consistently the best. Under low noise conditions

all approaches perform equally well, except logistic regres-

sion and ONENET. As the noise level increases, all the meth-

ods reduce in their overall performance, but the amount of

decrease for Lasso is the highest, as the number of features

containing path level information from only the primary net-

work is very limited. When the noise levels are extremely

high, all methods further drop in performance. As seen in the

sparsity variation experiment, the Group-Lasso [5] baseline

is quite robust to noise perturbations also. In comparison,

Lasso and Logistic are intermittent in their performance, un-

der high noise and sparsity conditions. pPLUMS performs

the best in all noise scenarios.

Scalability Discussion: The current paper does not

focus on scalability related issues, however, our approach

is designed with scalability in mind. The basic operation

needed for our algorithm is a matrix-vector multiplication

(for computing the gradients in the PLUMS algorithm).

This operation can be done in an extremely scalable way
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using Map-Reduce (Hadoop) [27], or multi-core frameworks

(OpenMP) [28].

5 Conclusions

The problem of link prediction is fundamental to social and

collaboration networks. Most of the existing collaboration

mediums consists of several modes of interactions. These

multiple interaction networks can be used to make a effective

and robust link prediction model by combining multiple

sources of information. We developed a supervised random

walk model that can be both personalized and general,

depending on the needs of the application. We showed

that our approach is a generalization of Katz similarity

for multiple networks. Our approach outperforms several

popular and relevant baselines in terms of precision and

recall curves. Our approach is also robust under sparse

and noisy conditions, while the popular baselines can have

inconsistent performance depending on the data set.
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