Millemiglia : A Novel Instance Generator for Simulating Middle-Mile Logistics Networks

M. Petris, A.Lotfi, T. Cuvelier, B. De Backer, C. Archetti

3 July 2024

1/22 M. Petris, A.Lotfi, T. Cuvelier, B. De Backer, C. Archetti

▲ □ ▷ < 큰 ▷ ▷ < 큰 ▷ < 큰 ▷ ▷ 큰 ♡ < 근
 Millemiglia : A Novel Instance Generator for Simulating Middle-N

Introduction	Context
Instance generator	Problem description
Bibliography	Space-time graph

Introduction

2/22 M. Petris, A.Lotfi, T. Cuvelier, B. De Backer, C. Archetti

Millemiglia : A Novel Instance Generator for Simulating Middle-M

э.

Introduction

Context

Instance generator Bibliography

Problem description Space-time graph

Context: supply chain

3/22 M. Petris, A.Lotfi, T. Cuvelier, B. De Backer, C. Archetti

Context Problem descript Space-time graph

Context: supply chain

suppliers

3/22 M. Petris, A.Lotfi, T. Cuvelier, B. De Backer, C. Archetti

3/22 M. Petris, A.Lotfi, T. Cuvelier, B. De Backer, C. Archetti

A ロ ト イ 合 ト イ き ト イ き ト き の へ へ
Millemiglia : A Novel Instance Generator for Simulating Middle-N

A ロ ト イ 合 ト イ き ト イ き ト き の へ へ
Millemiglia : A Novel Instance Generator for Simulating Middle-N

 Image: A line of the second second

Millemiglia : A Novel Instance Generator for Simulating Middle-M

3/22 M. Petris, A.Lotfi, T. Cuvelier, B. De Backer, C. Archetti

Millemiglia : A Novel Instance Generator for Simulating Middle-M

Context Problem description Space-time graph

The Middle-Mile Logistic Problem

Given a logistic network composed of

- hubs
- Iines and rotations
- capacitated vehicles

Millemiglia : A Novel Instance Generator for Simulating Middle-N

Context Problem description Space-time graph

The Middle-Mile Logistic Problem

Given a logistic network composed of

- hubs
- lines and rotations
- capacitated vehicles

and a set of **shipments** (O-D pairs, quantity) disclosed within a **given time horizon**,

 Image: A lower line to the state of the state

Context Problem description Space-time graph

The Middle-Mile Logistic Problem

Given a logistic network composed of

- hubs
- lines and rotations
- capacitated vehicles

and a set of **shipments** (O-D pairs, quantity) disclosed within a **given time horizon**, **deliver the shipments** from their origin to their destinations **at minimum cost**.

Context Problem description Space-time graph

The Middle-Mile Logistic Problem

Given a logistic network composed of

- hubs
- lines and rotations
- capacitated vehicles

and a set of **shipments** (O-D pairs, quantity) disclosed within a **given time horizon**, **deliver the shipments** from their origin to their destinations **at minimum cost**.

В

Millemiglia : A Novel Instance Generator for Simulating Middle-M

Н

The Middle-Mile Logistic Problem: an example

5/22 M. Petris, A.Lotfi, T. Cuvelier, B. De Backer, C. Archetti

ৰ া চ ৰ ঐ চ ৰ ই চ ৰ ই চ হ তা হ তা হ Millemiglia : A Novel Instance Generator for Simulating Middle-N

5/22 M. Petris, A.Lotfi, T. Cuvelier, B. De Backer, C. Archetti

Millemiglia : A Novel Instance Generator for Simulating Middle-M

 Introduction Instance generator Bibliography
 Context Problem description Space-time graph

 The Middle-Mile Logistic Problem: an example

Context Problem description Space-time graph

The Middle-Mile Logistic Problem: space-time graph

The Middle-Mile Logistic Problem can be modelled on a **acyclic space-time graph** where

- vertices are pairs (hub,time)
- waiting arcs
- travelling arcs (lines rotations)

		I	Introdu Instance gene Bibliogr	ction rator aphy	Context Problem descri Space-time gra	ption ph			
The M	liddle-Mil	e Logi	stic Pro	blem	1: space-	time g	raph		
t ₀	A	В	С	D	E	F	G	Н	
<i>t</i> ₁	А	В	С	D	Е	F	G	Н	
t ₂	А	В	С	D	Е	F	G	Н	
t ₃	А	В	С	D	E	F	G	Н	
t ₄	А	В	С	D	Е	F	G	Н	

7/22 M. Petris, A.Lotfi, T. Cuvelier, B. De Backer, C. Archetti

Millemiglia : A Novel Instance Generator for Simulating Middle-M

★ E → < E →</p>

The Middle-Mile Logistic Problem: space-time graph

Millemiglia : A Novel Instance Generator for Simulating Middle-M

The Middle-Mile Logistic Problem: space-time graph

Millemiglia : A Novel Instance Generator for Simulating Middle-M

Introduction Instance generator Bibliography	Project goals Procedures
--	-----------------------------

Instance generator : Goals & Procedures

8/22 M. Petris, A.Lotfi, T. Cuvelier, B. De Backer, C. Archetti

Project goals Procedures

Creating diverse and realistic MM networks datasets for :

- Benchmarking Optimization Approaches
- Training Machine Learning Models

9/22 M. Petris, A.Lotfi, T. Cuvelier, B. De Backer, C. Archetti

Millemiglia : A Novel Instance Generator for Simulating Middle-N

Project goals Procedures

Motivation

Middle-mile logistic

- aims to consolidate loads to generate cost savings
- literature is scarce w.r.t. last-mile
- Lack of existing libraries for instance generation.

10/22 M. Petris, A.Lotfi, T. Cuvelier, B. De Backer, C. Archetti

Project goals Procedures

- Based on the work : Middle-Mile Logistics Through the Lens of Goal-Conditioned Reinforcement Learning [Eberhard et al., 2023]
- Coded in C++ with protocol buffers

Open source

https://github.com/or-tools/millemiglia

• Can generate realistic instances with diverse size and structure.

Introduction

Instance generator

Bibliography

Procedures

Procedure:

12/22 M. Petris, A.Lotfi, T. Cuvelier, B. De Backer, C. Archetti

Millemiglia : A Novel Instance Generator for Simulating Middle-M

э.

Project goals Procedures

Procedure: Generate logistic network

```
message LogisticsNetwork {
         // Cannot be updated.
         string name = 1;
         repeated Line lines = 2;
         repeated Vehicle vehicles = 3;
         repeated Hub hubs = 4;
         // Distance, weight, pallets, etc., plus scaling (to map floats to integers).
         repeated ValueDimension dimensions = 5;
54
         // Time discretization. Decisions are output with this precision in time.
         // Internally, state is kept with this precision.
         google.protobuf.Duration time step = 8;
         // Distance matrix (represented a list of weighted directed edges).
         repeated DistanceMatrixEntry distance matrix = 9;
```

Millemiglia : A Novel Instance Generator for Simulating Middle-M

Project goals Procedures

Procedure: Generate shipments

121	× 1	message Shipment {
122		// Cannot be updated.
123		string name = 1;
124		// Ends of the path the shipment must take.
125		<pre>string source_hub = 2;</pre>
126		<pre>string destination_hub = 3;</pre>
127		// Departure time.
128		<pre>google.type.DateTime departure_time = 4;</pre>
129		<pre>// *Expected* arrival time (i.e. soft constraint).</pre>
130		DateTimeRange arrival_time = 5;
131		// If unset, revenue is computed by the system (depending on whether a new
132		// line is generated for this shipment or not).
133		optional double revenue = 6;
134		// Used with vehicle and hub capacities.
135		repeated ValueDimension size = 7;
136		

Project goals Procedures

Generate logistic network: space graph

Input:

- Number of hubs
- Graph density

13/22 M. Petris, A.Lotfi, T. Cuvelier, B. De Backer, C. Archetti

Project goals Procedures

Generate logistic network: space graph

Input:

- Number of hubs
- Graph density

Output:

• Graph with a few high degree nodes (hubs)

13/22 M. Petris, A.Lotfi, T. Cuvelier, B. De Backer, C. Archetti

Project goals Procedures

Generate logistic network: space graph

Input:

- Number of hubs
- Graph density

Output:

• Graph with a few high degree nodes (hubs)

Procedure:

 Modified Albert-Barabási random graph model [Albert and Barabási, 2000]

13/22 M. Petris, A.Lotfi, T. Cuvelier, B. De Backer, C. Archetti

 Image: A lower line to the state of the state

14/22 M. Petris, A.Lotfi, T. Cuvelier, B. De Backer, C. Archetti

▲ 마 + 슈카 + 홈 + ▲ 홈 + ▲ 홈 + ▲ 홈 + ◇ <
 Millemiglia : A Novel Instance Generator for Simulating Middle-M

Project goals Procedures

Generate logistic network: lines

Input:

- Graph
- Time horizon
- Number of lines and maximal length of a line
- Maximal number of rotations per line

 ▲□>
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →

Project goals Procedures

Generate logistic network: lines

Input:

- Graph
- Time horizon
- Number of lines and maximal length of a line
- Maximal number of rotations per line

Output:

Lines-rotations

15/22 M. Petris, A.Lotfi, T. Cuvelier, B. De Backer, C. Archetti

Project goals Procedures

Generate logistic network: lines

Procedure:

- Lines are paths in the space graph
 - Arcs are sampled \propto degree

16/22 M. Petris, A.Lotfi, T. Cuvelier, B. De Backer, C. Archetti

Project goals Procedures

Generate logistic network: lines

Procedure:

- Lines are paths in the space graph
 - Arcs are sampled \propto degree
- Potations assign time information to the lines
 - Times are sampled with uniform distribution

Project goals Procedures

Generate logistic network: vehicles

Input:

- Line-rotations
- Maximal vehicle capacity

17/22 M. Petris, A.Lotfi, T. Cuvelier, B. De Backer, C. Archetti

Project goals Procedures

Generate logistic network: vehicles

Input:

- Line-rotations
- Maximal vehicle capacity

Output:

One vehicle for each line-rotation

17/22 M. Petris, A.Lotfi, T. Cuvelier, B. De Backer, C. Archetti

Project goals Procedures

Generate logistic network: vehicles

Input:

- Line-rotations
- Maximal vehicle capacity

Output:

One vehicle for each line-rotation

Procedure:

- Capacity is sampled uniform distribution
- Cost \propto capacity

Project goals Procedures

Generate shipments

Input:

- Shipment number
- Logistic network
- Maximal path length
- Minimal and maximal size

18/22 M. Petris, A.Lotfi, T. Cuvelier, B. De Backer, C. Archetti

Project goals Procedures

Generate shipments

Input:

- Shipment number
- Logistic network
- Maximal path length
- Minimal and maximal size

Output:

Set of shipments

18/22 M. Petris, A.Lotfi, T. Cuvelier, B. De Backer, C. Archetti

Millemiglia : A Novel Instance Generator for Simulating Middle-N

Project goals Procedures

Generate shipments

Input:

- Shipment number
- Logistic network
- Maximal path length
- Minimal and maximal size

Output:

Set of shipments

Procedure:

- (Source, departure time) and (destination, arrival time) are found by sampling a **path** in the space-time network
- Sizes are sampled with Lomax distribution

Procedures

Shipment sizes distribution

Parcel Weight Distribution

・ロト ・ 同ト ・ ヨト ・ ヨト Millemiglia : A Novel Instance Generator for Simulating Middle-M

Project goals Procedures

Future Work

- Incorporate more complex features in the instance generator.
- Gather feedback from the research community to refine and expand Millemiglia's capabilities.

20/22 M. Petris, A.Lotfi, T. Cuvelier, B. De Backer, C. Archetti

Introduction Instance generator Bibliography Project goals Procedures

Thank you!

21/22 M. Petris, A.Lotfi, T. Cuvelier, B. De Backer, C. Archetti

BIBLIOGRAPHY I

Albert, R. and Barabási, A.-L. (2000).

Topology of evolving networks: local events and universality. *Physical review letters*, 85(24):5234.

Eberhard, O., Cuvelier, T., Valko, M., and Backer, B. D. (2023).

Middle-mile logistics through the lens of goal-conditioned reinforcement learning.

NeurIPS 2023 Workshop on Goal-Conditioned Reinforcement Learning.

▲ □ ▷ < 큰 ▷ ▷ < 큰 ▷ < 큰 ▷ ▷ 큰 ♡ < 근
 Millemiglia : A Novel Instance Generator for Simulating Middle-N