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Abstract

Connected TV (CTV) devices blend characteristics of digital desktop and mobile devices – such as the
option to log in and the ability to access a broad range of online content – and linear TV – such as a living
room experience that can be shared by multiple members of a household. This blended viewing experience
requires the development of measurement methods that are adapted to this novel environment. For other
devices, ad measurement and planning have an established history of being guided by the ground truth
of panels composed of people who share their device behavior. A CTV panel-only measurement solution
for reach is not practical due to the panel size that would be needed to accurately measure smaller digital
campaigns. Instead, we generalize an existing approach used to measure reach for other devices that combines
panel data with other data sources (e.g., ad server logs, publisher-provided self-reported demographic data,
survey data) to account for co-viewing. This paper describes data from a CTV panel and shows how this
data can be used to effectively measure the aggregate co-viewing rate and fit demographic models that
account for co-viewing behavior. Special considerations include data filtering, weighting at the panelist and
household levels to ensure representativeness, and measurement uncertainty.

1 Introduction

Connected TV (CTV) refers to a TV set connected
to the internet. The internet connection may be pro-
vided by a Smart TV device, a digital media player
(e.g., Fire TV Stick or Chromecast), or a gaming
console. High-quality measurement for CTV is criti-
cal. CTV advertising spend in the US was expected
to total 24.6 billion USD in 2023 and is expected to
rise to 34.3 billion USD by 2025 [3]. Additionally,
among advertisers who increased CTV spending in
2023, 37% reallocated budgets from linear TV [9].

CTV is a different type of digital device with
unique challenges that require device-specific mod-
eling. It differs from other digital devices (e.g., desk-
top and mobile devices) in that the watchtime ses-
sions are typically longer, the content is consumed
in a lean-back environment, the same device can
be shared by multiple people, and there is a higher
likelihood that multiple people are viewing the con-
tent together. This living room co-viewing behav-
ior is prevalent on TV screens when people consume
live linear TV content. However, in the CTV set-
ting, users have the ability to log in or consume
content anonymously, have access to more content
in a broader range of formats, are served real-time
content suggestions, and experience more friction in
switching between content providers (c.f., channel
surfing on linear TV).

More fundamentally, CTV measurement is
needed for effective and efficient ad serving, accu-
rate ad measurement for reporting, and reach plan-
ning (i.e., which demographic groups can be reached
and how to reach them). These needs are addressed
with the capability to determine the number of peo-
ple watching and their demographics.

Well-established models have been developed to
measure the reach of digital campaigns [7, 6, 8].
These models use data from multiple sources to com-
pute audience reach metrics, including ad server logs,
publisher-provided self-reported demographic data,
census data, and panel data. As a consequence, it
is sometimes referred to as a “hybrid approach” to
reach measurement. This same approach also works
for measuring CTV reach, if it is generalized to ac-
count for the prevalence of co-viewing on CTV.

More than one approach has been used to under-
stand and characterize co-viewing behavior on CTV.
In a previous paper, Fan et al. demonstrated how
survey data can be used to identify variations in the
co-viewing rate with respect to key variables, such as
viewer demographics (e.g., gender and age), time of
day, and video genre [4].

The survey used to collect co-viewing data is on-
going and consists of a single question: “including
yourself, how many people are watching this TV
right now?”. There are five answers to choose from:
“1”, “2”, “3”, “4 or more”, or “Prefer not to an-
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swer”. There is also an option to skip the survey.
The survey question appears before a YouTube video
shown on a CTV screen by replacing the pre-roll
ad that would otherwise be served before the video.
For each survey response, the following are known
from the ad impression log data: the demographic
label of the logged-in user, the time at which the
response was logged, and the genre of the video fol-
lowing the survey. Users cannot receive the survey
more than once every 35 days, so the survey re-
sponses can be assumed to be independent observa-
tions. This survey is highly scalable across the vast
YouTube CTV user base, allowing for cost-effective
and time-efficient data collection on an international
scale. This scale allows for a large sample size and
a reliable understanding of how key variables influ-
ence the co-viewing rate. Nevertheless, the survey is
a single-question format that is subject to potential
non-response bias and does not provide visibility into
ground truth viewer demographics or how individual
viewing behavior varies across time and across dif-
ferent CTV apps. So, this survey is not a complete
solution to characterizing co-viewing for CTV mea-
surement.

In this paper, we describe how high-quality panel
data can be used to supplement surveys in provid-
ing CTV measurement. A panel is a group of peo-
ple who are recruited to be representative of a target
population and consent to share behavioral data that
would not otherwise be available (e.g., who is watch-
ing, how long they watch, how frequently they watch,
etc.). The data is collected in a continuous manner,
meaning that we obtain repeated measurements for
each panelist over time. Compared to survey data,
the panel data is far more comprehensive and rich.
It provides viewing behavior over time and across
apps, and panelist activity can be merged with demo-
graphic data to provide measurement of co-viewing
demographics. However, panel recruitment can take
several months or years and this limits the scale at
which panel data can be collected.

The scalability of the survey data and the richness
of the panel data are highly complementary. Com-
bining the scalability of survey data with the rich-
ness of panel data provides a set of tools that makes
it possible to reliably understand and measure CTV
behavior. Panel data is used to estimate an overall
co-viewing rate and understand demographic view-
ing behavior (i.e., who is watching with whom). On
the other hand, survey data is used to execute more
granular co-viewing rate modeling, allowing for rela-
tive co-viewing rate adjustments by country, demo-
graphics, time of day, and video genre.

In §2 we describe key elements of the US CTV
panel, such as recruitment, metering, demographic

composition, and weighting to ensure demographic
representativeness. In §3 we delineate the ground
truth data provided by the panel. In §4 we describe
the modeling components needed to measure CTV
using panel data.

2 About the Panel

The panel described below was recruited to provide
visibility into CTV viewing behavior. The ground
truth data generated by this panel plays a key role
in CTV measurement.

2.1 Recruitment

The data used in the analyses described below comes
from a panel that is probabilistically recruited using
address-based sampling to ensure that it is repre-
sentative of the US population. Address-based sam-
pling frames are the best sampling frames available
for national US household surveys [5]. During the en-
rollment process, prospective panelists are asked to
complete a survey to describe themselves and their
household and to assess eligibility. Those who have
an internet connection and own a CTV device are
deemed eligible for panel membership. Panelists also
enroll desktop and mobile devices, which makes this
a full cross-screen panel and opens the possibility for
cross-device/cross-household measurement.

2.2 Metering

Panelists install digital and TV meters and are pro-
vided with a network device. The network device is
used to detect CTV devices, collect YouTube content
and ads, and collect signals used for user prompting.
The TV meter supports a custom app and is the in-
terface for panelists to pair their CTV devices and to
attribute user-level viewership. The user interface in-
cludes a tile for each registered panelist in the home,
as well as a “GUEST” tile. Users proactively indicate
they are watching the TV screen, or reactively when
prompted, by simply clicking on the tiles. Clicking
again indicates that they are finished watching.

2.3 Demographic Composition and
Weighting

During registration, panel members provide impor-
tant demographic information about themselves and
their household. Demographic data enables compar-
isons and calibration to US CTV population data.
As part of the privacy policy, panel membership is
restricted to those who are 13 years or older.
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To ensure demographic representativeness,
weights are generated to correct for any deviation
from benchmarks. Weights are calculated at the
panelist and household levels using different weight-
ing algorithms and calibrated against different tar-
get benchmarks, such as the US internet population
and the US CTV population. For CTV measure-
ment, we use the empirical calibration algorithm,
which is based on the generalized regression esti-
mator (GREG), to match the panel against the
US CTV population on relevant dimensions [10].
There are many calibration methods available. How-
ever, we choose the empirical calibration algorithm
because it performs well at aligning the panel to
the population, while having the lowest variance
among competing methods in our experience [7].
The weighting algorithm works by minimizing the
L2 norm of the weights vector subject to matching
the marginal distributions between the sample and
the target population for the demographic variables
of interest. First, household-level weights are cal-
culated using attributes relevant to CTV measure-
ment, such as household size and household income.
Next, panelist-level weights are calculated using the
household-level weights as baseline weights. These
weights are calculated using relevant individual-level
attributes, such as gender and age. It can be shown
that minimizing the norm of the weights can be
expressed as maximizing the effective sample size.1

This formulation is useful in that it is more sugges-
tive of the bias-variance tradeoff at play: weights
help to decrease the bias in our measurement at the
cost of increasing the variance. To straddle this bias-
variance tradeoff, we may post-process the weights
and therefore not match the target distributions
exactly.

In Figure 1, we showcase an application of the
household-level calibration weights. We present the
marginal household size and household income distri-
butions for the population benchmark and the panel,
after applying household-level weights. The weights
ensure that the weighted panel distributions closely
match the population benchmark distributions. Any
minor differences in the distributions may be at-
tributable to post-processing of the weights.

3 Measurement Data

Viewing activity on CTV is decomposed into con-
stituent playback sessions. A new playback session
is created any time a new video plays on the TV
screen or a user indicates a change in the attributed
viewers behind the screen. The latter point means

that a single video may be split across multiple play-
backs if the attribution data changes. When joined
together, the logged playback sessions data and attri-
bution data indicate which viewers watched a play-
back session. These viewers may include panelists or
guests. In addition to the list of viewers, we collect
the start time and end time of each playback session,
which makes it possible to calculate session duration.
This is particularly useful for producing watchtime
distributions and for calculating watchtime-weighted
statistics.

Because attribution data is collected across the
length of a playback, there is no particular position in
the playback session at which we measure co-viewing.
In contrast, in the survey measurement setting, the
measurement position corresponds to that of a pre-
roll ad, since survey questions are served immediately
before the start of a video playback. Nevertheless, it
is possible to differentiate between ad and non-ad
content in the playback sessions logs.

In addition to playback data, a separate demo-
graphics data table is maintained that includes key
demographic attributes for each panelist and house-
hold. The variables most germane to the CTV mea-
surement use cases include gender, age, household
size, and household income, though other demo-
graphic attributes are collected as well. This table
also includes panelist-level and household-level cali-
bration weights. Because the size and composition of
the panel change over time as panelists are churned
and others are recruited to participate, it is impor-
tant to maintain up-to-date calibration weights to
correct for any deviations from population bench-
marks.

Table 1 provides an example of the format of the
CTV panel data. The table contains three distinct
playback sessions, and each playback is duplicated
in the table for each attributed viewer. Addition-
ally, the table contains demographic attributes for
the attributed panelists. Note that these columns
represent a small subset of the available signals and
are presented to show the basic format of the data.

Because multiple playback sessions are collected
from the same households, playback sessions are not
independent within a household. They are assumed
to be independent across households, since the panel
is a very small fraction of the US CTV population.

Cross-app measurement is also possible due to the
installed network device. The network device collects
important signals from paired CTV devices within
the household, including the domain names corre-
sponding to the content appearing on the screen.
The processed data can be used to analyze co-

1Kish’s effective sample size is defined as neff =
(
∑

i wi)
2∑

i w2
i

, where wi is the weight of sample i.
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4 CTV MEASUREMENT

Figure 1: Marginal household size distribution (left) and household income distribution (right) for the popula-
tion benchmark and the panel, after applying household-level calibration weights. The population benchmark
is a Current Population Survey (CPS) household benchmark for the US CTV population. The application of
calibration weights ensures that the weighted panel distributions align closely with their population analogs.

viewing behavior across non-YouTube apps, such as
Netflix, Hulu, and Amazon Prime. Although, be-
cause of the differences in the data collection pro-
cess, there is less accompanying information in this
setting.

4 CTV Measurement

CTV has the same need for reach measurement as
other brand advertising campaigns. This includes
the ability to estimate the number of unique people
exposed to a campaign and the distribution of these
people across a specified set of demographic (gender
and age) groups. However, unlike the measurement
of more traditional digital brand advertising cam-
paigns, CTV measurement needs to account for the
common scenario in which multiple people are ex-
posed to the same ad impression. That is, it needs
to take co-viewing into consideration.

This section describes the modeling components
needed to measure CTV using panel data.

4.1 Unique Reach

The most straightforward approach for measuring
the unique reach of an online audience is via direct
panel-based measurement. This approach requires a
very large panel to measure just the very largest cam-
paigns. Appendix A contains a related idealized siz-
ing analysis showing the panel size needed to achieve
reliable reach measurement within a specified error

tolerance. Even for the largest digital campaigns, a
large US panel comprised of 100,000 people would fail
to provide reliable measurement of campaign reach.
A different approach is required to measure reach
across the full range of digital campaign sizes.

Generally speaking, existing methods for measur-
ing the reach of digital campaigns for desktop and
mobile devices can be applied to digital campaigns
for CTV. These methods use data from multiple
sources to compute audience reach metrics including
ad server logs, publisher-provided self-reported de-
mographic data, census data, and panel data. This
so-called “hybrid approach” takes advantage of cross-
campaign learning to fit a reach curve that can accu-
rately estimate the reach of campaigns of any size.2

Appendix B contains a related idealized sizing anal-
ysis that is analogous to the one in Appendix A. It
shows that a “hybrid approach” provides accurate
reach measurement that does not degrade as cam-
paigns become smaller. This property allows even
modestly sized panels to provide a basis for accurate
measurement of reach.

The “hybrid approach” is described in the follow-
ing modeling and methodology papers:

• [7] presents a methodology for measuring the
reach and frequency of online ad campaigns
by audience attributes for a single device or
cookie type. The method produces corrected
cookie and impression counts by demographic
attributes and a model to map the number of
cookies to the number of people reached.

2This reach curve can also be used to measure the reach of advertising campaigns in countries that do not have a panel. Note
that this application of the model still uses the country and campaign specific signals from the ad server logs, publisher-provided
self-reported demographic data, and population data as input. This avoids the costly and time-intensive process of growing and
maintaining a panel in every country that has a demand for reach measurement.
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playback ID household ID panelist ID cookie demo panelist demo duration

1 H1 A F25-34 M25-34 D1
1 H1 B F25-34 F25-34 D1
1 H1 GUEST F25-34 NULL D1
2 H1 A M25-34 M25-34 D2
2 H1 B M25-34 F25-34 D2
3 H2 D F45-54 F45-54 D3
3 H2 E F45-54 F35-44 D3

Table 1: Example format of the CTV playback data. This example includes two households providing a total
of three playback sessions. Each playback session is duplicated in the table for each attributed viewer. Each
playback is characterized by the household ID, the list of attributed viewers (including at most one guest),
the demographic labels of each panelist, and the duration of the playback. Note that the cookie demo is a
playback-level attribute, meaning that all viewers associated with a single playback will have the same cookie
demo label. This demographic label is predicted by the ad serving system.

• [6] extends the methodology to the cross-device
setting and allows reach reporting at the level
of device and cookie type. The main develop-
ment in the paper is the concept of an Activity
Distribution Function (ADF), which describes
the probability that a person generates cookies
across a set of cookie types. It also demon-
strates that an ADF based on a mixture of
Dirac delta functions can model an arbitrary
multiple-device reach curve.

• [8] introduces the concept of Virtual People.
The reach and demographic correction mod-
els described in [7] and [6] are replaced by a
model that assigns a virtual person identifier to
each ad event. It follows that the reach of an
online audience can be estimated via a simple
count of unique virtual people assigned to the
corresponding set of events. Each virtual per-
son has accompanying demographic attributes
(e.g., gender and age), meaning that the de-
mographic composition of an audience can be
obtained by counting the demographic labels of
the virtual people assigned to a corresponding
set of events.

Audience measurement for digital CTV cam-
paigns poses challenges not addressed previously be-
cause of the prevalence of co-viewing on CTV de-
vices. In particular, if it is believed that multiple
people are watching the TV screen, then more than
one virtual person identifier needs be assigned to a
single event. As a result, models are needed to esti-
mate the number of people watching the TV screen
at the impression level and to estimate the demo-
graphic attributes of all viewers. Models that make
use of CTV panel data to address these needs are
described below.

4.2 Average Co-viewing Rate

The co-viewing rate is a statistic providing a measure
of the expected number of people watching the TV
screen. It can be measured at the country level, the
impression level, or any level in between. The de-
scription below pertains to the measurement of the
average co-viewing rate across the entire panel (i.e.,
US level). Also note that the co-viewing rate can ei-
ther include or exclude situations in which nobody is
watching. The calculations below exclude situations
in which no one is watching the TV screen because
these situations are modeled separately.

Describing the co-viewing rate calculation re-
quires some notation. Suppose we have n households
and N panelists in the panel. For each household
i ∈ {1, ..., n}, let Si denote the set of playback ses-
sions that household i watched. Next, for each play-
back j ∈ Si, let dj be the duration (in seconds) of
playback j and let cj be the number of attributed
viewers watching playback j.

The smallest possible value of cj is one because at
least one person has to be present to provide attribu-
tion data. By extension, this means the calculated
co-viewing rate will be at least one. Additionally,
because the TV meter includes a “GUEST” tile, our
measurement of the co-viewing rate is not limited to
panelists watching the screen; it includes panelists
and guests.3 The calculation of the co-viewing rate
can be modified to exclude guests from the calcula-
tion, depending on the intended use case.

4.2.1 Weighting

We can improve the estimate of the co-viewing rate
by applying calibration weights. For example, if
the sample contains a larger proportion of multi-
inhabitant households relative to the US CTV pop-

3Strictly speaking, this statement is not true because there can only be at most one guest per playback.
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ulation, and these households tend to have a higher
co-viewing rate, then the simple estimate of the co-
viewing rate will be an overestimate of the true co-
viewing rate. This potential for bias is mitigated by
giving a smaller weight to multi-inhabitant house-
holds and a larger weight to single-inhabitant house-
holds so that the weighted sample is more represen-
tative of the US CTV population. To generate these
weights, we apply the empirical calibration algorithm
[10] with quadratic loss and calibrate against the dis-
tribution of households in the US CTV population
across household size and household income. We opt
for household-level weights rather than panelist-level
weights because we intuitively expect household-level
attributes such as household size to have the most
significant impact on co-viewing behavior. This al-
gorithm outputs a weight wi for each household
i ∈ {1, ..., n}.

As such, we can define the duration-weighted co-
viewing rate as follows:4

m =

∑n
i=1 wi

∑
j∈Si

djcj∑n
i=1 wi

∑
j∈Si

dj
.

Additionally, let xi =
∑
j∈Si

djcj denote the to-
tal co-viewer watchtime for household i and let ti =∑
j∈Si

dj denote the total watchtime for household
i. These quantities give a summary of co-viewing
behavior at the household level and are useful for
winsorization and uncertainty estimation.

Winsorization is used to attenuate the impact
that any single household can have on the co-viewing
rate calculation. Let γq denote the q-th quantile of
the distribution of household-level total watchtime
values.5 We clip each ti to be at most γq; for each
i ∈ {1, ..., n}, define

• t̃i = min(ti, γq) = ti ·min(1, γq/ti).

• x̃i = xi · (t̃i/ti) = xi ·min(1, γq/ti).

The winsorized co-viewing rate is calculated by
replacing each xi and ti with x̃i and t̃i, respectively.
Notice that this can be reframed as a reweighting of
the data, in which each household i is given a weight
of ri = min(1, γq/ti). In our experiments, we find
that even a small amount of trimming can decrease
the standard error of the co-viewing rate. We set
q = 0.95 to apply trimming to the households with
total watchtime above the 95th percentile of the total
watchtime distribution.

4.2.2 Measurement Uncertainty

To accurately estimate the standard error of the co-
viewing rate, we need to be mindful of the correlation
structure of the data caused by having repeated ob-
servations within households. We assume that play-
backs are dependent within a household and inde-
pendent across households. Using the delta method,
we calculate an approximation of the variance of the
co-viewing rate (see Appendix C for the derivation):

Var(m) ≈ 1

neff

(
σ2
x

µ2
t

− 2µxρσxσt
µ3
t

+
µ2
xσ

2
t

µ4
t

)
,

where neff =
(
∑n

i=1 wi)
2∑n

i=1 w
2
i

denotes Kish’s effective

sample size, µx and σx denote the mean and stan-
dard deviation of the total co-viewer watchtime dis-
tribution, µt and σt denote the mean and standard
deviation of the total watchtime distribution, and ρ
denotes the correlation between the total co-viewer
watchtime distribution and the total watchtime dis-
tribution. We can estimate the variance by applying
the corresponding sample estimates of these popula-
tion parameters. The standard error is calculated by
taking the square root of the variance estimate. The
main advantage provided by the delta method is a
closed-form approximation for the variance; however,
since this estimate relies on a Taylor series approxi-
mation, it may not always be accurate.

To validate the analytical result above, we also
implement a bootstrap resampling approach to esti-
mate the standard error of the co-viewing rate. In
particular, we use a block bootstrap that samples
households with replacement from the original data.6

The simulation procedure is the following:

Algorithm 1: Block bootstrap

Set the number of bootstrap replicates B to
some large number (e.g., B = 5, 000).
for b ∈ {1, ..., B} do

Sample n households with replacement
from the original data. When a
household is selected, include all of its
playback sessions in the bootstrap
sample.

Calculate the co-viewing rate mb using
the current bootstrap sample.

end
Calculate the empirical standard deviation of
the B co-viewing rate values {m1, ...,mB}.

4The session-weighted co-viewing rate can be calculated by simply setting all of the dj ’s equal to one.
5For the session-weighted co-viewing rate, we apply winsorization to the household-level playback session count distribution

(this is accomplished by setting the dj ’s equal to one).
6We also implement a stratified block bootstrap that samples households with replacement within each combination of household

size and income. This ensures that all of the bootstrap samples have the same demographic composition. However, because we
obtain similar results with both approaches, we opt for a simple block bootstrap.
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We construct (Gaussian) 95% confidence inter-
vals using the delta method standard error and the
bootstrap standard error. We find that both meth-
ods generally produce similar confidence intervals,
with the bootstrap providing slightly tighter inter-
vals. As such, we feel confident in both methods and
choose to present the bootstrap confidence intervals
in the results section below.

4.2.3 Measurement Results

Figure 2 shows the US co-viewing rate for YouTube
on CTV measured at the daily level (calculated over
a 28-day rolling window) along with 95% pointwise
confidence intervals. The co-viewing rate is relatively
stable along with the size of the confidence interval.
There are some minor fluctuations in the co-viewing
rate, which may be attributable to small organic
changes in co-viewing behavior or to measurement
noise. Also note that the error margin is small rela-
tive to the co-viewing rate. This means that we are
able to confidently measure the average co-viewing
rate for the US using the available panel data.

4.2.4 Applications

The average co-viewing rate is a useful statistic to un-
derstand the overall co-viewing patterns in the panel
and to monitor changes over time. Furthermore, the
average co-viewing rate is applied to estimate co-
viewing rates at various levels of granularity. These
applications include:

• Generating country-level co-viewing rates.7

• Monitoring for periodic or systematic changes
in co-viewing behavior across time.

• Comparing co-viewing rates across CTV apps
(e.g., YouTube, Netflix, Hulu).

• As a baseline for generating impression-level
co-viewing rates using event attributes, such
as the demographic label of the cookie, time of
day and day of week, and video genre.

The last item is particularly relevant for reach
measurement as outlined in the next section.

4.3 Impression-Level Co-viewing
Rate

More granular co-viewing rate modeling is required
to estimate the number of viewers watching the TV
screen at the ad impression level. It is more efficient
to combine panel and survey data to meet this mod-
eling challenge. The application of survey data for
this purpose is described in [4].

In this approach, impression-level co-viewing
rates are generated by modifying the average co-
viewing rate using impression-level attributes: de-
mographic (gender and age) label of the cookie, time
of day and day of week, and video genre. Millions of
co-viewing survey responses are used to generate a
relative co-viewing factor (RCF) for each attribute.8

Let Ed denote the RCF for demographic group d,
let Et denote the RCF for time of day slice t, and let
Eg denote the RCF for genre g. The co-viewing rate
for an impression with attributes (d, t, g) is given by

mdtg = (m− 1) · Ed · Et · Eg + 1,

where m denotes the overall co-viewing rate. The
co-viewing rate mdtg can then be used to determine
the number of viewers for the given event via random
sampling. That is, if mdtg = 1.3, for example, then
the number of viewers is 1 with probability 0.7 and
2 with probability 0.3.

Combining large-volume survey data with high-
quality panel data in this way makes it possible
to generate impression-level co-viewing estimates
across countries without the impractical and cost-
prohibitive need to build a panel in every country.

4.4 Co-viewing Demographics

A model is needed to estimate the demographics of
CTV viewers. Co-viewing is much more common
on CTV devices than other digital devices and this
poses challenges for accurately estimating viewer de-
mographics. In this section we describe a machine
learning approach to estimate CTV viewer demo-
graphics at the impression level using the CTV panel
data. The goal is to demonstrate the utility of this
data for fitting an effective demographic model. So,
while there are many potential models and nuances
that could be considered, we choose a simple model
to illustrate the general approach.

7Non-panel countries rely on co-viewing rate estimates derived from survey data rather than panel data. However, the ob-
served ratio of panel and survey-based co-viewing rates in panel countries can be applied to mitigate the potential response bias of
co-viewing rates measured using surveys in non-panel countries.

8The relative co-viewing factor for data slice j is defined as Ej =
mj−1

m−1
, where m is the overall co-viewing rate and mj is the

(calibrated) co-viewing rate for slice j.
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Figure 2: Time series of the daily US average co-viewing rate from 1 April 2023 through 25 December 2023.
The blue line represents the co-viewing rate and the shaded blue band represents the 95% pointwise confidence
interval. The red line is the error margin (i.e., the confidence interval half-width).

4.4.1 Weighting

The estimation of co-viewer demographics requires
bespoke calibration weights distinct from those used
in other CTV measurement use cases. In particular,
we implement an algorithm that outputs a weight
for each panelist, where these weights are a function
of each panelist’s demographic information, as well
as the demographics of anyone else living in their
household. The motivation for this procedure is the
fact that, while a sample of individuals may be gen-
erally representative of some target population, the
household-level groupings of those individuals may
not be representative. For example, we may have
an otherwise representative sample of young males
(e.g., males 18-34) that is not representative of their
living arrangements (e.g., living alone, living with a
roommate, or living with parents).

Because household composition is likely corre-
lated with co-viewing pattern – after all, living with
someone provides an opportunity to view CTV con-
tent with them – it is imperative to ensure the house-
hold composition of the panel matches that of the
target population. That is, we want the demographic
composition of panel households to match the distri-
bution of households in the CTV population. The
population benchmark we use is a CPS Computer
and Internet Use benchmark for the US, which pro-
vides person-level demographics grouped by house-
hold. This benchmark data source is not specific to
the CTV universe.

Accounting for all possible demographic compo-
sitions at the household level is intractable, so we
simplify the problem by considering pairs of de-

mographic groups. In particular, we seek weights
to match the distribution across these demographic
pairs in the panel with the distribution from a popu-
lation benchmark. The weights are designed to mini-
mize the difference between the rates of the weighted
sample and the population benchmark.

The following terms are used to describe the opti-
mization problem that is solved to find these weights:

• N : the number of panelists.

• K: the number of demographic groups.

• D: the N ×K demo assignment matrix, where
Dij = 1 if panelist i has demo j (and 0 other-
wise).

• A: the N ×K co-inhabitant matrix, where Aij
gives the number of panelists of demo j with
whom panelist i lives.

• B: the K × K target matrix,9 where Bij
gives the population-level probability of a co-
inhabitant having demo j, given that an inhab-
itant has demo i.10

• w: the N -vector of panelist weights.

The matrices D and A are constructed using the
panel data, while B is constructed using the popu-
lation benchmark data. Let di be the i-th column
of D and aj be the j-th column of A. Notice that
(D>A)ij = d>i aj represents the number of times a
panelist with demo i and a panelist with demo j
are observed living in the same household. Simi-
larly, (D>diag(w)A)ij = (di � w)>aj represents the
weighted count.11 The goal is to obtain a weighted

9In practice, we extend the procedure to account for single-inhabitant households, i.e., we include a column in the target matrix
representing the probability of a single-inhabitant household (and rescale the remaining entries of the matrix). For the sake of
conciseness, we omit a detailed description of this extension.

10Put another way, across all pairs of inhabitants (x, y) where x has demo i, this is the fraction of times y has demo j.
11Since di is a binary vector, the elementwise product of di and w extracts the weights of panelists of demo i, i.e., (di �w)` = w`

if panelist ` has demo i (and 0 otherwise).
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sample matrix D>diag(w)A that is as close as possi-
ble to the target matrix B. A regularization term is
included in the objective function to ensure that the
resulting weights are not too extreme. The weights w
are the solution to the following convex optimization
problem:

minimize
w

∥∥D>diag(w)A−B
∥∥2
F

+ λ ‖w − w̄1N‖22
subject to D>diag(w)A1K = 1K

w ≥ 0N

The regularization parameter λ provides control
of the bias-variance tradeoff: a smaller value of λ
puts more weight on minimizing the deviation be-
tween the weighted sample and the target, while a
larger value of λ puts more weight on minimizing the
(scaled) variance of the weights. Furthermore, the
penalty term ensures that the problem has a unique
solution, if one exists, where panelists with the same
demo and household composition are assigned the
same weight, which is a desirable property. Addition-
ally, the constraints force the resulting weighted sam-
ple matrix to be row-stochastic. We use the CVXPY
library to solve the optimization problem [2].

In other optimization-based formulations of cali-
bration weighting, it is often customary to include a
constraint in the optimization problem to force the
weights to sum to one [10, 1]. With this constraint,
minimizing the variance of the weights is equivalent
to minimizing the L2 norm of the weights. In our
formulation, we do not include a constraint forcing
the weights to sum to one. Instead, we constrain the
weighted sample matrix to be row-stochastic, since
the target matrix B is row-stochastic.

We ran tests to decide whether to include a
penalty on the variance or the L2 norm of the
weights. These tests indicate that for each value of λ,
the formulation that includes a penalty on the vari-
ance of the weights outperforms the formulation with
a penalty on the L2 norm of the weights in terms of
effective sample size and Frobenius distance between
the weighted panel matrix and the census target ma-
trix. As such, we opt for a penalty on the variance
of the weights.

Figure 3 shows the heatmaps of the census tar-
get matrix B and the weighted panel matrix. For
this result, we consider panelist age groups, but
this methodology can be applied to combinations
of gender and age, for example. Each row repre-
sents a probability distribution over the demographic
groups. The conclusion is that the weights closely
align the panel to the census target matrix.

The regularization parameter λ was set to 20 for

this analysis, as this specification reasonably bal-
ances bias and variance. Figure 4 shows the Frobe-
nius distance between the census target matrix and
the weighted panel matrix for various values of λ
(blue curve). Notice that the Frobenius distance de-
creases as λ becomes smaller, as expected. As a
baseline, we show the Frobenius distance between
the census target matrix and the unweighted panel
matrix (gray dotted line). Additionally, the orange
dotted line shows the Frobenius distance between the
census target matrix and the weighted panel matrix
after applying the panelist-level weights described in
Section 2.3. The gap between the orange line and
the blue curve represents the added benefit of apply-
ing the weights generated by this bespoke weighting
procedure.

4.4.2 Model Description

The goal of the demographic model is to estimate
the gender and age group of every viewer exposed to
an ad impression. More specifically, it is to predict
the probability distribution across the set of demo-
graphic groups for each viewer. In this application,
we define a demographic distribution as a categorical
distribution over the following demographic (gender
and age) groups: {Female, Male}×{13-17, 18-24, 25-
34, 35-44, 45-54, 55-64, 65+}. This impression-level
information can be aggregated to understand audi-
ence composition at the campaign level.

CTV panel data provides a representative set of
ground truth data for viewer demographics at the ad
impression level and various impression-level features
that can be used to support demographic predictions.
We use the following features in the modeling exam-
ple described below: the demographic label of the
cookie, the corresponding quality label12 of this de-
mographic label, day of the week, time of day, and
video genre. Some CTV playback sessions have mul-
tiple genres. In these cases, one of the genres is ran-
domly assigned to the impression. Any videos that
do not have a genre label are assigned to the “no
genre” category.

We use these features and the ground truth demo-
graphic labels from the CTV panelists to train ran-
dom forest classifiers to predict viewer demographics
at the impression level. Training a random forest
classifier is not the only approach for demographic
modeling, and other signals can be considered to
improve model performance. Such efforts are not
described here since our current goal is simply to
demonstrate the utility of the CTV panel in fitting
a demographic model.

12The quality label of the demographic label of a cookie comes from the output of another model. The model assigns a quantitative
score to the demographic label of each cookie to represent the level of confidence we have in the demographics.
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Figure 3: Heatmaps of the census target matrix B (left) and the weighted panel matrix (right), after applying
the weights generated using a regularization parameter of λ = 20. Note that each row represents a probability
distribution across the demographic groups (i.e., each row has non-negative entries and sums to one). In each
row i, the “SELF” entry gives the probability of a single-inhabitant household across all households with at
least one inhabitant of demo i. Notice that for λ = 20 the weighted panel matrix aligns closely, but not exactly,
with the census matrix on the left.

Figure 4: Performance of the weights for different values of the regularization parameter λ. The blue curve
shows the Frobenius distance between the census target matrix and the weighted panel matrix as λ varies.
The gray dotted line shows the Frobenius distance between the census target matrix and the unweighted panel
matrix. Additionally, to illustrate the added value of this bespoke weighting procedure, we show the Frobenius
distance betweeen the census target matrix and the weighted panel matrix after we apply the panelist-level
weights described in Section 2.3 (orange dotted line).
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Separate demographic models are needed for
signed-in and signed-out cookie spaces as the qual-
ity of the signals and user behavior can differ across
these two spaces. Here we describe the model and
results for the signed-in space.

CTV impressions can be classified into three cat-
egories: no viewer present, one viewer present, or
multiple viewers present. Demographic modeling ap-
plies to the latter two cases. One approach is to
apply the co-viewing model described in Section 4.2
to predict the number of viewers and then fit sep-
arate demographic models for the single-viewer and
multiple-viewer cases. Here, we take an alternative
approach by first defining a primary viewer and po-
tential co-viewers for an ad impression. One random
forest classifier is fit to predict the probability dis-
tribution across demographic groups for the primary
viewer and a second random forest classifier is used
to predict the corresponding probability distribution
for any remaining co-viewers. In this alternative ap-
proach, the first random forest classifier for the pri-
mary viewer is shared by all impressions that have
at least one viewer present (i.e., the latter two cases
listed above), while the second random forest classi-
fier is only applicable to the third case in which at
least two people are present.

In the single-viewer case, the sole person watch-
ing the TV is naturally deemed the primary viewer.
For the multiple-viewer case, we define the primary
viewer as the panelist whose age and gender most
closely match the gender and age of the demographic
label of the cookie. The priority queue for this demo-
graphic matching is the following: both gender and
age match (match score = 2) > only gender or only
age matches (match score = 1) > neither is a match
(match score 0). Ties among the highest scoring pan-
elists are broken at random to select one panelist as
the primary viewer. Any remaining panelists who
are not selected as the primary viewer are treated as
co-viewers.

The random forest classifier for the primary
viewer case consists of 1,000 trees that can each grow
to a maximum depth of 50. Each split in the tree
is determined based on a random subset of the fea-
tures. We set the number of features to 36 (this is
the square root of the number of features after con-
verting the original categorical features using one-hot
encoding) when looking for the best split and use the
Gini impurity to measure the quality of a split. The
signals are weaker for the co-viewer model, so we rely
on more complex trees to extract as much informa-
tion as possible. The random forest for the co-viewer
case consists of 1,000 trees, but each tree can grow
to a depth of 100 and each tree split is based on 100
features selected at random. When training both

random forest classifiers, we weight each panelist by
the weight we computed in Section 4.4.1, so that our
training data is more representative of the general
CTV population and their co-inhabitant patterns.

4.4.3 Model Application

We train two random forest classifiers using the ap-
proach described in Section 4.4.2 using CTV impres-
sions in the signed-in space from about 45,000 cam-
paigns. We apply the two random forest classifiers
to 111 larger out-of-sample campaigns to estimate
impression-level demographic distributions. These
testing campaigns are selected based on the num-
ber of unique panelists reached in each campaign to
ensure that we have an accurate measure of ground
truth campaign-level demographic distributions.

For this illustrative model, the general procedure
for estimating the impression-level demographic dis-
tribution of a campaign is the following:

1. Collect campaign impressions and associated
signals for prediction.

2. Apply the random forest classifier for the pri-
mary viewer case to obtain the estimated de-
mographic distribution of the primary viewer
for each impression.

3. For each impression, apply the co-viewing rate
model to probabilistically determine if a co-
viewer is present.

4. If a co-viewer is present, apply the random for-
est classifier for the co-viewer case to estimate
the demographic distribution of the co-viewer.

5. Aggregate the demographic distributions of the
primary viewers and co-viewers across all im-
pressions to obtain an estimated demographic
distribution for the campaign.

For the analysis described in this section, we use the
ground truth number of viewers rather than deter-
mine this probabilistically as specified in step 3. This
leads to a fair performance evaluation of the random
forest classifiers that is not coupled with the perfor-
mance of the co-viewing rate model.

For each campaign, we compare the estimated
demographic distribution with the true demographic
distribution as determined from the ground truth of
the CTV panel using two metrics: the shuffle dis-
tance and Pearson correlation between these two dis-
tributions. The shuffle distance between two demo-
graphic distributions d1 and d2 is the following:

shuffle(d1, d2) =
1

2
‖d1 − d2‖1 ,
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where the i-th entry of demographic distribution vec-
tor d represents the probability associated with the i-
th demographic group. The shuffle distance provides
a measure of the total absolute difference across all
categories between two categorical distributions and
has been used previously in measuring online audi-
ences [6].

The following individual campaign-level result is
helpful for interpreting shuffle distance magnitudes.
In Figure 5, the blue bar plot shows probability mass
differences between the true demographic distribu-
tion of a particular campaign and the overall de-
mographic distribution of all CTV traffic. These
two distributions are significantly different from one
another and the corresponding shuffle distance be-
tween them is 0.64.13 In contrast, the orange curve
shows the probability differences between the esti-
mated campaign demographic distribution using the
random forest classifiers described above and the true
demographic distribution of the campaign. These
distributions are very similar to one another and
the shuffle distance between them is 0.1. These re-
sults indicate that the random forest models effec-
tively identify the demographic distribution for this
demographically-skewed campaign.

At a more aggregate level, among the 111 out-of-
sample test campaigns, the median shuffle distance is
0.09, the 95th percentile is 0.14, and the maximum is
0.22 (see Table 2). Additionally, the Pearson correla-
tions are high for all campaigns. The minimum corre-
lation is 0.86, the median correlation is 0.99, and for
95% of campaigns the correlation is above 0.92. The
blue histograms in Figure 6 show the distributions of
shuffle distances and Pearson correlations among the
111 campaigns.

As an additional evaluation of the random forest
classifiers this campaign-level analysis was repeated
for the subset of campaigns that have demographic
distributions that are more distant from the overall
demographic distribution of all CTV traffic. These
campaigns have demographic distributions with a
shuffle distance of more than 0.3 from the overall
demographic distribution of all CTV traffic. 29 cam-
paigns met this criteria with an average shuffle dis-
tance of 0.41 and a maximum shuffle distance of 0.64.

Figure 6 shows histograms of shuffle distance and
Pearson correlation among the 29 skewed campaigns
(red bars) along with histograms of the 111 test cam-
paigns (blue bars). Compared to the 111 testing
campaigns, the shuffle distances among the skewed
campaigns cover a narrower range of values. Pear-
son correlations among the skewed campaigns span
the whole range of correlations among all test cam-

paigns, but are less concentrated near 1. More quan-
titatively, the 29 skewed campaigns show a slight in-
crease in the average shuffle distance and a slight de-
crease in the average correlation (see Table 3). The
median shuffle distance is 0.11 and the median cor-
relation is 0.96. The maximum shuffle distance is
0.16 and the minimum correlation is 0.86. Over-
all, the demographic models are robust in predicting
campaign demographic distributions for a variety of
campaigns, including those with demographic com-
positions quite different from the global demographic
distribution for all CTV traffic.

We also verify that the demographic models can
consistently provide accurate estimates at the demo-
graphic group level. For each demographic group, we
compare the vector of true campaign demographic
probabilities with the vector of estimated campaign
demographic probabilities generated by the demo-
graphic model. For a fair comparison of correlations
and estimation quality among different demographic
groups, we combine Age 13-17 and Age 18-24 in each
gender group into a single age group, i.e., F13-24 and
M13-24, hence each correlation measures the predic-
tive performance over a roughly 10-year age range.
The correlation between these two vectors is an in-
dication of model performance for a specific demo-
graphic group. In all demographic groups, correla-
tions are above 0.9, indicating that our demographic
model consistently estimates demographic weights
well across demographic groups. See Table 4 for a
list of correlations in each demographic group. Re-
stricting to the more skewed campaigns, there is a
slight decrease in correlation from 0.93 to 0.87 in
F65+, while for all other demographic groups cor-
relations are still above 0.9 and are very similar to
those in Table 4.

5 Summary

CTV devices have higher levels of sharing and co-
viewing than other digital devices. This characteris-
tic requires special considerations for reach modeling.
One such consideration is the use of CTV panel data
as a tool for observing and measuring co-viewing be-
havior. Although CTV panel data does not provide
a practical means for directly measuring the reach
of CTV campaigns, it is a key source of informa-
tion that should be used in conjunction with survey
data, ad server logs, publisher-provided self-reported
demographic data, and census data.

CTV panel data is especially useful for measuring
the aggregate co-viewing rate and for fitting demo-

13Such differences in demographic distributions can be caused by variations in campaign design, such as the specification of
demographic or publisher targeting.
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Figure 5: An illustrative example of the predictive performance of the random forest classifiers on a campaign
with a highly skewed demographic distribution. The blue bar plot shows the probability differences between
the true demographic distribution of the campaign and the overall average demographic distribution for CTV
traffic. The shuffle distance between these two distributions is 0.64. The orange curve shows the weight dif-
ferences between the estimated campaign demographic distribution using the random forest classifiers and the
true demographic distribution of the campaign. The shuffle distance between these two distributions is 0.1.

Metric Minimum Median cutoff for 95% of campaigns Max

Shuffle Distance 0.02 0.09 0.14 0.22
Correlation 0.86 0.99 0.92 0.999

Table 2: Summary statistics of shuffle distances and Pearson correlations among the 111 testing campaigns.
For shuffle distance, the “cutoff for 95% of campaigns” is the 95th percentile of shuffle distances. For Pearson
correlation, the “cutoff for 95% of campaigns” is the correlation at the 5th percentile since it is favorable to
have a higher correlation.

Figure 6: Histograms of shuffle distances (left) and correlations (right) between campaign true demographic
distribution and campaign estimated demographic distribution among testing campaigns. Histograms in blue
include all 111 out-of-sample testing campaigns, while histograms in red are a subset of 29 campaigns with
demographic distributions that are more distant from the global demographic distribution of all CTV traffic.
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Metric Minimum Median cutoff for 95% of campaigns Max

Shuffle Distance 0.07 0.11 0.15 0.16
Correlation 0.86 0.96 0.88 0.995

Table 3: Summary statistics of shuffle distances and Pearson correlations among the 29 campaigns whose demo-
graphic distributions are most distant from the overall demographic distribution of the CTV traffic. For shuffle
distance, the “cutoff for 95% of campaigns” is the 95th percentile of shuffle distances. For Pearson correlation,
the “cutoff for 95% of campaigns” is the correlation at the 5th percentile since it is favorable to have a higher
correlation.

Demographic Group Correlation Demographic Group Correlation

F13-24 0.92 M13-24 0.95
F25-34 0.91 M25-34 0.94
F35-44 0.97 M35-44 0.97
F45-54 0.92 M45-54 0.97
F55-64 0.95 M55-64 0.97
F65+ 0.93 M65+ 0.98

Table 4: Correlation for each demographic group. For each demographic group, we compute the correlation be-
tween the vector of campaign true demographic probabilities and the vector of campaign estimated demographic
probabilities.

graphic models that account for co-viewing. The ag-
gregate co-viewing rate can be measured accurately
and is relatively stable across time. The generation of
impression-level co-viewing rates requires the volume
and country-level coverage that survey data provides.

The measurement of co-viewing demographics re-
quires the use of panelist weighting that matches
household composition with census benchmarks.
Without this weighting, the demographic model may
not properly account for the opportunity that one de-
mographic group has to co-view with another demo-
graphic group. When such considerations are taken
into account, CTV panel data can be used to reli-
ably estimate the demographic composition of reach
at the campaign level, even for campaigns with de-
mographic compositions that are skewed.
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B HYBRID MEASUREMENT

Appendix A

Direct Panel Measurement

In this section, we describe a simple model of the
number of people reached by an ad campaign. This
simplified model illustrates the relationship between
panel size, campaign size, and measurement error.
Let npop denote the size of the population, npanel the
size of the panel, and ncamp the size of the campaign
(more specifically, the expected campaign reach).

Assume that each panelist is reached by the cam-
paign independently with probability p =

ncamp

npop
;

that is, each panelist i ∈ {1, ..., npanel} has a random
variable Xi ∼ Ber(p) representing whether or not
they were reached by the campaign. Consequently,
notice that

X =

npanel∑
i=1

Xi ∼ Bin(npanel, p)

is a random variable quantifying the total number
of panelists reached by the campaign. The rate (bi-
nomial proportion) at which panelists are reached is
given by X

npanel
, which can be used to project the

panel reach to the population. The population reach
is given as Xpop =

npop

npanel
X. Now we need to cal-

culate the variance of this random variable. Notice
that

Var(Xpop) = Var

(
npop
npanel

X

)
=

n2pop
n2panel

Var(X)

=
n2pop
n2panel

npanel p (1− p)

=
ncamp(npop − ncamp)

npanel
.

Consequently, the standard error is

SE =
√

Var(Xpop) =

√
ncamp(npop − ncamp)

npanel
.

Finally, the (1 − α) × 100% confidence interval
width is given by 2z1−α/2SE, where zq denotes the
q-th quantile of the standard normal. For ease of
comparison, we investigate the error on a relative
scale, so we calculate the confidence interval width
divided by the size of the campaign. Figure B.1a
shows that even a large panel comprised of 100,000
panelists fails to provide viable measurement for even
the largest digital campaigns.

Appendix B

Hybrid Measurement

In this section, we present an illustrative model for
estimating the number of people reached by an ad
campaign. The distinction between this model and
the one described in Appendix A is that this model
leverages logs data in addition to panel data to fit a
reach curve. We demonstrate that this hybrid mea-
surement approach, unlike panel-based direct mea-
surement, provides reliable reach estimates for the
full range of digital campaign sizes.

Again, let npop denote the size of the population,
npanel the size of the panel, and ncamp the size of
the campaign (i.e., the expected campaign reach).
We assume the data comes from an Exponential Bow
model [6], which is characterized by the following
cookie-to-user function:

r(c;κ) =
npopκc

npop + κc
,

where κ represents the slope at the origin and should
be close to 1. Additionally, note that this implies the
following inverse (i.e., user-to-cookie) function:

c(r;κ) =
npopr

κ(npop − r)
.

Under this model, the probability that the j-th per-
son in the population has at least one cookie, given
a campaign with c cookies, is given by

P (cj > 0|c) =
1

1 + npop/κc
.

Notice that the expected number of people reached
by the campaign can be calculated by summing these
probabilites across all individuals in the population:

npop∑
j=1

1

1 + npop/κc
=

npop
1 + npop/κc

=
npopκc

npop + κc
,

which is exactly r(c;κ), as desired. Finally, let
c∗ = c(ncamp;κ) denote the number of cookies asso-
ciated with a campaign of size ncamp. We fit a model
and use it to predict the number of people reached by
a campaign with c∗ cookies exposed. The simulation
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procedure is the following:

Algorithm 2: Hybrid model

// Generate campaign data for

training

for i ∈ {1, ..., ntrain} do
Sample ci ∼ Exp(λ).
Sample ri ∼ Bin(npop,

1
1+npop/κci

).

end
// Fit reach curve multiple times

for b ∈ {1, ..., B} do
// Find panel coverage for

training data

for i ∈ {1, ..., ntrain} do
Sample c̃bi ∼ Bin(ci,

npanel

npop
).

Sample r̃bi ∼ Bin(ri,
npanel

npop
).

end

Fit a value of κ̂b to the panel data, i.e.,

κ̂b = argminκ
∑ntrain

i=1

(
r̃bi −

npanelκc̃
b
i

npanel+κc̃bi

)2
Use the fitted model to predict the
number of people reached r̂b = r(c∗; κ̂b).

end
Calculate the empirical standard deviation of
the B reach values {r̂1, ..., r̂B}.

The panel size npanel will influence the panel cov-
erage for each campaign and will therefore influence
the κ value we fit to the data. With a larger panel,
we expect a more reliable estimate of κ and therefore
a more reliable reach estimate.14 The (1−α)×100%
confidence interval width is given by 2z1−α/2SE,
where zq denotes the q-th quantile of the standard
normal. We divide the confidence interval width by
the size of the campaign to obtain the relative error.
Figure B.1b shows that even a small panel comprised
of 1,000 panelists provides reach measurement within
the 20% error tolerance. Additionally, for each panel
size, notice that the reach estimation error is quite
stable across the range of campaign sizes (c.f., the
larger error for smaller campaigns in the direct panel-
based measurement setting).

Appendix C

Derivation of Co-viewing Rate
Variance

We will use the delta method to obtain an approxi-
mation of the variance of the co-viewing rate m. For
simplicity, let x̄ =

∑
i xiwi and t̄ =

∑
i tiwi. We can

express the co-viewing rate m as

m = f

([
x̄
t̄

])
=
x̄

t̄
.

Additionally, let mx = E[x̄] = µx
∑
i wi and mt =

E[t̄] = µt
∑
i wi denote the expected value of x̄ and

t̄, respectively. The gradient of the function f eval-
uated at the mean is then given by

v = ∇f
([
mx

mt

])
=

[
1
mx

−mx

m2
t

]
.

Next, we need the covariance matrix of

[
x̄
t̄

]
, which

we will denote by Σ. In particular, we need to cal-
culate Var(x̄), Var(t̄), and Cov(x̄, t̄). Notice that

Var(x̄) = Var

(∑
i

xiwi

)
= σ2

x

∑
i

w2
i .

Similarly, we have that

Var(t̄) = Var

(∑
i

tiwi

)
= σ2

t

∑
i

w2
i .

Now for the covariance term, assuming dependence
between co-viewer count and watchtime within a
household but independence across households, no-
tice that

Cov(x̄, t̄) = Cov

∑
i

xiwi,
∑
j

tjwj


=
∑
i

∑
j

wiwjCov(xi, tj)

=
∑
i

w2
iCov(xi, ti)

= ρσxσt
∑
i

w2
i .

We now have everything we need. By the delta
method, we have that Var(m) ≈ v>Σv;

Var(m) ≈

[
1
mt

−mx

m2
t

]> [
σ2
x

∑
i w

2
i ρσxσt

∑
i w

2
i

ρσxσt
∑
i w

2
i σ2

t

∑
i w

2
i

] [ 1
mt

−mx

m2
t

]

=
σ2
x

∑
i w

2
i

µ2
t (
∑
i wi)

2
−

2µxρσxσt
∑
i w

2
i

µ3
t (
∑
i wi)

2
+
µ2
xσ

2
t

∑
i w

2
i

µ4
t (
∑
i wi)

2

=
1

neff

(
σ2
x

µ2
t

− 2µxρσxσt
µ3
t

+
µ2
xσ

2
t

µ4
t

)
.

14Certainly, a model that produces a biased estimate of κ can still achieve small measurement error across trials. However, we
confirm that our fitted models fit the data well and closely recover the true κ value.
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C DERIVATION OF CO-VIEWING RATE VARIANCE

(a) Reach estimation error via panel measurement. (b) Reach estimation error via hybrid measurement.

Figure B.1: Relationship between campaign size, panel size, and reach measurement error. The error is de-
fined as the width of the 90% (Gaussian) confidence interval of the estimated population reach relative to the
campaign size (×100%). The gray dashed line represents a maximum admissible measurement error of 20%.
The shaded areas in blue and pink show typical campaign sizes for digital and linear TV ads, respectively. The
population size is assumed to be 300 million people. (left) Notice that for even the largest digital campaigns, a
large panel fails to provide viable measurement of campaign reach via direct panel-based measurement. (right)
However, we see that even a small panel comprised of 1,000 panelists provides reach estimates below the 20%
error tolerance via the hybrid measurement approach. The simulation parameters for this set of results are the
following: κ = 1, ntrain = 500, and 1/λ = 20, 000, 000.
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