
Security Project (OWASP) Cheat Sheet
Series.b

Despite these efforts, common types
of software defects prevail, and many
occupy top ranks of “worst vulnerabili-
ties” lists such as the OWASP Top 10c
or the CWE Top 25 Most Dangerous
Software Weaknesses4 for years if not
decades.

Based on work at Google over the
past decade on managing the risk of
software defects in its wide-ranging
portfolio of applications and services,
the members of Google’s security engi-
neering team developed a theory about
the reason for the prevalence of defects:
It’s simply too difficult for real-world
development and operations teams
to apply the available guidance com-
prehensively and consistently, which
results in a problematic rate of new de-
fects. Commonly used approaches to
find and fix implementation defects af-
ter the fact can help (for example, code
review, testing, scanning, or static and
dynamic analysis such as fuzzing), but
in practice they find only a fraction of
these defects. Design-level defects are
difficult or impractical to remediate
after the fact. This leaves a problematic
residual rate of defects in production
systems.

We concluded that the rate at which
common types of defects are intro-
duced during design, development,
and deployment is systemic—it arises
from the design and structure of the
developer ecosystem, which means the
end-to-end collection of systems, tool-
ing, and processes in which developers
design, implement, and deploy soft-
ware. This includes programming lan-
guages, software libraries, application
frameworks, source repositories, build
and deployment tooling, the produc-
tion platform and its configuration sur-
faces, and so forth.

In short, the safety and security
posture of a software application or
service is substantially an emergent
property of the developer ecosystem

b	 https://cheatsheetseries.owasp.org/
c	 https://owasp.org/Top10/

HOW T O DE SIGN and implement information systems
so they are safe and secure is a complex topic. Both
high-level design principles and implementation
guidance for software safety and security are well
established and broadly accepted. For example,
Jerome Saltzer and Michael Schroeder’s seminal
overview of principles of secure design was published
almost 50 years ago,10 and various community and
governmental bodies have published comprehensive
best practices about how to avoid common software
weaknesses—for example, Common Weakness
Enumeration (CWE)a and Open Worldwide Application

a	 https://cwe.mitre.org/

DOI:10.1145/3651621

	� Article development led by
queue.acm.org

Continuous assurance at scale.

BY CHRISTOPH KERN

Developer
Ecosystems
for Software
Safety

52 COMMUNICATIONS OF THE ACM | JUNE 2024 | VOL. 67 | NO. 6

I
M

A
G

E
 B

Y
 A

N
D

R
I

J
 B

O
R

Y
S

 A
S

S
O

C
I

A
T

E
S

,
U

S
I

N
G

 G
R

A
P

H
I

C
 B

Y
 A

S
H

A
 S

R
E

E
N

I
V

A
S

practice

https://dx.doi.org/10.1145/3651621
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3651621&domain=pdf&date_stamp=2024-05-23

JUNE 2024 | VOL. 67 | NO. 6 | COMMUNICATIONS OF THE ACM 53

that produced it.d

It follows that to truly improve the
situation, focusing on design and im-
plementation guidance in the context
of individual applications comes too
late in the process. Instead, develop-
ment and operations teams must shift-
left even further and incorporate soft-
ware safety and security considerations
in the design of developer ecosystems.
While this article focuses on safety and
security, many of the principles and
practices discussed here transfer to
reliability engineering, and it is often
helpful to consider security and reli-
ability together.1

Based on the experience at Google,
this article argues that focusing on de-
veloper ecosystems is both practical
and effective and can achieve a drastic
reduction in the rate of common class-
es of defects across hundreds of appli-
cations being developed by thousands
of developers.

There are two key aspects to this ap-
proach for achieving assurance at scale.

Preventing bugs through Safe Cod-
ing. First, many common implementa-
tion-level security defects, such as injec-
tion or memory safety vulnerabilities,
are difficult to avoid entirely in large
and complex codebases, even for expe-
rienced developers who thoroughly un-
derstand the nature of the vulnerabil-
ity in principle. When a codebase has
many instances of coding patterns that
are potentially vulnerable—placing the
onus on developers to be careful every
single time—defects will happen.

Thus, the only approach that can
significantly reduce the rate of defects
is for the developer ecosystem to take
responsibility for preventing vulner-
abilities by presenting a Safe Coding
environment with respect to the class
of defects in question.

In this model, the developer ecosys-
tem is responsible for ensuring every
version of the system satisfies safety
and security invariants—that is, prop-
erties the system is expected to ensure
at all times, even when operating in an
adversarial external environment. In
many cases, safety invariants can be ex-

d	 A safe system mitigates risks of relevant harm
and adverse outcome for its users and stake-
holders. A secure system does so even in an
adversarial context. Security is about defend-
ing against active threats, beyond accidents,
or even mistakes.16

pressed through language, API and ap-
plication framework design, or through
domain-specific code and configura-
tion conformance checks.

At Google, this approach was suc-
cessfully applied to several classes of
previously intractable defects, includ-
ing cross-site scripting (XSS) and SQL
injection, which occupy positions 2 and
3 in the CWE Stubborn Weaknesses
ranking.3 Today, many Google user-fac-
ing applications are developed in a Safe
Coding ecosystem and exhibit close to
zero residual rates of relevant defects.

Secure design for application ar-
chetypes. Second, a substantial num-
ber of applications and services can
be grouped into a much smaller set of
common archetypes. For example, the
high-level architectural shape of many
user-facing services can be character-
ized as “a Web app with microservices
backends and a SQL database” or “a cli-
ent-side mobile app that relies on a Web
services API.”

It turns out that many aspects of an
individual application’s safety and se-
curity risk model are common to all ap-
plications in the archetype: Every Web
app must worry about XSS vulnerabili-
ties, and every remote procedure call
(RPC) backend must authenticate and
authorize its callers.

This observation can be leveraged by
designing developer ecosystems tuned
to the given archetype, and by struc-
turing ecosystem components (such
as libraries, application frameworks,
and production platforms) to address
common aspects of the archetype’s risk
model template. Developing in such an
environment reduces effort, cognitive
load, and opportunities for mistakes
and omissions for individual product
teams—and mitigates risks across the
entire ecosystem.

In short, the key to safety and assur-
ance at scale is to design developer eco-
systems that ensure secure design best
practices and prevent relevant classes
of vulnerabilities across all applica-
tions of an archetype. This also increas-
es development velocity, because appli-
cation developers don’t have to think
about vulnerabilities while focused on
functionality.

Safe Coding
Many common classes of security vul-

nerabilities, such as memory corrup-
tion, SQL injection, and XSS, arise when
a developer makes an incorrect as-
sumption about the possible behaviors
of a large and complex software system
(especially when faced with adversarial
inputs) while adding or modifying code
whose correctness and safety depends
on those assumptions. Comprehensive
awareness of all relevant assumptions
is particularly difficult to achieve when
large teams maintain software over
long periods of time.

Past attempts to mitigate these types
of vulnerabilities focused on developer
education along with tools and process-
es to discover and fix defects later in the
development cycle. Neither approach
proved effective, and these classes of
defects continue to occur in “top vul-
nerability” rankings and feature prom-
inently in the Stubborn Weaknesses in
the CWE Top 25.3

First, developer education is insuf-
ficient to reduce defect rates in this
context. Intuition tells us that to avoid
introducing a defect, developers need
to practice constant vigilance and
awareness of subtle secure-coding
guidelines. In many cases, this requires
reasoning about complex assumptions
and preconditions, often in relation to
other, conceptually faraway code in a
large, complex codebase. When a pro-
gram contains hundreds or thousands
of coding patterns that could harbor
a potential defect, it is difficult to get
this right every single time. Even ex-
perienced developers who thoroughly
understand these classes of defects and
their technical underpinnings some-
times make a mistake and accidentally
introduce a vulnerability.

Second, approaches to after-the-fact
discovery of defects, such as static or
dynamic analysis (including fuzzing),
are inherently incomplete when ap-
plied to large systems with large, com-
plex state spaces. In many cases, these
techniques are computationally inten-
sive and too slow to apply after a code
change is written but before it is com-
mitted. When defect discovery happens
post-commit, it cannot reduce the rate
at which new defects are introduced
into the source repository.

When software safety is framed as
an emergent property of how it is devel-
oped, the potential of implementation
security defects should be viewed as a

54 COMMUNICATIONS OF THE ACM | JUNE 2024 | VOL. 67 | NO. 6

practice

design flaw of the development envi-
ronment: The potential for defects is a
hazard that arises during development,
and it’s the responsibility of the devel-
opment environment to mitigate this
hazard. (In the context of information
systems, a hazard is the potential for a
user or other stakeholder to experience
harm, or more generally, some adverse
outcome. Here, the adverse outcome
is the introduction of a vulnerability,
which in turn results in a downstream
risk of harm to the eventual software
user. This specifically does not mean
attacks on the developers themselves,
such as via malware embedded in a de-
veloper tool.)

At Google this approach is called
Safe Coding because it’s centered on
structuring development environ-
ments that are safe with respect to the
accidental introduction of security de-
fects during application design and de-
velopment.

In what follows, we illustrate Safe
Coding principles by showing how they
apply to several classes of common soft-
ware safety and security defects, then
briefly discuss the cost effectiveness of
this approach.

Memory safety. Some of the most
common and impactful classes of secu-
rity vulnerabilities arise from memory
safety defects, including code that ac-
cesses memory outside the bounds of
valid, allocated objects, as well as tem-
poral memory safety violations such
as accessing memory that was already
deallocated (“use-after-free”).

Memory safety issues rank 1, 4, 7, and
12 in the 2023 CWE Top 25.4 Several or-
ganizations have reported that memory
safety issues cause a substantial major-
ity of severe vulnerabilities in large C/
C++ codebases, including Chrome (bit.
ly/482j6Ms), Android (bit.ly/4a6DYnC),
Project Zero (bit.ly/416oXxS), and Mi-
crosoft (bit.ly/3RpRMCj).

Guidance for developers in memory-
unsafe languages such as C and C++ is,
essentially, to be careful: For example,
the section on memory management of
the SEI CERT C Coding Standard11 stip-
ulates rules like, “MEM30-C: Do not ac-
cess freed memory” (bit.ly/3uSMBSk).

While this guidance is technically
correct, it’s difficult to apply compre-
hensively and consistently in large,
complex codebases. For example, con-
sider a scenario where a software de-

veloper is making a change to a large
C++ codebase, maintained by a team
of dozens of developers. The change
intends to fix a memory leak that oc-
curs because some heap-allocated
objects are not deallocated under cer-
tain conditions. The developer adds
deallocation statements based on the
implicit assumption that the objects
will no longer be dereferenced. Unfor-
tunately, this assumption turns out to
be incorrect because there is code in
another part of the program that runs
later and still dereferences pointers to
this object.

This example illustrates why the
coding rule can be difficult to adhere
to in practice: Attempting to fix a mem-
ory leak, the developer changes exist-
ing code by adding a statement to free
memory they assume is no longer used.
After the change, code elsewhere in
the program—code the developer did
not modify, and perhaps was not even
aware of—now violates the “do not ac-
cess freed memory rule,” resulting in a
memory safety bug.

The part of the program the devel-
oper modified, and the separate part
of the program that contains a new bug
after the change, are implicitly connect-
ed through assumptions about the allo-
cation state of the object in question.
These kinds of implicit assumptions
about the state of a large and complex
program are easy to miss for a devel-
oper who is familiar with only parts of
the whole, which is common for large
programs worked on by teams of many
developers.

In some cases, it’s possible to design
and structure a program to make such
assumptions more apparent—for ex-
ample, using pointer types that explic-
itly encode an ownership and lifetime
discipline (such as unique _ ptr and
shared _ ptr in C++). These kinds of
considerations are not always applied
comprehensively and consistently, how-
ever, and memory safety vulnerabilities
are quite common in C++ as well as C.

When the risk of classes of defects is
viewed as emerging from the design of
the developer ecosystem, it follows the
prevalence of memory safety defects
emerges from the design of the pro-
gramming language and surrounding
tooling. Simply put, when millions of
lines of code are written in a program-
ming language that places the onus

JUNE 2024 | VOL. 67 | NO. 6 | COMMUNICATIONS OF THE ACM 55

practice

The key to safety
and assurance
at scale is to
design developer
ecosystems
that ensure
secure design
best practices
and prevent
relevant classes
of vulnerabilities
across all
applications of
an archetype.

ing developers rather complex rules
(see, for example, OWASP’s XSS Pre-
vention Cheat Sheete) for treating po-
tentially untrusted data before it is in-
corporated into HTML markup or SQL
queries. This does not work well in prac-
tice: The rules are complicated, and it’s
often difficult to keep track of which
rules were applied to a given string. For
example, when a string that originated
in a system’s backend storage layer is
incorporated into HTML markup in a
Web application frontend, it can be dif-
ficult for the frontend developer to tell
whether that string was sanitized at the
time it was stored. Large Web applica-
tions can have hundreds of code sites
that pass data to JavaScript injection
sinks, and incorrect or omitted saniti-
zation or escaping in a single instance
can result in a vulnerability that com-
promises the entire application.

Again, the prevalence of these class-
es of defects can be viewed as an emer-
gent property of the design of the devel-
oper ecosystem rather than a failure of
developers to apply the correct one of a
set of obscure rules, a thousand times
over. In this framing, the root cause
for these classes of defects is in the de-
sign of APIs that represent potential
injection sinks: Typically, these APIs
accept statements and expressions in
domain-specific languages such as
HTML, JavaScript, CSS, or SQL, repre-
sented as values of a general-purpose
String type. In this API design it is
the developer’s responsibility to ensure
that untrusted values incorporated into
these strings are sanitized or escaped
according to the domain-specific lan-
guage’s rules. This is brittle and prone
to mistakes that can result in injection
vulnerabilities.

Based on this view of the problem’s
root cause, these classes of vulner-
abilities can be addressed by introduc-
ing higher-level abstractions that take
responsibility for separating trusted
code or markup and untrusted data.
For example, there are strict contextu-
ally auto-escaping template systems6
for HTML to ensure untrusted inputs
are appropriately sanitized or escaped
before being interpolated. Similarly,
we provide builder APIs to construct
SQL statements from trustworthy state-
ment fragments.

e	 https://bit.ly/47I90At

on developers to ensure every derefer-
ence of a pointer is valid and in bounds,
there are going to be defects.

In contrast, memory-safe languages
remove this responsibility from devel-
opers and ensure memory safety invari-
ants through the design of the language
and its runtime. For example, in gar-
bage-collected languages such as Java
and Go, developers do not write explicit
statements to deallocate memory; in-
stead, the language and its runtime take
this responsibility and deallocate mem-
ory only when an object is no longer ref-
erenced. Alternatively, in Rust, object
ownership and lifetime are expressed as
native concepts in the language’s type
system. This allows rigorous verification
of memory-safety invariants at compile
time, avoiding the runtime overhead of
garbage collection.

Code injection vulnerabilities. Injec-
tion vulnerabilities arise when strings
derived from untrusted inputs are
passed to an API—referred to as an
injection sink in this context—that in-
terprets the string as code in some do-
main-specific language, such as SQL or
HTML. In this setting, it’s crucial to en-
sure a rigorous separation between the
trusted code and the untrusted data: If
untrusted, potentially attacker-provid-
ed data can be unintentionally inter-
preted and evaluated as code, then the
attacker can exploit the trust placed on
the execution environment and execute
actions with its (elevated) privileges.

For example, XSS vulnerabilities
arise when untrusted inputs are incor-
porated into HTML or passed to certain
Web browser APIs without context-
appropriate escaping, sanitization, or
validation. This can allow attackers to
cause JavaScript code under their con-
trol to execute in the context of a user’s
Web application session, which would
then allow the attacker to exfiltrate or
modify user data. Similarly, SQL injec-
tion vulnerabilities can arise when un-
trusted input strings are incorporated
into a SQL database query; in this case
an attacker could alter the intended
function of the query, causing it to re-
turn or modify data that should not be
accessible to the attacker. Both types of
vulnerabilities are quite common and
impactful, and occupy ranks 2 and 3,
respectively, of the 2023 CWE Top 25.4

In the past, mitigation of these class-
es of vulnerabilities focused on teach-

56 COMMUNICATIONS OF THE ACM | JUNE 2024 | VOL. 67 | NO. 6

practice

When millions
of lines of code
are written in a
programming
language that
places the onus
on developers
to ensure every
dereference of a
pointer is valid and
in bounds, there are
going to be defects.

nerabilities at modest initial and ongo-
ing costs:13

	˲ We rely primarily on judicious API
design that takes advantage of lan-
guage-native type systems, augmented
with inexpensive code conformance
checks where necessary—for example,
the CompileTimeConstant check
implemented as part of the Error Prone
framework (bit.ly/3RsSVIf). This results
in minimal additional resource de-
mands at application runtime and on
build systems and continuous integra-
tion/continuous delivery (CI/CD) infra-
structure.

	˲ Beyond initial efforts to develop
safe APIs and frameworks, ongoing
maintenance and support costs are
modest. For example, at Google a small
team of security engineers maintains
Safe Coding libraries, framework com-
ponents, and code conformance checks
for secure Web application develop-
ment, and provides user support for a
population of many thousands of Web
application developers at Google.

Safe Deployment
Production deployments of services,
and the underlying infrastructure, can
quickly get complicated, even in orga-
nizations much smaller than Google.

Consider a site reliability engineer
(SRE) who is tasked with setting up a
new production environment. The pro-
duction environment includes devices
(routers, firewalls, load balancers, data-
base servers, applications servers, and
more) made by several vendors, each
with its own configuration UIs and
config languages. The engineer has a
playbook document that outlines the
changes to be made, but setting up the
environment is essentially a manual
process.

This is error-prone—the engineer
might accidentally make a change to
the wrong device (perhaps caused by a
simple typo in a command-line argu-
ment) or make a change that has unin-
tended consequences, because of subtle
discrepancies in configuration seman-
tics across different vendor devices.

This could result in a misconfigura-
tion with security impact, such as ex-
posing an internal network service to
the public Internet, a missing or over-
broad access-control list, or an outage
in an unrelated service hosted in the
same production environment.

In addition, we developed a W3C
standards proposal, Trusted Types, to
integrate corresponding types natively
into the Web platform.7

Like the type-constrained SQL query
API, we augmented server-side applica-
tion frameworks, HTML templating
systems, server-side response APIs, and
browser-side application frameworks
and templating systems to constrain
API parameters to the corresponding
type that, by its contract, is safe to use
in the given API’s context.14

Constraining potentially unsafe
usage of injection sinks through vo-
cabulary types and safe abstractions
achieves a high degree of confidence
that any program accepted by compile-
and runtime type checks is free of injec-
tion vulnerabilities—if it compiles, it’s
secure! (See Adkins et al.,1 Kern,6 Wang
et al.14 for more details on preventing
injection vulnerabilities through Safe
Coding.)

At Google, we found that Safe Cod-
ing is the only approach that can sub-
stantially reduce the incidence of in-
jection vulnerabilities, especially at
the scale of Google’s codebase. For
example, 10 years ago, we tended to en-
counter tens of XSS vulnerabilities per
year for each large, complex Web appli-
cation like Gmail. Since then, Safe Cod-
ing practices and safe-types discipline,
including browser-side Trusted Types
enforcement, have been incorporated
into internal Web application frame-
works that are widely used for new and
existing Web applications.g

Today, the residual incidence of XSS
vulnerabilities across all frameworks-
based applications is in the low single
digits (some residual XSS risk arises
from, for example, pre-existing applica-
tion components that have not yet been
refactored to conform to the safe-types
discipline and are exempted from en-
forcement on a “legacy” basis). Some
large services, such as the Google Pho-
tos Web frontend, have not had any XSS
vulnerabilities reported over their en-
tire lifetimes. Similarly, SQL injection
is essentially a nonissue in the Google
internal codebase. In contrast, XSS
and SQL injection occupy spots 2 and
3 in the CWE project’s 2023 Stubborn
Weaknesses ranking.3

Safe Coding prevents injection vul-

g	 https://bit.ly/3uLHFip

To ensure all statements and ex-
pressions passed to an injection sink
API are constructed using these safe
abstractions, the design of sink APIs
has been changed to require a domain-
specific vocabulary type rather than
plain strings. The vocabulary type’s
type contract captures the safety pre-
condition of the injection sink API.
In turn, values of these types are pro-
duced only by corresponding safe ab-
stractions, which ensures they adhere
to their contract.

For example, the SQL query APIs by
which internal Google developers inter-
act with the Spanner database2 expect
values of type TrustedSqlString and
do not accept queries represented as
simple Strings. This type represents
strings that are safe to use as a query
without risk of SQL injection vulner-
abilities. Values of type TrustedSql-
String can be created only by using
builder APIs and factory functions that
ensure this type contract. These APIs
allow queries to be constructed from
query snippets of known, trustworthy
provenance such as trusted configura-
tion files or literal strings that are part
of the program itself. Arbitrary, poten-
tially untrusted strings cannot be in-
corporated into a SQL statement—the
TrustedSqlString builder API sim-
ply has no append method that ac-
cepts arbitrary String-typed values.
This results in a typing discipline that
enforces the (otherwise ad-hoc) secure-
coding guideline to assemble SQL que-
ries from trusted strings and to supply
dynamic parameters via query param-
eter binding (see, for example, OWASP’s
guidance at bit.ly/3LUPyrk).

Similarly, XSS risk is addressed by
defining a set of vocabulary types to
represent strings that are safe for Web
platform injection sinks. For example,
values of type SafeHtml can be safely
returned as text/html Web server re-
sponses, interpolated into an HTML
document in an “HTML tag content”
context, or assigned to the .innerHT-
ML DOM property in browser-side JavaS-
cript. These types and their associated
safe builder APIs have been implement-
ed in Google production languages.f

f	 For example, open source implementations
for TypeScript and Go are available at https://
github.com/google/safevalues and https://
github.com/google/safehtml, respectively.

JUNE 2024 | VOL. 67 | NO. 6 | COMMUNICATIONS OF THE ACM 57

practice

terposed between human engineers
and a production environment (see Ad-
kins1). The safe proxy mediates all inter-
actions with the production environ-
ment and can, for example:

	˲ Validate the safety of requested ac-
tions.

	˲ Impose security policy such as
mandatory auditing and mandatory
multiparty authorization.

	˲ Rate-limit potentially destructive
actions.

In addition to enhancing safety with
respect to human error (such as honest
mistakes), these techniques also pro-
vide an effective control against insider
risk and external compromise of privi-
leged operators. When in place, these
measures remove engineers’ ambient
privileges to unilaterally execute pow-
erful and sensitive actions in the pro-
duction environment. Instead, changes
and actions in production are guarded
by two-person review, automated vali-
dation, and mandatory auditing.

Scaling Secure Design across
Application Archetypes
The previous sections discussed how to
achieve substantial leverage over imple-
mentation bugs and deployment de-
fects, by treating them not as individual
defects but rather as an entire class of
defects to be addressed through devel-
opment and deployment ecosystem de-
sign (programming languages, applica-
tion frameworks, build systems, cloud
platforms, and so on).

Similar thinking can even be applied
to defects that, in isolation, are true de-
sign flaws rather than implementation
bugs—that is, defects that arise from a
fundamental choice about the shape or
architecture of a product or service.

A key observation is that many types
of potential architectural and design
flaws, and the safety and security con-
siderations and practices to avoid them,
apply to all applications of a software-ar-
chitectural archetype. Examples of such
archetypes might include:

	˲ A system consisting of an end-user-
facing Web application frontend com-
municating with backend microser-
vices through RPCs, which in turn rely
on a SQL database for persistence.

	˲ A mobile application backed by a
service API; the service API frontend
in turn makes RPCs to backend mi-
croservices.

Config-as-code. Making changes to
production systems directly—through
configuration user interfaces (UIs) or
command-line interfaces (CLIs)—is
risky: Changes are actuated immedi-
ately, including any mistakes.

A safer approach is to capture the
entire configuration in machine-read-
able config files stored in a versioned
repository, and to automatically actu-
ate changes to the production environ-
ment based on this configuration. This
pattern is often called config-as-code
(or sometimes GitOps) because authori-
tative configuration is maintained in a
source repository, just like an applica-
tion’s source code.

Maintaining configuration in this
fashion allows the introduction of safe-
guards against configuration mistakes:

	˲ The configuration repository can
be set up to require two-person review.
This gives a second engineer the oppor-
tunity to catch mistakes.

	˲ Changes to the configuration can
be guarded by conformance checks
that execute pre-submit and/or before a
configuration change is actuated. Like
conformance checks on source code
discussed earlier, such conformance
checks can ensure safety and correct-
ness invariants on the configuration
on an ongoing basis. For example, a
conformance check can ensure the
authorization policies of backend RPC
services adhere to common guidelines
and best practices.

	˲ Common types of changes can be
automated through tools that generate
sections of configuration. The configu-
ration for a new service instance can
be generated automatically based on a
template, reducing the opportunity for
mistakes caused by typos.

Zero Touch Prod and safe proxies.
Zero Touch Prod is a set of principles
and tools to ensure every change to a
production environment is made by
trusted automation (not directly by a hu-
man), prevalidated by trusted software,
or made through an audited break-glass
mechanism.5

Conformance checks imposed on
config-as-code are one way of adhering
to this principle. It can be challenging,
however, to accommodate all actions
in a production environment through
config-as-code, especially those needed
when responding to an incident.

Safe proxies are trusted systems in-

When this happens, it’s tempting to
say “They should have been more care-
ful” but it’s ultimately an unreasonable
expectation that any human has a per-
fectly accurate mental model of a pro-
duction environment consisting of hun-
dreds of devices with thousands of config
settings expressed in several different
configuration models. Instead, just as
for common coding mishaps, the poten-
tial for deployment mishaps should be
treated as a hazard, and it should be the
deployment environment’s responsibil-
ity to protect engineers from encounter-
ing these hazards.8

Safety from deployment hazards can
be incorporated into deployment en-
vironments in several ways. Examples
of practices found useful at Google in-
clude cloud platforms, config-as-code,
and Zero Touch Prod and Safe Proxies.

Cloud platforms. When deployment
environments are based on “bare-
metal” servers and network devices,
engineers are exposed to the full com-
plexity and nonuniformity of their con-
figuration surfaces. In contrast, cloud
platforms provide a higher-level ab-
straction and a consistent vocabulary of
configuration points, and they expose
common functionality (such as data-
bases) as managed services. This reduc-
es cognitive load caused by differences
between configuration surfaces of dif-
ferent types of network devices and the
need to manage lower-level aspects of
servers that host higher-level services
such as databases.

Cloud platforms can integrate en-
forcement of security invariants into
their control planes. For example,
Google’s production environment12 en-
forces binary authorization policiesh to
govern whether a deployment package
can run with the privileges of a given
role. For sensitive roles, these policies
typically require that the binary pack-
age is accompanied by a provenance
attestationi that it was built by an autho-
rized, trusted build system from code
in a trusted source repository where
changes are reviewed under the two-
person principle. This mechanism en-
sures, on an ongoing basis, the invari-
ant that only explicitly authorized code
can exercise the privileges of a given
production role.

h	 https://bit.ly/3TnKcZT
i	 https://slsa.dev/provenance/v1

58 COMMUNICATIONS OF THE ACM | JUNE 2024 | VOL. 67 | NO. 6

practice

pects of the architecture and design
(both in terms of code and mapping to
production resources) of applications
and services built on the framework.9
These applications inherit security (also
privacy and reliability) best practices
designed and built into the framework,
usually through collaboration between
domain experts (security engineers,
SREs) and framework engineers.

Many design choices (Which secure
transport protocol should I use? How
should I authenticate and authorize re-
quests? How do I encrypt data at rest?)
are incorporated in the design of the
framework, and application developers
are relieved from making these deci-
sions—and from potentially making a
suboptimal choice.

This approach reduces the risk of
design-level security defects and gives
leverage to scarce expert bandwidth—
experts can focus their attention on the
design and implementation of frame-
works and platforms, while having an
impact on many development projects
that rely on that framework.

Furthermore, after frameworks are
widely adopted as a platform for appli-
cation development, future security im-
provements and mitigations for novel
attacks and defect classes can often
be deployed swiftly, scalably, and ef-
ficiently, taking advantage of the well-
defined structure of frameworks-based
applications. For example, security and
Web frameworks teams at Google rou-
tinely roll out new security features and
mitigations at scale to existing frame-
works-based applications, often with-
out any need for involvement or time
investment by the teams that maintain
individual applications. (See the blog
post A Recipe for Scaling Security, at bit.
ly/3u6C71R, for more details.)

Continuous Assurance at Scale
At Google, we sometimes say, “Soft-
ware engineering is programming
integrated over time,” to recognize
the vast difference between one or a
few people writing a few-thousand-
line program in days or weeks, versus
hundreds of teams of hundreds of de-
velopers jointly working, over years or
even decades, on a codebase of several
hundred million lines of code.15 This
distinction matters when it comes to
ensuring security invariants for soft-
ware products and the degree of confi-

While many threats and secure-de-
sign considerations are indeed specific
to a given application (for example, a
banking app is inherently different
from a photo editor), typically a sub-
stantial degree of commonality exists
in the threat models across the entire
class of applications of a given arche-
type.

For example, the safety and security
design of (almost) any application that
falls into either of these archetypes
must consider areas such as:

	˲ Protecting the confidentiality and
integrity of network and RPC traffic
over the public Internet and internal
networks.

	˲ Ensuring that all external client-
server requests and internal RPC re-
quests are appropriately authenticated
and authorized, governed by an explicit,
intentional policy (although the details
of the policy itself are usually specific to
the application and its features).

	˲ Ensuring the confidentiality and
integrity of user/customer data is ap-
propriately protected in conformance
with the service provider’s policies (for
example, through appropriate crypto-
graphic schemes).

	˲ Ensuring user data is deleted ac-
cording to the service provider’s poli-
cies (such as when requested by a user
or when a user leaves the service).

	˲ And many more.
Google has hundreds of Web and

mobile applications and external-fac-
ing API endpoints, and thousands of
microservice backends and internal
RPC endpoints, but even organizations
much smaller than Google usually have
at least several. It’s undesirable for each
team responsible for one of these ser-
vices to develop a comprehensive threat
model from scratch and to design ap-
propriate mitigations for each one.
Taking such a decentralized approach
results in not only duplication of work,
but also inferior outcomes: Threat
modeling and secure design require
expertise that is often not available in
product development teams; while an
organization’s security experts can help
through consulting, their bandwidth is
typically limited.

At Google, we take advantage of
common threat model aspects and se-
cure design considerations by building
frameworks and platforms that inform,
govern, and constrain important as-

JUNE 2024 | VOL. 67 | NO. 6 | COMMUNICATIONS OF THE ACM 59

practice

When deployment
environments are
based on “bare-
metal” servers and
network devices,
engineers are
exposed to the full
complexity and
nonuniformity of
their configuration
surfaces.

and without having to consider or un-
derstand application-specific code.
There is still a residual risk of defects,
but it is confined within those key com-
ponents. These tend to be stable, and
domain experts can thoroughly scruti-
nize them for potential defects.

Considering the framing as pro-
gramming over time, designing develop-
er ecosystems as Safe Coding and Safe
Deployment environments allows us to
achieve continuous assurance at scale:
It provides confidence that every pro-
duction release of every application of
supported archetypes satisfies desired
safety and security invariants. 

References
1.	 Adkins, H. et al. Building Secure and Reliable Systems:

Best Practices for Designing, Implementing, and
Maintaining Systems. O’Reilly Media, 2020; https://sre.
google/books/building-secure-reliable-systems/.

2.	 Corbett, J.C. et al. Spanner: Google’s globally
distributed database. ACM Trans. Computer Systems
31, 3 (2013), 1–22; 10.1145/2491245.

3.	 CWE. Stubborn Weaknesses in the CWE Top 25, 2023;
https://cwe.mitre.org/top25/archive/2023/2023_
stubborn_weaknesses.html.

4.	 CWE. Top 25 Most Dangerous Software Weaknesses,
2023; https://cwe.mitre.org/top25/archive/2023/2023_
top25_list.html.

5.	 Czapiński, M. and Wolafka, R. Zero Touch Prod:
Towards safer and more secure production
environments. Usenix, 2019; https://www.usenix.org/
conference/srecon19emea/presentation/czapinski.

6.	 Kern, C. Securing the tangled Web. Commun. ACM 57,
9 (Sept. 2014), 38–47; 10.1145/2643134.

7.	 Kotowicz, K. Trusted Types, 2024; https://w3c.github.
io/trusted-types/dist/spec/.

8.	 Leveson, N. A systems approach to safety and
cybersecurity. Usenix, 2019; https://www.usenix.org/
conference/srecon19emea/presentation/leveson.

9.	 Nokleberg, C. and Hawkes, B. Application
frameworks. Commun. ACM 64, 7 (July 2021), 42–49;
10.1145/3446796.

10.	 Saltzer, J.H. and Schroeder, M.D. The protection of
information in computer systems. In Proceedings of
the IEEE 63, 9 (1975), 1278–1308; https://ieeexplore.
ieee.org/document/1451869.

11.	 Seacord, R.C. The CERT C Coding Standard: 98 Rules
for Developing Safe, Reliable, and Secure Systems, 2nd
ed., Addison-Wesley Professional, 2014.

12.	 Verma, A. et al. Large-scale cluster management
at Google with Borg. In Proceedings of the
10th European Conf. Computer Systems, 2015;
10.1145/2741948.2741964.

13.	 Wang, P., Bangert, J., and Kern, C.. If it’s not secure,
it should not compile: Preventing DOM-based
XSS in large-scale web development with API
hardening. In Proceedings of IEEE/ACM 43rd Intern.
Conf. Softw. Eng., 2021, 1360–1372; 10.1109/
ICSE43902.2021.00123.

14.	 Wang, P., Gumundsson, B.A., and Kotowicz, K..
Adopting Trusted Types in production web frameworks
to prevent DOM-based cross-site scripting: A case
study. In IEEE 2021 European Symp. Security and
Privacy Workshops, 60–73; https://research.google/
pubs/pub50513/.

15.	 Winters, T., Manshreck, T., Wright, H. Software
Engineering at Google: Lessons Learned from
Programming over Time. O’Reilly Media, 2020.

16.	 Young, W. and Leveson, N.G. An integrated
approach to safety and security based on systems
theory. Commun. ACM 57, 2 (Feb. 2014), 31–35;
10.1145/2556938.

Christoph Kern is a principal software engineer in
Google’s Security Foundations organization, Seattle, WA,
USA.

© 2024 Copyright held by the owner/author(s).

dence in the product adhering to these
invariants. For a small, self-contained
program written by a small group over
a short period of time, developers are
less likely to make mistaken assump-
tions that lead to defects, and it is in-
deed feasible for an expert to read and
understand the entire codebase and
perform a high-confidence security
assessment.

Once a service’s design, codebase,
and production footprint get larger
and more complex, this no longer
works: The risk of defects caused by
mistaken assumptions (or plain mis-
takes and forgetfulness) increases. It
becomes infeasible for an expert, or
even a group of experts, to understand
the entire artifact fully and deeply, re-
sulting in limits on high-confidence
security assessments.

If the experts must read and under-
stand most of a codebase of many hun-
dreds of thousands of lines of code,
it’s likely they will miss something, or
make a mistake in their assessment.
(Tool support such as static analyzers
can sometimes help; however, these
typically need to accept some degree of
imprecision to scale to large codebas-
es, and hence can also “miss things.”)
Furthermore, security assessments by
human experts apply to the specific
version under review and are difficult
to scale to every release of software
that is under active ongoing feature de-
velopment.

As explained here, Google address-
es this challenge by designing a devel-
oper ecosystem to ensure all services
developed and deployed in this envi-
ronment have the desired properties.
We achieve high levels of assurance by
applying the principle of “Design for
Understandability”1—Key developer
ecosystem components are designed
to ensure the property for any arbi-
trary application, assuming only that
application code is well-typed, passes
conformance checks, and satisfies ba-
sic assumptions. (Code written and re-
viewed under the two-person principle
is generally assumed not to deliber-
ately subvert security invariants—for
example, through use of reflection or
unsafe casts.)

This allows us to have confidence
that the property holds for all applica-
tions, based solely on understanding
key developer ecosystem components,

60 COMMUNICATIONS OF THE ACM | JUNE 2024 | VOL. 67 | NO. 6

practice

After frameworks
are widely adopted
as a platform
for application
development,
future security
improvements
and mitigations for
novel attacks and
defect classes can
often be deployed
swiftly, scalably,
and efficiently.

