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Abstract
Motivated by our experiences operating a global WAN, we argue
that SDN’s reliance on infrastructure external to the data plane has
substantially complicated the challenge of maintaining high avail-
ability. We propose a new decentralized SDN (dSDN) architecture in
which SDN control logic instead runs within routers, eliminating
the control plane’s reliance on external infrastructure and restoring
fate-sharing between control and data planes. We present dSDN as
a simpler approach to realizing the benefits of SDN in the WAN.
Despite its much simpler design, we show that dSDN is practical
from an implementation viewpoint, and outperforms centralized
SDN in terms of routing convergence and SLO impact.
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1 Introduction

“The cheapest, fastest, andmost reliable components of a computer
system are those that aren’t there.” — Gordon Bell

Availability is a network operator’s highest priority and yet, despite
significant effort and investment, modern WANs remain vulner-
able to failure. Figure 1 shows the frequency of outages that we
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have experienced in operating the WAN at Google in recent years.
Generally speaking, this frequency has not declined over the years
despite considerable efforts to improve reliability. Moreover, while
minor disruptions are to be expected due to link cuts or router
crashes, more impactful medium and major disruptions are harder
to rationalize. Major outages continue to be reported by virtually
every WAN operator [16, 28, 37, 58, 67]. Avoiding major failures
is critical since they impact customers, internal productivity, and
market reputation. Ultimately, they also impact innovation as these
experiences encourage an overly conservative attitude toward in-
troducing change.

The fundamental challenge in eliminating major failures lies in
their complexity: they typically involve bugs or errors in multiple
components spanning diverse teams and codebases, that interact in
unanticipated ways. As a result, these outages persist, despite our
extensive efforts to improve testing, diagnostics, change procedures,
and verification.

Given this situation, we ask: Is there more we can do to avoid
complex failures? The approach we explore in this paper is to ad-
dress complexity directly and focus on simplifying the network.
More concretely, we aim to identify network components that can
be removed without impacting the network’s functionality or per-
formance. Intuitively, this strategy offers: (i) fewer points of failure
and failure modalities, (ii) a reduced search space for testing and
verification thus improving coverage, and (iii) fewer maintenance
“touchpoints” and hence fewer opportunities for errors.

But are there significant opportunities for simplification in to-
day’s WANs? In this paper, we will argue that SDN control infras-
tructure in the WAN introduces significant complexity and propose
a new control architecture that allows us to remove the vast major-
ity of this infrastructure without losing the benefits of SDN. This
raises three key questions which we summarize here and address
through this paper.
Q1)Why target SDN infrastructure for simplification?While
the road to SDN varied across use cases [12], in the WAN context
that we focus on, support for operator-driven innovation was a key
driver of SDN adoption, enabling operators to customize and evolve
network control based on their needs. When SDN was embraced
in the mid-2000s, routers were typically closed platforms with no
practical way of running 3rd-party code “on-box.” As such, support-
ing operator-defined code naturally implied running the control
plane on infrastructure external to the data plane. This external
SDN control plane has typically been implemented as a logically
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Figure 1: Historical outage frequency in our WAN. Outages are classified
internally based on several factors, including perceived user impact, duration,
and blast radius (single or multi-region).

centralized controller whose essential task is to run a traffic engi-
neering (TE) algorithm that computes paths in a capacity-aware
manner [11, 25–27].

Unfortunately, implementing the high-level SDN idea in a global
WAN involves far more than simply running a TE process on a
datacenter server. It typically involves multiple software services,
spanning a hierarchy of controllers, and running on a global foot-
print of servers that connect to the data plane via a separate control
plane network. We use “SDN control infrastructure” to refer to
these off-box components that are introduced in addition to the
data plane. We note further that this infrastructure is not a one-
for-one replacement for traditional solutions because, in practice,
WANs continue to run protocols such as IS-IS and BGP as a fallback
in case SDN control fails. As a result, we argue that current WAN
control planes are overly complex: they bring new dependencies
(due to SDN), while still retaining old undesirable dependencies (on
protocols and vendors).

Thus the goal of our work is to simplify the network by eliminat-
ing these external components and dependencies where possible,
thereby improving overall availability.
Q2) What benefits of SDN must a simplified architecture re-
tain? SDN WANs offer important benefits that we must retain
as we consider network simplification: operator-defined innova-
tion, improved network efficiency (because TE computations that
act on a global network view have been shown to achieve higher
network utilization than greedy distributed solutions such as RSVP-
TE [2, 25]) and simpler “consensus-free” route computations (because
paths are selected by the controller without complex distributed
protocols across routers).
Q3) How do we retain the benefits of SDN without its con-
trol infrastructure (and without a return to traditional pro-
tocols)?We see a way forward through developments in the router
industry. In early SDN implementations, separation of control be-
tween vendors and operators necessitated separation of infrastruc-
ture. However, the router ecosystem has evolved since and vendors
now support running 3rd-party code on the router’s control CPU
and implement vendor-neutral interfaces that expose key control-
plane functions to external code [8, 41, 51, 57]. This shift offers an
important opportunity to rethink existing SDN designs since we
can now run operator-defined code within routers and manage that
code in a vendor-neutral manner.

In this paper, we use this opportunity to propose a novel de-
centralized SDN (dSDN) architecture in which every router runs
an operator-defined “dSDN controller.” Each dSDN controller con-
structs a global network view via a simple flooding-based dissemi-
nation protocol and then locally runs a TE algorithm to compute
capacity-aware paths. Finally, for simple consensus-free path se-
lection we use source routing: when a packet enters the network,
the ingress router records the TE-computed path into the packet’s
header and all other routers along the path simply enforce the
source route. Thus in dSDN, a router 𝑅 is the sole decision maker
for paths that originate at 𝑅.

The dSDN architecture represents a significant simplification to
current WANs: it leverages two common techniques (basic control
plane flooding and a TE algorithm) but otherwise eliminates any
dependency on components external to the data plane and on legacy
protocols. Despite these simplifications, dSDN retains the benefits of
traditional centralized SDN (cSDN) while restoring the fate-sharing
of traditional protocols that provides resiliency. The trade-off that
dSDN imposes is a higher computational load on the router CPU (to
run TE) and additional packet header state (to carry source-routes).
Our evaluation shows that this trade-off is easily accommodated
by modern routers.

We recognize that our proposal implies revisiting the SDN de-
ployments that industry has worked on for almost 20 years. This
is a radical change that will not be undertaken lightly. As such, it
will likely be years before we have the deployment experience to
validate our central hypothesis: namely, that the simplifications we
propose will reduce complex failures and broadly improve network
availability. Hence, the claims and contributions we make in this
paper are more modest: (i) we articulate the case for simplifica-
tion and propose a new WAN control architecture that we believe
achieves this simplification while retaining the best of the SDN and
traditional protocol paradigms, and (ii) we implement and evaluate
dSDN, showing that it can be practically realized on current routers,
and significantly outperforms cSDN. Specifically, we show that: (1)
our dSDN implementation on an Arista 7808 consumes under 50%
of the router’s CPU resources under realistic network scenarios, (2)
dSDN achieves up to 100x lower convergence times and 10-100x
lower SLO impact than our current cSDNWAN, (3) the above gains
hold over a range of topology, traffic, and failure scenarios.

2 The Case for Rethinking SDN Infrastructure

2.1 Context

dSDN is motivated by our experiences running two WANs. Our
B4 network [27] is based on cSDN, similar to other cSDN-based
networks described in the literature [11, 12, 25], while our B2 net-
work is a traditional protocol-based WAN. For capacity-aware path
selection, B4 runs centralized TE. By contrast, B2 runs RSVP-TE
over IS-IS, and BGP: link state and capacity-related TE attributes
are disseminated using IS-IS, based on which each ingress or “head-
end” router runs a constrained shortest-path computation [48] to
compute the shortest path with available capacity from itself to
each destination. The headend router then uses RSVP [6] to signal
other routers along the selected path, reserving capacity at each.
If signaling is successful, the path is installed in the network. If
not, e.g., because any router on the signaled path no longer has
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Figure 2: Conceptual diagram of a typical large-scale WAN architecture
deployment [25, 27], with external dependencies shown in green and on-box
dependencies shown in blue.

enough capacity available, then the headend router tries again us-
ing a different path. Thus each headend acts independently and
makes greedy decisions based on its local view of available capacity.
Compared to cSDN’s centralized TE, RSVP-TE has been shown to
suffer suboptimal paths and hence lower network efficiency (in the
sense of lower network utilization) [25].

The dSDN architecture we develop in this paper can serve as a
simpler yet equally efficient alternative to B4’s cSDN architecture
and as a simpler and more efficient alternative to B2’s RSVP-based
architecture.

2.2 SDNWAN Control Infrastructure Is Complex

Figure 2 shows the main components of a canonical cSDN imple-
mentation. The essence of a cSDN controller is its TE algorithm.
However ensuring the controller is highly-available and scalable
requires more than a single controller programming all switches,
but rather a multi-level hierarchy of controllers deployed across
multiple data centers and edge locations [25, 27]. For modularity,
topology discovery and traffic demand collection run as their own
services, as does switch programming, and these services run on
data center infrastructure. For example, in B4, the central controller
runs on standard data center servers managed by a cluster manage-
ment system [24, 60, 62, 65]; our edge controllers run on special
servers that are co-located with routers and run a specialized SDN
platform [5, 13] that is also managed by our cluster management
system for infrastructure consistency.

A separate Control Plane Network (CPN) connects controllers to
the routers they control, thus avoiding a recursive dependency on
network connectivity being already established. The CPN must be
physically present in the same locations as all data plane devices,
giving it a global footprint with several thousand devices in B4.

The CPN requires its own routing for self-bootstrapping, and hence
runs a minimal set of traditional routing protocols.

Crucially, each of these components — hardware and software
alike — is on the critical path for high availability and thus engi-
neered accordingly, e.g., with redundancy, replication, consensus,
etc., becoming fairly complex systems in their own right. For exam-
ple, in B4, both our edge and central SDN controllers are robustly
replicated across distinct hardware and geo-diverse data centers,
running Paxos for consistency and failover. In B4, these systems rep-
resent dozens of non-trivial microservices and millions of lines of
code. Hardware components are likewise architected for resilience
with redundant CPN switches and links.

Finally, to avoid a complete loss of connectivity in case of failure
in the cSDN control stack, every SDN WAN that we are aware of
continues to run IS-IS and BGP [11, 25, 27], programming forward-
ing entries at a lower priority to provide backup connectivity. These
backup paths are insufficient for longer term operation because
their placement is capacity unaware, and hence their use can lead
to congestion, but they at least provide connectivity.

In summary, as shown in Figure 2, modern WAN control planes
span many non-trivial components, both external (shown in green)
and on the box (shown in blue).

2.3 Impact on Availability: Examples from B4

External infrastructure increases the surface area for bugs. Each com-
ponent in Figure 2 introduces the possibility of additional bugs
within it, which have the potential to cause outages. In B4, a bug
in our topology service resulted in a partial topology (i.e., missing
several links) being provided to TE, which led to fewer paths being
utilized resulting in severe congestion and over 50% packet loss for
several minutes. Similarly, prior work has reported on bugs in the
SDN programmer that installs forwarding entries [31], in the con-
troller backup implementation [27], in the network state collection
infrastructure [11], and in the CPN [19]. We have also experienced
outages due to cSDN’s dependency on datacenter management sys-
tems. A missing configuration flag to do with cluster management
for edge controller jobs led to those jobs being incorrectly killed
during routine maintenance, triggering an outage spanning a large
geography for several hours.

External infrastructure introduces new failure modalities.
cSDN’s external infrastructure results in a loss of fate-sharing and
thus an expanded space of possible failures: any subset of the control
infrastructure can get disconnected from the data plane, preventing
reconvergence. In such scenarios, the common strategy is to “fail
static” [25, 27] but this is not a panacea since the network’s for-
warding state becomes increasingly stale as the problem persists.
In one incident, we failed static when a misconfiguration on a CPN
switch led to a portion of the CPN being disconnected. This inter-
acted poorly with an unrelated maintenance operation that was
attempting to reintroduce (previously removed) capacity back into
the network. Failing static prevented the restored capacity from
being used leading to severe congestion that lasted for the entire
duration that it took to diagnose and fix the CPN problem.

Legacy Protocols Remain. Retaining traditional protocols was per-
haps not part of the original SDN vision. However, to mitigate
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Figure 3: Classification by root-cause for the 41 largest outages over the last
4 years in B4, with hatching on control-plane related outages.

risk in the early days of deployment, operators retained their well-
known protocol-based control plane as a backup. 15+ years later
we continue to experience SDN outages because of which we – and
all other WAN operators that we are aware of – continue to main-
tain this backup. B4 thus runs IS-IS, BGP, and a form of FRR [1]
in addition to cSDN. The main simplification compared to our
protocol-based network is the removal of RSVP-TE, which is a valu-
able simplification but far from having eliminated our dependence
on vendor protocols. In fact, in addition to the challenges of testing,
configuring, and operating protocols, we must now contemplate
potential interactions between two control paradigms that were
never designed to coexist; e.g., in one published outage [31], when
the SDN controller failed, the network fell back to IS-IS and BGP,
but a misconfiguration of IGP weights led to severe congestion and
packet loss, highlighting the burden on operators to master both
TE and IS-IS configuration.

In summary, the complexity of our cSDN control plane in B4 is
a dominant contributor to our most challenging outages: Figure 3
shows that 52% of our 41 largest outages have a control-related
root cause. We emphasize that our point here is not that we must
eradicate external control infrastructure. On the contrary, such
infrastructure is likely still needed for configuring routers, monitor-
ing, upgrades, etc. Instead, our point is that we should avoid putting
these components on the critical path for network availability.

2.4 Technologies that Enable a New Architecture

The past decade has brought two key developments which, taken
together, enable an alternative routing architecture. The first is
that network OS developers [23, 29, 66] have adopted Linux and
mainstream container technologies [42] enabling operator-defined
application code to be practically deployed on routers. The second
is the emergence of a new generation of control and management
APIs that enable 3rd-party code to interact with router internals in a
manner that is both comprehensive and vendor-agnostic. While early
protocols such as OpenFlow enabled access to a router’s forwarding
table, other state and configuration was not easily accessible [33].
These new APIs go further in enabling general access to the router’s
RIB, internal counters, configuration, etc. [8, 38, 40, 51, 57]. They
allow operator and vendor code to coexist on the same platform,
and allow operator code to be portable across platforms and router
OSes.

In combination, these developments mean a network operator
can now deploy custom code directly on routers rather than external
infrastructure.

Router

Forwarding HW

Router OS

dSDN Controller
TE

APIs
RouterRouter

Discovery

Control plane
Data plane

Figure 4: Diagram of dSDN’s system architecture.

3 Design and Implementation

3.1 Goals and Approach

We design dSDN to meet the following goals: (1) on-box operation
with no dependence on external infrastructure, (2) support for
operator-defined control code, (3) network efficiency, matching that
achieved by state-of-the-art TE solutions, and (4) simple consensus-
free path computations. The first goal is a benefit of traditional
protocols while the last three are realized by cSDN.

Achieving the first two goals is made possible by the ability to
run custom code on routers in a vendor-agnostic manner (§2.4); we
envision each router running an on-box container with our custom
code that we call the dSDN controller. Figure 4 shows this architec-
ture in dSDN as the counterpart to the cSDN control architecture
shown in Figure 2. Achieving the latter two goals – efficiency and
consensus-free computations – requires more thought.
Efficiency. cSDN achieves efficiency, i.e., high network utilization,
by running a TE computation that acts on a global view of topology
and traffic demands. To achieve the same in dSDN, we too run TE
over a global network view but do so at every router. Hence, each
dSDN controller discovers its local state – link status, traffic matrix,
etc. – via the APIs described in §2.4, then floods this information
to all other controllers via a simple dissemination protocol (akin
to IS-IS). As a result, every dSDN controller has a global network
view over which it is able to run TE.

Assuming all routers have the same view, they will compute
identical paths and in this sense dSDN is equivalent to having a
single controller computing all routes. In practice, of course, differ-
ent routers may have slightly divergent views and we evaluate the
impact of this in §5.
Consensus-free route computation. cSDN enjoys the simplicity of
“consensus-free” route computations. A cSDN controller is authori-
tative in that it alone computes paths and programs these as for-
warding rules at every router. Each router then follows these rules
no matter what its own view of network state is. This authoritative
design does not require consensus across routers for path selection.
The challenges of distributed consensus are well documented in
BGP [21, 64] and even in relatively simple distributed protocols
such as IS-IS which can suffer loops and dead-ends until all routers
converge.

The key question is thus, how do we achieve consensus-free
forwarding in a decentralized control plane? The answer is via
source routing. When a packet enters the network, the headend
router adds a source route to the packet header and all other routers
blindly follow the source route. Thus the path any given packet
takes is decided by a single authoritative entity — the headend
router. The headend needs no programming of paths at transit
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routers, and hence no agreement to establish state. Instead, all state
about the path is encoded in the packet header.

Source routing has traditionally been implemented as “loose”
source routing [11, 31] in which, rather than record every node
along the path, the source route records only a subset of routers or
special “waypoint” along the path. This introduces some complexity,
requiring either inter-node signaling (to establish waypoints [2]),
or an underlay routing protocol (to establish connectivity between
routers). Our approach avoids this complexity by utilizing “strict”
source routing, in which the complete router-level path is enumer-
ated in the packet header, as described below.

3.2 Design Details

A dSDN controller implements three main tasks:
(1) Learning local and global network state. dSDN requires the
following local state from each router: (i) link status and utilization;
(ii) attached prefixes, and (iii) aggregate traffic demands to each
egress router. A dSDN controller obtains this local state from its
underlying router stack by subscribing to the relevant telemetry
and configuration paths via the gNMI API [8] and OpenConfig [44]
data models.

A controller disseminates the above local information in the
form of a “Node State Update” (NSU) message that also includes
the node’s ID, link IDs, and a unique sequence number. NSUs are
disseminated to other routers using standard flooding. By listening
to NSUs from other routers, every dSDN controller reconstructs a
global view of the network topology including not just standard link
status but also available link capacity, which prefixes are associated
with each router, and traffic demands.
(2) Computing paths. dSDN controllers compute paths using a TE
algorithm based on prior work [27] which approximates max-min
fair allocations and balances short paths with maintaining high
network utilization, but modified with some optimizations. Most
important of these is the removal of per-service utility curves, as
demand is measured in-band and is thus aggregated by (destination
router, priority class) tuple. In dSDN, every router 𝑅 runs TE to
compute the placement of all flows in the network, from which it
then selects the subset of paths that start at 𝑅 for programming.
(3) Programming strict source routes.We encode source routes
as stacks of labels enumerating each link to be traversed using its
unique link ID learned from NSUs. We use MPLS to encode labels in
the packet header, similarly to the adjacency-SID-based MPLS-SR
data plane design [3] which is commonly supported today by WAN
vendor hardware.

When a packet first enters the network, the headend router per-
forms a two-stage lookup that maps from the packet’s destination
IP address to a source route. The first lookup table maps from the
destination IP address and priority class to a unique egress router;
this (prefix→egress) table is constructed using the prefix informa-
tion carried in NSUs. The second lookup table maps from the egress
router to a set of weighted source routes computed by TE, pick-
ing one by hashing a portion of the packet header. This two-stage
lookup is standard and is supported without additional latency by
the forwarding ASIC; see [11, 27] for a detailed explanation.

At intermediate routers, encapsulated packets are forwarded
based on their outer label using a third MPLS forwarding table that
contains static forwarding entries for the link IDs that the router
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Figure 5: The dSDN data plane from the perspective of the experience of a
single packet in the network.

advertises. This table is programmed when the dSDN controller
comes up. Each router pops the outer label before forwarding the
packet on. In case a failure renders a static label invalid, we use
local repair paths that take the packet around the failure similar
to the FRR mechanism [1] used in B4 and B2 today1; the invalid
label is popped and a bypass source route is prepended, taking the
packet to its original next hop to continue onwards as intended by
the headend. This only lasts until the headend router learns of the
failure and recomputes paths to avoid the failure, after which the
packet will take a path that avoids that failure entirely.

Figure 5 shows a simple example of the life of a packet. When
a packet destined for a host attached to 𝑅1 enters the network at
𝑅0, the forwarding hardware first maps 1.1.1.7 to 𝑅1 using the top
table, and then picks the source route 𝐴𝐷𝐺 by looking up 𝑅1 in the
second table and hashing to select between the source routes to 𝑅1.
The selected route is placed as a stack of labels 𝐴, 𝐷 , and 𝐺 in the
packet header, then the packet is forwarded along this path with
the outer label popped at each transit.

A core potential challenge of this design is the number of labels
that must go in the header of the packet. This is a challenge on two
operational fronts: for a path of length 𝑛, (1) the headend router
must push 𝑛 labels onto the packet, and (2) transit routers must be
able to read past up to 𝑛 labels to reach inner headers that provide
entropy for effective load-sharing across multiple paths [68]. Mod-
ern routers support up to 12 labels [47] for both of these operations,
which is sufficient to encode the path lengths in our current WANs.
For networks with longer paths, or older hardware, we propose
a sublabel encoding, described in Appendix §A, that compresses
the source route by encoding multiple hops in a single label in a
consensus-free manner.

Fault Tolerance. dSDN uses standard techniques developed in
the context of IS-IS implementations to address controller crashes,
bugs, failure detection, and so forth [7, 55]. This includes techniques
such as: loading network state from an immediate neighbor (after
a controller crash/restart), rollback (in the event of a bug), invari-
ant checks (for malformed NSUs), preconfigured backup paths (for
immediate link failure), and so forth. As with existing centralized
systems, dSDN relies on the measurements that routers report to
accurately reflect the true state of the system, as these observa-
tions are used as input to the TE algorithm. Increasing tolerance to
byzantine failures remains an open research problem.

1dSDN’s on-box control enables more sophisticated capacity-aware backup path selec-
tion at the affected router (vs. at headends as in recent work [32]): we present results
in §A3 but omit them here due to space constraints.
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Incremental Deployment. While we have described dSDN as
a standalone or clean-slate design, we see a natural path for in-
cremental deployment which is that we initially deploy dSDN as
an alternative to existing “underlay” protocols such as IS-IS. In
this model, we retain cSDN as our primary controller while dSDN
acts as the backup. This requires only a software upgrade to ex-
isting routers and can be initially deployed in a single, e.g., edge,
region of the network. The benefit of even this first step is a better-
performing underlay (since TE implements capacity-aware path
selection while IS-IS does not) and a coherent architecture (since
both cSDN and dSDN use similar operator-defined logic). In the
next stage of deployment, one might reverse the role of cSDN and
dSDN, with cSDN-programmed routes only used as backup and
ultimately leveraging a streamlined form of cSDN infrastructure
primarily for monitoring and management purposes, rather than
on the critical path for control decisions.
Upgrades. dSDN assumes each controller solves the global TE prob-
lem consistently, but since the controller code is operator-defined,
we also expect that deployed dSDN code will be updated more fre-
quently than vendor code. This raises the question of how different
versions of dSDN’s TE algorithm can coexist in the network, for
example during rollouts of software updates. In our existing cSDN
infrastructure we find that updates qualitatively changing the TE
algorithm are far less common than those that change other inter-
nals of the controller (e.g., improving efficiency, adding new func-
tionality, etc.). To support arbitrarily extending dSDN functionality,
exchanging additional information can be done by opaquely extend-
ing the NSU with additional custom fields, similarly to how IS-IS is
extended to carry arbitrary additional information via TLVs [39].

When updates to the algorithm do need to occur, we note that
source routing ensures forwarding correctness is maintained regard-
less – packets will always take the path decided by the headend,
and thus be loop-free. The principal concern is rather congestion
during the upgrade process due to the upgraded and old controllers
“mispredicting” each other’s traffic placement. We anticipate that
algorithm designers will evaluate this via simulation or emulation
before deployment of changes. If such congestion is of concern,
network operators can allow controllers to account for what algo-
rithm each other controller is using in their solver. For example,
in a network with three routers, if router A places traffic using
capacity-oblivious shortest-path while B and C use a TE algorithm,
routers B and C can first compute the paths A will place its traffic
on, then run their TE algorithm for the remaining traffic placement.
The information of which algorithm each router is using can be
included in the flooded NSUs. Alternatively, existing techniques
such as carefully ordering upgrades or leaving scratch space to
absorb such congestion [25, 31] can be used. We leave an in-depth
evaluation of this to future work.

3.3 Implementation

We prototyped the above design in approximately 22,000 lines of
Go for the controller itself and 6,800 lines of C++ for the TE algo-
rithm implementation, and have been running this prototype on
production-grade Arista routers in our test lab. Figure 6 shows the
prototype’s system architecture.
System Modularity. We split the TE solver and controller into
independent containers, with the former exposing a Solve API that
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Figure 6: dSDN implementation architecture.

takes the network state and demands and returns paths. This sepa-
ration allows the TE algorithm to be easily replaced, implemented
in a different language, or even migrated off-box onto an adjacent
server if further computational resources are required.

The controller itself is modular, with standalone components
that communicate via pub-sub bus as shown in Figure 6. Commu-
nication with other dSDN nodes, including neighbor discovery and
flooding NSUs, is handled by the NodeStateExchange module. The
StateDBmodule combines this stream of external updates with local
system readings taken by the LocalState module to produce a global
network view in what we call the NodeStateDB. The Pathing mod-
ule uses this view to compute a solution by calling the TE Solver
container, and the Programmer uses this solution to program paths
into the hardware’s forwarding tables. Additional supporting mod-
ules provide interfaces for monitoring internal state, debugging,
and configuration purposes.
gRPC Communication. The dSDN controller uses gRPC for all
external communication; gRPC entirely abstracts the data layer
(e.g., packet size management, data chunking) and ensures reliable
transfer [61]. To avoid requiring an address-discovery system, dSDN
further relies on IPv6 link local addressing and establishes a well-
known dSDN port. In contrast to protocols like IS-IS, this design
allows dSDN to cleanly isolate routing from communication details.

4 Consensus-Free Convergence
dSDN combines well-known techniques (flooding, source routing,
TE, etc.) into a novel synthesis. As a result, convergence in dSDN
plays out differently vs. both cSDN and traditional protocol-based
networks. The process by which a network converges after an event
— e.g., failure, change in link capacity or traffic demand — impacts
its performance and hence, as a precursor to our evaluation in §5,
we briefly review cSDN and dSDN’s convergence behaviors.

A network’s convergence time, 𝑇𝑐𝑜𝑛𝑣 , consists of three compo-
nents that manifest differently in cSDN vs. dSDN:
(1) Propagation Time (𝑇𝑝𝑟𝑜𝑝 ) is the time from when an event
occurs to when the TE controller in question learns about the
event. In cSDN, link state traverses the cSDN control infrastructure,
consisting of both hardware (CPN, servers) and software (operating
system components, and services such as topology discovery, etc.),
up to a single centralized controller over a time period 𝑇𝑝𝑟𝑜𝑝 . In
dSDN, NSUs traverse the data plane, with a different 𝑇𝑝𝑟𝑜𝑝 (𝑖) for
when each router 𝑅𝑖 learns of the changed state.
(2) Computation Time (𝑇𝑐𝑜𝑚𝑝 ) is the time it takes a controller to
run a TE computation with the new event information and gen-
erate updated paths. In cSDN, a single central controller runs this
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Figure 7: Convergence behavior for a single path for which 𝑅0 is the headend
when a network event occurs, such as a link down reported by 𝑅1. Arrows
represent communication: state notification (red), programming messages
(yellow), and acks (green).

computation over time 𝑇𝑐𝑜𝑚𝑝 . In dSDN, each router runs the TE
computation over time 𝑇𝑐𝑜𝑚𝑝 (𝑖) per router 𝑅𝑖 , with a start time
dependent on𝑇𝑝𝑟𝑜𝑝 (𝑖). We generally expect similar𝑇𝑐𝑜𝑚𝑝 (𝑖) across
routers.
(3) Programming Time (𝑇𝑝𝑟𝑜𝑔 ) is the time to install computed
paths at all routers. cSDN implementations typically implement this
by programming forwarding rules at each router [11, 25, 27], which
requires care in programming order as naively one can end up with
loops or dead ends when some routers in the path are updated
while others are not. The commonly deployed solution for this is a
two-phase programming process to properly make-before-break
paths. All paths are programmed in parallel. For each path of length
𝑛, first (a) all 𝑛 − 1 transit routers for the path are programmed in
parallel with their next hop. As they finish programming, they (b)
send acknowledgements back to the cSDN server. Upon receiving
all 𝑛 − 1 acknowledgements, (c) the cSDN server sends a command
to enable the new path and disable the old one at the headend
router. As mentioned in §2.2, each step in this process often requires
going through a hierarchy of layers [13]. By contrast, in dSDN,
programming is an entirely local process as the controller locally
programs only the paths it originates, and𝑇𝑝𝑟𝑜𝑔 (𝑖) is when all paths
originating from router 𝑅𝑖 are established.

We see the combined effect in Figure 7, which shows the se-
quence of messages sent and processed for a single path during
convergence after a network event in cSDN vs. dSDN. The full view
of convergence would show the controller programming all paths
in cSDN, and every router in dSDN receiving the event notifica-
tion and recomputing and reprogramming the paths it originates
accordingly.

Some final observations: first, since we run the same TE algo-
rithm in both cSDN and dSDN, their routes after convergence are
identical. Second, both cSDN and dSDN experience incremental
convergence across paths; that is, neither cSDN nor dSDN enjoy
simultaneous convergence. Rather, in both, different routers learn
their new paths at different times. The reason for this “drift” is
different for cSDN vs dSDN; in cSDN, it is due to distributed pro-
gramming, as the controller programs all paths in parallel. In dSDN,
it is because headends (and hence the paths they compute) con-
verge independently. In this sense, dSDN’s architecture does not
introduce a fundamentally different convergence behavior.

5 Evaluation
The primary benefit of dSDN is simplification. Quantifying sys-
tem simplicity/complexity is notoriously difficult [4, 10, 43] hence,
for now, we offer only anecdotal evidence: from Figure 3, dSDN
eliminates the vast majority of the components shown in green
and blue, retaining only: (i) a form of IS-IS for NSU flooding, (ii)
the TE component though moved to run on-box, (iii) a container
management module that runs on-box. In terms of code size, dSDN
represents well over an order of magnitude reduction in lines of
code for equivalent functionality.2 Nonetheless, we recognize that
the true value of dSDN’s simplification will only be apparent if,
after years of deployment experience, we see a reduction in major
outages. We hope to report on this in future work.

While we cannot assess dSDN’s impact on complex failures, we
can evaluate it using the standard metrics from SIGCOMM papers:
scalability, repair time after link/node failures (corresponding to
the “minor” outages in Figure 1), packet loss, and so forth. This is
our focus in this section. In other words, while dSDN is designed to
improve hard-to-quantify goals such as simplicity, we aim to show
that dSDN also fares well on standard metrics.

Thus our evaluation in this section focuses on two high level
questions. First, how does routing in dSDN compare to cSDN? To a
first order, the quality of a routing solution is determined by the
paths it selects. Picking low-cost paths that avoid congestion and
packet loss is the purview of the TE algorithm and, since cSDN
and dSDN run the same TE algorithm, their performance in this
regard will be identical. Beyond path selection, a routing solution’s
performance is determined by its convergence behavior: when a
network event occurs, a good routing solution must update its paths
quickly and with minimal packet loss. We thus evaluate the time
it takes a solution to converge after a network event (convergence
time) and the impact in packet loss during this convergence period
(transient impact).

The second high level question we evaluate is whether router
CPUs can handle the computation load that dSDN places on them.
This is important as dSDN moves TE computation from resource-
rich datacenter machines to resource constrained routers, and hence
we must show that this trade-off is practical.

5.1 Convergence Time

Metric. We define convergence time as the time from when a
network event occurs to when new routes reflecting the event are
installed at all routers. This is a standard metric used in prior work
and captures tail behavior experienced by traffic [18, 20, 35].
Methodology. Convergence time consists of 3 periods — 𝑇𝑝𝑟𝑜𝑝 ,
𝑇𝑐𝑜𝑚𝑝 , and 𝑇𝑝𝑟𝑜𝑔 — which we measure in this section. For cSDN,
we derive these measurements from our production network B4,
with TE running on datacenter servers. While this network is not
exactly identical to a dSDN deployment as its individual routers
are themselves made up of a Clos topology of switches, it provides
a real production convergence time comparison. As dSDN is not
deployed in production, we approximate its equivalent performance
as follows. For dSDN’s 𝑇𝑝𝑟𝑜𝑝 , we measure the propagation time of
IS-IS link-state update messages in B4. We believe this is a good
2The above discussion ignores the many systems used for monitoring, configuration,
and maintenance which we (perhaps conservatively) assume will remain similar in
complexity across cSDN and dSDN.
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approximation since dSDN’s NSU are propagated inline in amanner
similar to IS-IS updates.3

For 𝑇𝑐𝑜𝑚𝑝 and 𝑇𝑝𝑟𝑜𝑝 , as computation and programming opera-
tions in dSDN are entirely local to a router, we evaluate these times
by running our dSDN implementation on an Arista 7808 router. We
view this as a reasonable estimate of performance in production
because: (i) our prototype is production grade, (ii) our test router is
identical to routers deployed in our WAN, and (iii) the test work-
loads (topologies, network events, traffic demands, etc.) are drawn
from B4, reflecting our cSDN measurements.

For completeness, we also compare dSDN’s performance to
RSVP-TE since the latter is how capacity-aware routing is typi-
cally implemented without SDN, including in our B2 network and
elsewhere.
Data. The 𝑇𝑝𝑟𝑜𝑝 distribution for cSDN reflects 4,758 link failure
events over a period of 18 months; for dSDN it reflects 33,000 IS-IS
link-state events over a period of 27 months. The𝑇𝑐𝑜𝑚𝑝 distribution
is over 1,000 TE computations on a server-class machine for cSDN
and an Arista router for dSDN. Finally,𝑇𝑝𝑟𝑜𝑔 in cSDN reflects 26,723
programming events from a 10 day period, and in dSDN it reflects
the 1,000 paths computed when measuring 𝑇𝑐𝑜𝑚𝑝 .

5.1.1 Results: dSDN vs. cSDN in B4.

Figure 8 shows 𝑇𝑝𝑟𝑜𝑝 , 𝑇𝑐𝑜𝑚𝑝 , and 𝑇𝑝𝑟𝑜𝑔 for cSDN and dSDN
for our B4 network which has O(100) nodes and O(10k) demands.
Noting the varying Y-axis scales for each figure and, in particular,
the log scale Y-axis for 𝑇𝑝𝑟𝑜𝑝 and 𝑇𝑝𝑟𝑜𝑔 , we make the following
observations from these results:
(1) Average 𝑻𝒑𝒓𝒐𝒑 is ∼20x lower in dSDN than in cSDN. This
difference arises because updates in cSDN traverse a hierarchy of
software services across the router, edge controller, and collection
infrastructure from edge to top-level datacenters, while NSUs prop-
agate inband through routers’ forwarding planes. Though the cSDN
time could likely be optimized, we speculate that dSDN’s in-band
forwarding via router hardware is close to the minimal 𝑇𝑝𝑟𝑜𝑝 that
can be achieved.
(2) Average 𝑻𝒄𝒐𝒎𝒑 is∼35%higher in dSDN than in cSDN. Since
cSDN and dSDN run the same TE algorithm on the same inputs,
this gap stems primarily from the slower CPUs on the Arista router:
our dSDN controller runs on three 1.9GHz cores, while the cSDN
controller runs on forty 2.8GHz cores. We evaluate this further in
§5.3.
(3) Average 𝑻𝒑𝒓𝒐𝒈 is∼1000x lower in dSDN than in cSDN. This
difference is to be expected since programming in dSDN is a router-
local and single-step operation, while cSDN requires a two-phase
network-wide programming process across all routers (§4). The
magnitude of the difference is accounted for by tail effects in cSDN;
completing the programming of a path is gated by the slowest
response from any router on that path, and network-wide con-
vergence is gated by the slowest path. (See Appendix §B for a
breakdown of cSDN 𝑇𝑝𝑟𝑜𝑔 .)

These results raise an orthogonal question: can we optimize
cSDN’s convergence time by applying dSDN’s source routing to

3NSUs are larger that IS-IS messages as they contain additional demand information
however this adds little to𝑇𝑝𝑟𝑜𝑝 ; for a 200-node network with 5 traffic classes, demand
adds 4KB per router in the worst case (all-pairs demand), which adds less than 4 𝜇s of
transmission time on a 10 Gbps link.

cSDN? To our knowledge, no existing WAN uses strict source rout-
ing in this manner but we believe this is a promising optimization.
Nonetheless, even with this optimization, 𝑇𝑝𝑟𝑜𝑔 in cSDN remains a
non-local operation and hence higher than in dSDN.
(4) Overall convergence time: summing across components we
see that dSDN’s convergence time is 120-150x faster than cSDN.
Our goal with dSDN was to achieve simplification without cost
to routing performance. Our results show that not only is dSDN’s
convergence time well within current targets, it significantly out-
performs cSDN.

5.1.2 Results: dSDN vs. RSVP-TE in B2.
Figure 9 shows production measurements of the convergence

time in B2, our protocol-based WAN running RSVP-TE for capacity-
aware routing (§2.1). We compare this to dSDN’s convergence time
computed as in §5.1.1 but now with B2’s demand and topology as
input.

We observe that RSVP-TE achieves a median convergence time
of 45.5s and particularly poor tail behavior. This is because when a
link cut occurs, all the routers that act as the headend for a path
traversing the failed link simultaneously (but independently) race
to restore the affected paths, leading to a signaling “stampede.” In
our experience, and matching prior reports [11], RSVP-TE can take
10+ minutes to reconverge from the largest outages. In compar-
ison, we see that dSDN achieves a median convergence time of
approximately 29.8s seconds with much lower variance.

We make two additional observations. First, while Figure 9 fo-
cuses on convergence time, it is important to remember that dSDN
(and indeed, cSDN) significantly outperforms RSVP-TE in the qual-
ity of paths it computes and hence the network utilization it achieves.
Prior work reports up to a 60% increase in network utilization by
replacing RSVP-TE with centralized TE [25]. Second, we note that
dSDN’s convergence time on B2 is significantly higher than dSDN’s
convergence time on B4, which is almost entirely due to a longer
𝑇𝑐𝑜𝑚𝑝 because of B2’s larger topology and demands; we explore
scalability further in §5.3.

5.2 Transient Impact

Metric. Convergence time alone does not capture the performance
impact on traffic carried by the network during the convergence
period. Consider two alternate scenarios for a flow F during con-
vergence. In one, F experiences 1% packet loss for 100 seconds, and
in the other, F experiences 10% packet loss for 10s. The preferred
scenario depends on the operator’s service-level objective (SLO)
threshold; with the SLO set at 5% loss, the first scenario is better
as there is no SLO violation, but set at 0.5% the second scenario
is preferable as the SLO is violated for a shorter period. A further
consideration is priority or class of traffic; SLO violations for high
priority traffic would be deemed worse than for lower priorities.

Reflecting these considerations, we measure transient impact
with bad secondswhich captures both input duration andmagnitude,
which we obtain as follows. We group flows by their priority classes,
source metro, and destination metro area. Each of these flow groups
has an SLO threshold based on priority class: 99.99% (i.e., four 9s,
<0.01% loss) for the highest, and one “9” less for each subsequent
lower priority class. We say that a flow group violates its SLO if
more than 5% of flows suffer traffic loss beyond their threshold. At
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Figure 8: Individual components of convergence time in B4 for cSDN vs. dSDN.
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Figure 9: Total convergence time in B2
for RSVP-TE vs. dSDN.

any point in time, we define the blast radius as the fraction of all
flow groups that violate their SLO, and integrate blast radius over
the convergence period (from 𝑡𝑠 to 𝑡𝑒 in Equation 2) to obtain bad
seconds as our metric for a network event’s performance impact.
As an example, if for 100 flow groups converging over a 10 second
period, 50 violate their SLO for 5 seconds, then 10 of these continue
to violate their SLO for another 5 seconds, this totals 50

100 ∗5+
10
100 ∗5 =

3 bad seconds. This approach is summarized in Equations 1 and
2 and reflects internal best-practice for how we monitor WAN
performance.

blast radius =
# of flows violating SLO

total # of flows
(1)

bad seconds =
∫ 𝑡𝑒

𝑡=𝑡𝑠

(blast radius) d𝑡 (2)

Note that this implicitly captures the impact of differing conver-
gence times, as an equally “bad” outage that lasts longer will incur
a higher number of bad seconds.
Methodology. As transient impact depends on the detailed timing
of control events and traffic arrivals at each router, we turn to sim-
ulation to measure bad seconds since we do not have a large-scale
dSDN deployment. For this, we extend an in-house event-driven net-
work simulator used for capacity planning in our WAN to capture
transient convergence behavior. The simulator ingests topology,
traffic demand, and failure and repair information logged from our
production WAN and replays the same within the simulation, mod-
eling hop-by-hop message propagation over a data plane network
at the granularity of packets or flows. We run all simulations for
1,000 days of events.

Our simulator models the distributed behavior of dSDN as fol-
lows. Given a failure event, NSUs are propagated with a per-hop
propagation time determined by each link’s IGP metric.4 Upon re-
ceipt, a router runs TE for a duration we obtain by sampling from
the distribution of 𝑇𝑐𝑜𝑚𝑝 from §5.1.1. Programming time at that
router is similarly obtained by sampling from the distribution of
our prototype measurements of 𝑇𝑝𝑟𝑜𝑔 . Throughout this process,
data traffic continues to flow through the simulated network and
we measure the per-flow loss at each router over time, from which
we calculate bad seconds.

4We observe this to be consistent with measured IS-IS propagation times.

Since our simulator does not model individual components of
the cSDN control infrastructure, we simulate cSDN as follows. Cor-
responding to each link failure event, we model 𝑇𝑝𝑟𝑜𝑝 and 𝑇𝑐𝑜𝑚𝑝

by sampling from the measured distributions of these times in
production (§5.1.1). We simulate each path’s programming time
by sampling from two separate distributions corresponding to the
two phases of programming: one for the time to program all tran-
sit routers, and another for subsequently enabling the path at the
headend router.

For calibration, we also simulate a hypothetical “omniscient”
protocol that converges instantly: i.e., new paths are installed with
zero delay after a network event. Any packet loss in this case is
because the network has insufficient capacity to handle the offered
demand. Thus, comparing the bad seconds in cSDN/dSDN vs. in
the omniscient protocol allows us to clearly identify the portion of
bad seconds that is due to convergence effects vs. the fundamental
decrease in network capacity due to failure.

Finally, we note that in practice cSDN uses predefined bypass
paths [1], and dSDN will do the same. Here, we show results with-
out bypass paths in effect, since bypass paths can mask the impact
of poor convergence behavior. We show results with bypass paths
in Appendix §D, and confirm that these remain qualitatively un-
changed.
Results. Figure 10 shows the bad seconds in cSDN, dSDN, and
our omniscient protocol for our highest, intermediate, and lowest
priority traffic classes. We see that, as we move from higher to lower
priority classes, bad seconds increases for both cSDN and dSDN.
This is to be expected because TE prioritizes allocating paths to
high priority flows and hence the impact of capacity loss is greater
on lower priority traffic. We also see that the bad seconds in our
omniscient protocol range from zero (at our highest priority) to low
(under 1.98 at the lowest priority) showing that the vast majority
of the bad seconds in cSDN and dSDN are due to their convergence
behavior rather than any fundamental loss in network capacity.

Finally, we observe that in all cases, the number of bad sec-
onds is significantly lower in dSDN vs. cSDN. For example, at the
98%ile, high priority traffic in cSDN experiences 146.9 bad sec-
onds compared to 2.23 in dSDN, while for lower priority traffic the
bad seconds are 1122.9 vs 57.3 respectively. This is due to dSDN’s
faster convergence time: dSDN more quickly moves traffic from a
failed/congested path to a better path, and hence experiences loss
for a shorter period of time.
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Figure 10: Bad Seconds distribution for cSDN and
dSDN, for different traffic classes.

Figure 11: For traffic of intermediate priority, bad
seconds distribution with churn rate (frequency of
events) 10x and 20x.

Figure 12: Timeline of blast radius (% of impacted
flows) in the lowest priority class, for a selected fail-
ure event.

Figure 12 shows the impact timeline of a single failure within
our simulator. In dSDN, each headend converges independently
and we see this in the timeline: spikes in loss occur intermittently
during convergence due to congestion as some traffic moves onto
links on which other traffic still remains, falling as more and more
headends reprogram their paths. A similar pattern is seen in cSDN,
albeit with an increased repair timeline.
Increasing Churn.While the above results show that dSDN fares
well under realistic failure scenarios, we want to verify that it con-
tinues to do so under more pessimistic assumptions. We thus repeat
our simulations while artificially increasing the rate of failures,
which we call the churn rate. Figure 11 shows the bad seconds
for the intermediate priority class when increasing churn by a fac-
tor of 10x and 20x from the baseline failure rate. At these higher
churn rates, it is often the case that one event occurs while the
network is still converging after a previous event. We see that, as
expected, with a higher churn rate, impact per event grows but
dSDN continues to perform better than cSDN. For example, in the
P-intermediate class, for a 10x (20x) higher churn rate, the median
bad seconds for cSDN is about 22x (17x) that of dSDN.

In summary, we conclude that dSDN’s decentralized approach to
convergence does not lead to worse performance. On the contrary,
dSDN typically achieves lower convergence time and incurs fewer
bad seconds relative to our current implementation of cSDN.

5.3 Scalability

Our results above show dSDN’s simplifications do not impact —
and in fact, improve on — the performance of our current network.
However, they do reveal a trade-off: on B4, while dSDN’s 𝑇𝑝𝑟𝑜𝑝
and 𝑇𝑝𝑟𝑜𝑔 are considerably faster than cSDN, the 𝑇𝑐𝑜𝑚𝑝 portion is
35% longer because of the fundamentally more constrained CPU
resources on the router. While this trade-off works in our current
network, we must evaluate whether it might become problematic
as the network evolves.
Methodology To answer this question, we focus on our larger
(less abstracted) B2 topology as it is the more computationally
challenging case for TE: relative to B4, our B2 network has 30x
more flows across approximately 6x more nodes and 10x more
links. As our performance target for dSDN, we pick the average

convergence time that B2 achieves today in production using RSVP-
TE since this is clearly an acceptable level of performance in practice:
106.6s as reported in §5.1.2. Figure 9 showed that dSDN’s average
convergence time on B2’s topology and demand was 29.8s, well
below our target of 106.6s. On B2 data, dSDN’s𝑇𝑝𝑟𝑜𝑝 and𝑇𝑝𝑟𝑜𝑔 are
O(100ms) and hence 𝑇𝑐𝑜𝑚𝑝 is by far the largest contributor to this
overall convergence time. As such, going forward, we ignore 𝑇𝑝𝑟𝑜𝑝
and𝑇𝑝𝑟𝑜𝑔 and focus on𝑇𝑐𝑜𝑚𝑝 . While this section focuses primarily
on B2, we also consider additional internal and external topologies,
including B4, later in this section.

We evaluate dSDN router performance by running our dSDN
prototype on our Arista test router (with six 1.9GHz cores), and for
comparison with cSDN, running TE on a data center server (with
forty 2.8GHz cores).

5.3.1 Results
Impact of available CPU capacity on 𝑻𝒄𝒐𝒎𝒑 . Figure 13 plots
how 𝑇𝑐𝑜𝑚𝑝 is affected as we increase the number of cores available
to the dSDN controller and the datacenter solver. We make a few
important observations. First, 𝑇𝑐𝑜𝑚𝑝 even with just a single core is
well under our threshold of 106 seconds. Second, comparing 𝑇𝑐𝑜𝑚𝑝

on the router vs. server, we see that faster cores improve 𝑇𝑐𝑜𝑚𝑝

by as much as 41%. Third, while we see an initial improvement
in 𝑇𝑐𝑜𝑚𝑝 by adding more cores, this improvement flattens out at
approximately 5 cores on both the router and server. This flattening
is because of the limits to parallelization of our current TE algorithm
that serializes on the final step in flow assignment.5 This tells us
that selecting routers with higher speed CPUs, without necessarily
changing the number of CPUs per router, will improve dSDN’s
performance. Since a router’s control CPU is a very small portion
of the overall power and cost budget of the router, we view this as
a modest and practical change that yields valuable improvements
in 𝑇𝑐𝑜𝑚𝑝 .
Impact of network evolution on 𝑻𝒄𝒐𝒎𝒑 . Next, we examine how
𝑇𝑐𝑜𝑚𝑝 scales as the network evolves. In general, TE runtime in-
creases with network size, the number of flow demands, and the
difficulty of allocating flows [11, 34, 49]: with decreasing available

5To our knowledge, this is true of current TE algorithms in the literature [11, 25, 27].
An open question is whether there are better parallel algorithms for TE that one might
leverage.



A Decentralized SDN Architecture for the WAN ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

0 2 4 6 8 10 12 14 16
Number of Cores

20

40

60

80

100

120

Ti
m

e 
(s

) Datacenter Server
Arista Router
RSVP-TE Convergence Time

Figure 13: 𝑇𝑐𝑜𝑚𝑝 under varying numbers of cores
running TE for B2, truncating at 16 cores for legibility
as the graph remains flat up to the max 40 cores.
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Figure 14: 𝑇𝑐𝑜𝑚𝑝 for B2 with increasing traffic
demand sizes on a static topology.
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Figure 16: dSDN Runtime on B2 as it has grown in size over a period of three
years, approaching 1000 nodes at the rightmost bar in the figure.

capacity, the TE algorithm requires additional iterations to find
viable paths.

Thus, for our first “stress test”, we repeat the above experiments
using our B2 topology while artificially scaling the traffic demand
by a constant multiplier, representing demand growth in a constant-
sized network. We set the number of router cores available to dSDN
to 4 in these experiments, guaranteeing at least 2 cores are available
for other router control plane use. Figure 14 shows the resultant
𝑇𝑐𝑜𝑚𝑝 ; we see that runtime grows roughly linearly with increasing
demands but remains under our threshold of 106.6 seconds even if
our current demands were to double.

A more realistic evolution would simultaneously scale both the
demands and topology (capturing the addition of new links and
increased link capacity). To model such evolution, we look at his-
torical snapshots of B2’s demand and topology over a 3-year period.
Using the same experimental setup as above, we measure 𝑇𝑐𝑜𝑚𝑝

for each snapshot to obtain the trend in 𝑇𝑐𝑜𝑚𝑝 shown in Figure 16.
Under the assumption that future growth will follow historical
trends, we can extrapolate the scaling trend from Figure 16 to when
𝑇𝑐𝑜𝑚𝑝 intersects our threshold of 106.6s. We find that dSDN can
perform within our performance target for nearly 15 years into the
future. We note that this is a conservative estimate, as it assumes
no change to router CPUs or to RSVP-TE’s convergence time over
this period.

In summary, our results so far show that dSDN can significantly
lower the convergence time of our current network and that, even
for a large production network, router CPU resources can ade-
quately support dSDN’s computational requirements, and can do
so into the future.

𝑻𝒄𝒐𝒎𝒑 for other networks. To verify that our results hold for
other networks, Figure 15, focusing on the blue bars, shows 𝑇𝑐𝑜𝑚𝑝

for a variety of topologies, including B4 (using production traf-
fic demands) and external networks from the open TopologyZoo
dataset [30] ranging in size from 11 to 197 nodes. For the exter-
nal networks, we generate traffic demands using a gravity-based
model [52], as done in prior work [49, 63].
Performance optimizations. While our results show that dSDN
performs well even with current routers and TE implementations,
we see technological and algorithmic opportunities to reduce dSDN’s
𝑇𝑐𝑜𝑚𝑝 . On the technological side, Figure 13 shows the performance
gains if vendors were to upgrade to higher speed cores. In addition,
there are likely algorithmic optimizations that can be implemented
in the near term, e.g., pre-computation, incremental computation,
and more aggressive parallelism.We briefly explore one such option
here: pre-computing the first shortest path for each (source, desti-
nation) pair to be considered by the solver. Originally, our solver
recalculated the shortest path any time available capacity changed.
Instead, we now pre-compute shortest paths, and at runtime check
that the path still has nonzero capacity, rerunning Djikstra’s when
this is not the case. This cache only needs to be recomputed if
a new link is added to the topology in a network upgrade event,
but remains valid for any capacity changes including full loss and
restoration of an existing link’s capacity. We repeat the experiments
from Figure 15 with caching enabled. Our results — in orange bars
on Figure 15 — indicate that caching alone can speed up compu-
tation by up to 2.5x for the largest topology. We leave exploring
additional optimizations to future work.

6 Related Work
SDN in WANs. A rich body of work describes the evolution of
modern hyperscalar WANs [11, 12, 14, 25–27, 32]. We view dSDN
as a further evolution of SDN by moving its goals and principles
back onto the router, an option that was unavailable to early SDN
practitioners.
NetworkComplexity andAvailability.Network complexity and
its impact on network availability has been examined by prior work.
In particular, Govindan et al.[19] undertake a comprehensive re-
view of failures in Google’s network and offer general guidance
on improving diagnostics, management, and configuration. They
highlight the pitfalls of complexity and the importance of designing
for availability but do not explicitly advocate simplified designs.
Designing for Availability. Noting that “configuration and soft-
ware bugs are inevitable,” Krishnaswamy et al. [31], take a different
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approach from us. Their BlastShield architecture partitions the
WAN into roughly-geographical vertical slices, each with its own
control infrastructure and a controller running inter- and intra-slice
routing. This contains the blast radius of a failure to one slice. In a
related approach, Meta’s EBB [11] slices the network horizontally
into 8 parallel global networks, each with independent control in-
frastructures. Unlike dSDN, both EBB and Blastshield still rely on
external control infrastructure for each slice, and differ from dSDN
on details such as the use of source-routing vs. per-hop forward-
ing rules. We note however that the general principle underlying
EBB and Blastshield is that of sharding the network and could be
applied to dSDN. Specifically, dSDN could run on a horizontally
sharded network (akin to EBB) thus containing data plane failures
to a single shard. Therefore we view sharding as orthogonal but
complementary to the question of external vs. inband control and
leave it to future work to investigate the design of a sharded dSDN
network.

OneWAN [32] reports on Microsoft’s efforts to unify their sepa-
rate WANs. Unification can be viewed as a form of simplification
that is orthogonal and complementary to dSDN’s approach of re-
moving external control infrastructure.
Onbox Controllers. Custom code on routers has been explored
with different methods [9, 22, 38], running simple functions such
as traffic probing, telemetry collection, and tunnel switching [11,
31, 32]. dSDN differs in that we move all functions of a traditional
cSDN controller onto the router and do so on standard vendor
routers. The Path Computation Element (PCE) [54] working group
of the IETF has been working on enabling the extraction of the
computation portion of traditional algorithms into a self-contained
module that can be moved off of the router, in contrast to dSDN
which moves centralized computation onto routers.
Source Routing. Many papers propose creative uses of source-
routing – e.g., pathlet routing [17] constructs paths by concatenat-
ing smaller "pathlets" that are disseminated in-band, while FCP [36]
marries source-routeswith failure annotations for guaranteed packet
delivery, and industry solutions propose schemes for "loose" source
routing using waypoints [15] for improved scalability. dSDN’s main
contribution is the context in which we apply source routing and a
practical approach to implementing strict source routing.
TE. There is extensive literature on TE solutions [11, 27, 34, 45,
46, 53, 59]. Previous work has also examined decomposing TE al-
gorithms into domain-local [31] and node-local [50] formulations,
which we do not do here — we run TE with a global view of the
network state. dSDN does not innovate on the TE algorithm itself
but rather on how we deploy it.

7 Conclusion
The placement of functionality is a fundamental decision when
architecting a network, impacting both its technical solutions and
who commands innovation. The architecture of network control
planes has evolved from decentralized and inband control planes
that favor vendor-driven innovation, to SDN’s centralized and ex-
ternal control plane that favors operator-driven innovation. The
contribution of our paper is in demonstrating the feasibility of a
new design point, one based on decentralized and inband control
but that favors operator-driven innovation. We believe this design
point allows us to retain the benefits of SDN, while simplifying

network infrastructure and hence improving availability. We view
dSDN as a first step that we hope enables future investigations into
the technical solutions and implications of this new design point.

Our work raises no ethical concerns.
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Appendices
Appendices are supporting material that has not been peer-

reviewed.

A MPLS Sublabels
As mentioned in §3.2, modern routers support pushing 12 MPLS
labels which is enough for our operational production path lengths
to be able to do strict source routing. However some networks
may either be more constrained in the number of MPLS labels
supported due to comprising older hardware, or have higher opera-
tional requirements requiring path lengths of greater than 12. These
situations require considering alternative dataplane techniques.

A.1 Compressing Strict Paths

One common solution is to use loose source routing in which a
subset of nodes in the path are picked as waypoints, shortening the
number of header labels necessary [11, 31]. However this requires a
separate underlay, such as IS-IS, to provide the connectivity between
waypoints, which goes against our goal of simplification.

To enable strict source routing using fewer labels, we propose
a scheme we call MPLS Sublabels, in which we encode multiple
router hops with a single label. Importantly, our sublabel encoding
scheme is done with no coordination across routers beyond the
standard initial link-state exchange, so maintains our "consensus-
free" property (§3.1).

In our scheme, we split a single MPLS label into a number of sub-
labels, each corresponding to a specific directed link. The link subla-
bels are configured by the operator for each router and distributed
in NodeStateUpdate messages. In our implementation, these sub-
labels are 10 bits, allowing two sublabels to fit in one MPLS label
as shown in Figure 17, uniquely representing a pair of subsequent
edges along the route.

Naively, in a network with 𝑛 (directed) links there are 𝑛2 unique
pairings of links, which grows very large as 𝑛 approaches its max-
imum (unique) value of 1024 and thus the resultant MPLS labels
may not fit into limited hardware memory. Our key observation
is that the space of possible pairs of sublabels that can occur in
a single MPLS label is (a) severely restricted by the fact that only
adjacent links can show up as a pair of sublabels, and (b) entirely
derivable from the information each node knows about its direct

DataIP HeaderMPLS Header

3 1 8
EXP S TTLsublabel1 sublabel2

10 10

Figure 17: The MPLS header contains 20 bits of label space, along with 12
other bits. In subsequent figures we omit the 12 extraneous bits and show just
the portion containing the two sublabels.
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Figure 18: Network-level view of how sublabels-based packet forwarding is
experienced. Only traversed edge labels are included. Crosses denote a label
being popped after lookup.

neighbors. The first observation means that for a network with
max degree 𝑘 , there are at most 2𝑘2 feasible MPLS entries formed
from adjacent pairs of sublabels6 for each router that thus need
to be programmed into its hardware. Notably, this number grows
with the average degree but is independent of the total number
of routers or links. In our WAN, this would result in an average
MPLS table size of a few hundred entries and a worst case of a few
thousands of entries, both of which comfortably fit in the many tens
of thousands limit of standard hardware. The second observation
means that this set of labels can be programmed without needing
any central or distributed coordination.

To populate a router’s static lookup table, we enumerate all
possible pairs of sublabels that a router could see, as shown in Table
1. For each created label, we encode an egress port and associated
action — either keeping the label if forwarding along the first link in
the pair, or popping it if forwarding along the second, thus revealing
the next label to the subsequent router.

To program a source route, the ingress router compresses it into
pairs of link sublabels and puts the resulting label stack into the
forwarding table. Odd-length paths are paddedwith a null-sequence
sublabel Ø, which is a 10-bit sequence of 0s. More concretely, for
any given node 𝑅, let ℓ𝑅

𝑖𝑛
represent the sublabel for any ingress link

to 𝑅, ℓ𝑅𝑜𝑢𝑡 represent the sublabel for any egress link from R, and ℓ𝑁𝑜𝑢𝑡
represent any egress link from 𝑅’s neighbor 𝑁 . Then for a node
𝑅, its MPLS forwarding table is made up of four types of entries
with full MPLS label keys and (action, interface) pairs as values as
shown in Table 1.

These entries are computed and installed at a router once it has
received updates from all of its neighbors, and remain static for a
given topology.

6We can see this from Table 1; in a single router’s forwarding table, there are 𝑘 (𝑘 −
1) + 𝑘 (𝑘 − 1) + 𝑘 + 𝑘 valid and loop-free unique combinations of sublabels.

https://kubernetes.io/
https://kubernetes.io/
https://blogs.cisco.com/networking/application-hosting-on-catalyst-9000-series-switches
https://blogs.cisco.com/networking/application-hosting-on-catalyst-9000-series-switches
https://arstechnica.com/information-technology/2019/06/the-catch-22-that-broke-the-internet/
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Label Action Out Interface

concat(ℓ𝑅
𝑖𝑛
, ℓ𝑅𝑜𝑢𝑡 ) pop_label 𝑖𝑛𝑡 𝑓 (ℓ𝑅𝑜𝑢𝑡 )

concat(ℓ𝑅𝑜𝑢𝑡 , ℓ
𝑁
𝑜𝑢𝑡 ) keep_label 𝑖𝑛𝑡 𝑓 (ℓ𝑅𝑜𝑢𝑡 )

concat(ℓ𝑅
𝑖𝑛
, Ø) pop_label 𝑖𝑛𝑡 𝑓 (𝐼𝑃 𝐷𝑒𝑠𝑡)

concat(ℓ𝑅𝑜𝑢𝑡 , Ø) keep_label 𝑖𝑛𝑡 𝑓 (ℓ𝑅𝑜𝑢𝑡 )
Table 1: The resultant MPLS forwarding entries at a single router in general
form, where “concat(a,b)“ means combining sublabels 𝑎 and 𝑏 into a single
20-bit MPLS label, and “intf” means interface.

A.2 Handling Large Networks

The routing scheme as described above naively requires global
uniqueness for sublabels. However, large networks will likely have
more links than the 1024 unique values possible with 10-bit subla-
bels. Using a trick frompast work [17], we relax the label-uniqueness
constraint to require only local uniqueness: as long as each node
can unambiguously pick the next interface on which to send the
packet based on the pair of sublabels it sees, the path can be validly
followed.

Hence, the link IDs a node advertises can be any 10-bit ID for
each link as long as all possible valid pairs of link IDs that any given
router could see are unique.

Assigning sublabels to links to satisfy this requirement is ef-
fectively a variant of the multigraph edge coloring problem [56],
where the uniqueness constraint is on the possible MPLS labels
(pairs of sublabels) that a router could see. From Table 1, we see
that for a network with max degree 𝑘 , ensuring that for any node
the labels for its ingress and egress links are mutually unique guar-
antees no combined MPLS label collisions, and requires a total
of 2 × 𝑘 globally-unique sublabels. Thus we can easily encode
edges for a large network with a maximum degree of 50, using
𝑐𝑒𝑖𝑙 (𝑙𝑜𝑔2 (2 × 50)) = 7 bits, which is within our limit of 10 bits per
label, and leaves ample room for future growth in node degree up
to 512.

B cSDN Programming Tail Performance
In §4we explain the per-hop-programming process that many cSDN
systems use, and in §5.1.1 we measure the overall 𝑇𝑝𝑟𝑜𝑔 for such a
system and find it to be quite long, with a median of over 50s.

To better understand the measurements in §5.1.1 and to inform
the simulation we do in §5.2, we examine logs from cSDN program-
ming infrastructure and routers to characterize the performance
of path programming in B4. Programming a full path of 𝑛 routers
requires 𝑛 − 1 transit entry programming events that occur in par-
allel and establish each hop of the path, followed by one headend
encap entry event that enables directing traffic onto the path.

We observe the transit entry programming times to vary greatly
between routers at all percentiles (median, 90th, 99th) by a factor
of 10, and varying per-router 4x-11x between the median and the
99th percentile, going upwards of 70 seconds at the tail at the most
loaded routers.

Figure 19 shows a distribution from a two-week period over a
total of 433,210,304 entry programming events of transit and encap
programming times, aggregated over all routers in the solid line
and for the slowest router in the dashed line. The slowest router is
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Figure 19: Distribution of transit entry and encap entry programming times
across all routers and for the most heavily loaded router.

unfortunately slow precisely because it is most loaded and transits
the most paths, thus multiplying its impact.

In conclusion, this provides insight on why the total 𝑇𝑝𝑟𝑜𝑔 in
such a system is particularly long; the two-phase programming
operation described above means programming a path is gated by
the slowest response from transit entry programming along that
path, and network-wide convergence is gated by the slowest path.

C Smart Fast Reroute (FRR)
Link failures can range from partial to complete capacity loss. In
the case of complete capacity loss, the router is no longer able
to forward any packet on the downed link. However during the
reconvergence period, traffic may still arrive from a stale headend
intended to traverse the downed link. To ensure this traffic is not
dropped, existing systems use a Fast Reroute (FRR) mechanism
to pre-install backup paths for links to go around the failure and
continue on the intended path. These backups are critical to meeting
SLOs during convergence, and are typically picked to be the shortest
alternate path between a link’s endpoints [1].

However, because TE does not reserve this backup capacity, this
can result in considerable congestion on backup paths during large
reconvergence events leading to dropped traffic. An analysis of our
WAN shows that FRR congestion is a leading cause for performance
incidents, lasting up to several minutes and impacting hundreds of
flows. We explore using dSDN’s position on-box and knowledge
of demand and capacity to select bypass paths dynamically and
more intelligently, in a capacity-aware manner. Because dSDN acts
in-band and has a complete view of traffic demands, it can com-
pute bypasses with high capacity and recompute them as demand
changes, unlike the static bypasses established by RSVP-TE.

We evaluate 3 custom FRR strategies against the traditional short-
est path FRR selection. These strategies choose one or more bypass
paths for each failure and make use of capacity and diversity con-
straints. Given a failed link, the strategies considered compute
bypasses as follows:

(1) FRR: Choose the shortest path between the endpoints of
the failed link. This replicates the existing behavior in our
production WAN.

(2) Capacity-Aware FRR: Choose the path between the link’s
endpoints with the highest spare capacity.
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# FRR Capacity
Aware

k Shortest
Paths

k Capacity
Aware Paths

1 5.51% (1) 6.24% (1) 2.53% (1) 0.0% (1.24)
2 2.09% (1) 0.24% (1.06) 1.16 % (1) 0.0% (1.09)
3 1.25% (1) 0.0% (1.02) 0.08% (1) 0.0% (1.02)
4 1.58% (1) 0.25% (1.02) 0.11% (1) 0.0% (1.08)
5 1.54% (1) 0.03% (1.06) 1.34% (1) 0.0% (1.08)
6 1.20% (1) 0.13% (1.16) 1.09% (1) 0.0% (1.19)

Table 2: Blast radius and (median end-to-end latency inflation) for affected
high priority traffic, for 6 performance alert instances, for each bypass strategy.
Blast radius is defined as the % of metro pairs between which flows are degraded
beyond the SLO).

(3) Multi-path FRR: Choose the 𝑘 shortest paths between
endpoints. For each impacted flow, pick either the shortest
bypass path with enough spare capacity or pick the highest
capacity bypass. We experimented with different values of
𝑘 and chose 𝑘 = 16 as a balance between state size and
effectiveness.

(4) Capacity-Aware Multi-Path FRR: Choose 𝑘 paths with
the most spare capacity and load balance across them.

We simulate a sample of the six most impactful performance
alerts that were attributed to FRR congestion over a 14 day pe-
riod. As done in §5.2, we measure blast radius — the instantaneous
impact during convergence — after the link failures and before
any repathing for high priority traffic. As we move away from the
shortest bypass paths, we also consider the relative end-to-end
latency inflation for paths impacted. These metrics are shown in
Table 2 for the highest priority traffic class. We find that having
smarter bypass strategies would have mitigated the availability hits
completely in all six scenarios. Having multiple capacity-aware
bypasses for each link eliminates drops for the cases analyzed, but
we leave a thorough exploration of strategies for future work.

While the latency inflation from longer paths is mostly harmless,
it may be more than 20%, as shown in the table. This is an inherent

trade-off, and can be tuned to match operator preference by adjust-
ing relative priorities of capacity and latency when selecting FRR
paths.

D Transient Impact with Bypasses
As shown in the previous section, bypass paths for failed links can
mitigate impact during convergence. Here, we evaluate cumulative
impact for cSDN and dSDN, similar to §5.2, but with bypasses in
effect. This is shown in Figure 20. The strategy used to select bypass
paths is the capacity-aware multi-path strategy explained in the
previous section. We measure the distribution of cumulative impact
over network events sampled for a typical day in production.

We continue to see that dSDN’s impact is much lower than in
cSDN. Note that while bypasses here are not able to completely
eliminate impact for lower priority traffic, they still lower this
impact.

Figure 20: Distribution of cumulative bad seconds over a day’s worth of
network events, for cSDN and dSDN, with and without bypasses in effect. An
omniscient instantly converging protocol is shown as a baseline. Highest to
lowest traffic classes are shown from left to right. The figure shows the 2nd,
25th, 50th, 75th, and 98th percentile points in the distribution of measured bad
seconds.
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