
Security Project (OWASP) Cheat Sheet 
Series.b

Despite these efforts, common types 
of software defects prevail, and many 
occupy top ranks of “worst vulnerabili-
ties” lists such as the OWASP Top 10c 
or the CWE Top 25 Most Dangerous 
Software Weaknesses4 for years if not 
decades.

Based on work at Google over the 
past decade on managing the risk of 
software defects in its wide-ranging 
portfolio of applications and services, 
the members of Google’s security engi-
neering team developed a theory about 
the reason for the prevalence of defects: 
It’s simply too difficult for real-world 
development and operations teams 
to apply the available guidance com-
prehensively and consistently, which 
results in a problematic rate of new de-
fects. Commonly used approaches to 
find and fix implementation defects af-
ter the fact can help (for example, code 
review, testing, scanning, or static and 
dynamic analysis such as fuzzing), but 
in practice they find only a fraction of 
these defects. Design-level defects are 
difficult or impractical to remediate 
after the fact. This leaves a problematic 
residual rate of defects in production 
systems.

We concluded that the rate at which 
common types of defects are intro-
duced during design, development, 
and deployment is systemic—it arises 
from the design and structure of the 
developer ecosystem, which means the 
end-to-end collection of systems, tool-
ing, and processes in which developers 
design, implement, and deploy soft-
ware. This includes programming lan-
guages, software libraries, application 
frameworks, source repositories, build 
and deployment tooling, the produc-
tion platform and its configuration sur-
faces, and so forth.

In short, the safety and security 
posture of a software application or 
service is substantially an emergent 
property of the developer ecosystem 

b	 https://cheatsheetseries.owasp.org/
c	 https://owasp.org/Top10/

HOW T O DE SIGN and implement information systems 
so they are safe and secure is a complex topic. Both 
high-level design principles and implementation 
guidance for software safety and security are well 
established and broadly accepted. For example, 
Jerome Saltzer and Michael Schroeder’s seminal 
overview of principles of secure design was published 
almost 50 years ago,10 and various community and 
governmental bodies have published comprehensive 
best practices about how to avoid common software 
weaknesses—for example, Common Weakness 
Enumeration (CWE)a and Open Worldwide Application 

a	 https://cwe.mitre.org/
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that produced it.d

It follows that to truly improve the 
situation, focusing on design and im-
plementation guidance in the context 
of individual applications comes too 
late in the process. Instead, develop-
ment and operations teams must shift-
left even further and incorporate soft-
ware safety and security considerations 
in the design of developer ecosystems. 
While this article focuses on safety and 
security, many of the principles and 
practices discussed here transfer to 
reliability engineering, and it is often 
helpful to consider security and reli-
ability together.1

Based on the experience at Google, 
this article argues that focusing on de-
veloper ecosystems is both practical 
and effective and can achieve a drastic 
reduction in the rate of common class-
es of defects across hundreds of appli-
cations being developed by thousands 
of developers.

There are two key aspects to this ap-
proach for achieving assurance at scale.

Preventing bugs through Safe Cod-
ing. First, many common implementa-
tion-level security defects, such as injec-
tion or memory safety vulnerabilities, 
are difficult to avoid entirely in large 
and complex codebases, even for expe-
rienced developers who thoroughly un-
derstand the nature of the vulnerabil-
ity in principle. When a codebase has 
many instances of coding patterns that 
are potentially vulnerable—placing the 
onus on developers to be careful every 
single time—defects will happen.

Thus, the only approach that can 
significantly reduce the rate of defects 
is for the developer ecosystem to take 
responsibility for preventing vulner-
abilities by presenting a Safe Coding 
environment with respect to the class 
of defects in question.

In this model, the developer ecosys-
tem is responsible for ensuring every 
version of the system satisfies safety 
and security invariants—that is, prop-
erties the system is expected to ensure 
at all times, even when operating in an 
adversarial external environment. In 
many cases, safety invariants can be ex-

d	 A safe system mitigates risks of relevant harm 
and adverse outcome for its users and stake-
holders. A secure system does so even in an 
adversarial context. Security is about defend-
ing against active threats, beyond accidents, 
or even mistakes.16

pressed through language, API and ap-
plication framework design, or through 
domain-specific code and configura-
tion conformance checks.

At Google, this approach was suc-
cessfully applied to several classes of 
previously intractable defects, includ-
ing cross-site scripting (XSS) and SQL 
injection, which occupy positions 2 and 
3 in the CWE Stubborn Weaknesses 
ranking.3 Today, many Google user-fac-
ing applications are developed in a Safe 
Coding ecosystem and exhibit close to 
zero residual rates of relevant defects.

Secure design for application ar-
chetypes. Second, a substantial num-
ber of applications and services can 
be grouped into a much smaller set of 
common archetypes. For example, the 
high-level architectural shape of many 
user-facing services can be character-
ized as “a Web app with microservices 
backends and a SQL database” or “a cli-
ent-side mobile app that relies on a Web 
services API.”

It turns out that many aspects of an 
individual application’s safety and se-
curity risk model are common to all ap-
plications in the archetype: Every Web 
app must worry about XSS vulnerabili-
ties, and every remote procedure call 
(RPC) backend must authenticate and 
authorize its callers.

This observation can be leveraged by 
designing developer ecosystems tuned 
to the given archetype, and by struc-
turing ecosystem components (such 
as libraries, application frameworks, 
and production platforms) to address 
common aspects of the archetype’s risk 
model template. Developing in such an 
environment reduces effort, cognitive 
load, and opportunities for mistakes 
and omissions for individual product 
teams—and mitigates risks across the 
entire ecosystem.

In short, the key to safety and assur-
ance at scale is to design developer eco-
systems that ensure secure design best 
practices and prevent relevant classes 
of vulnerabilities across all applica-
tions of an archetype. This also increas-
es development velocity, because appli-
cation developers don’t have to think 
about vulnerabilities while focused on 
functionality.

Safe Coding
Many common classes of security vul-

nerabilities, such as memory corrup-
tion, SQL injection, and XSS, arise when 
a developer makes an incorrect as-
sumption about the possible behaviors 
of a large and complex software system 
(especially when faced with adversarial 
inputs) while adding or modifying code 
whose correctness and safety depends 
on those assumptions. Comprehensive 
awareness of all relevant assumptions 
is particularly difficult to achieve when 
large teams maintain software over 
long periods of time.

Past attempts to mitigate these types 
of vulnerabilities focused on developer 
education along with tools and process-
es to discover and fix defects later in the 
development cycle. Neither approach 
proved effective, and these classes of 
defects continue to occur in “top vul-
nerability” rankings and feature prom-
inently in the Stubborn Weaknesses in 
the CWE Top 25.3

First, developer education is insuf-
ficient to reduce defect rates in this 
context. Intuition tells us that to avoid 
introducing a defect, developers need 
to practice constant vigilance and 
awareness of subtle secure-coding 
guidelines. In many cases, this requires 
reasoning about complex assumptions 
and preconditions, often in relation to 
other, conceptually faraway code in a 
large, complex codebase. When a pro-
gram contains hundreds or thousands 
of coding patterns that could harbor 
a potential defect, it is difficult to get 
this right every single time. Even ex-
perienced developers who thoroughly 
understand these classes of defects and 
their technical underpinnings some-
times make a mistake and accidentally 
introduce a vulnerability.

Second, approaches to after-the-fact 
discovery of defects, such as static or 
dynamic analysis (including fuzzing), 
are inherently incomplete when ap-
plied to large systems with large, com-
plex state spaces. In many cases, these 
techniques are computationally inten-
sive and too slow to apply after a code 
change is written but before it is com-
mitted. When defect discovery happens 
post-commit, it cannot reduce the rate 
at which new defects are introduced 
into the source repository.

When software safety is framed as 
an emergent property of how it is devel-
oped, the potential of implementation 
security defects should be viewed as a 
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design flaw of the development envi-
ronment: The potential for defects is a 
hazard that arises during development, 
and it’s the responsibility of the devel-
opment environment to mitigate this 
hazard. (In the context of information 
systems, a hazard is the potential for a 
user or other stakeholder to experience 
harm, or more generally, some adverse 
outcome. Here, the adverse outcome 
is the introduction of a vulnerability, 
which in turn results in a downstream 
risk of harm to the eventual software 
user. This specifically does not mean 
attacks on the developers themselves, 
such as via malware embedded in a de-
veloper tool.)

At Google this approach is called 
Safe Coding because it’s centered on 
structuring development environ-
ments that are safe with respect to the 
accidental introduction of security de-
fects during application design and de-
velopment.

In what follows, we illustrate Safe 
Coding principles by showing how they 
apply to several classes of common soft-
ware safety and security defects, then 
briefly discuss the cost effectiveness of 
this approach.

Memory safety. Some of the most 
common and impactful classes of secu-
rity vulnerabilities arise from memory 
safety defects, including code that ac-
cesses memory outside the bounds of 
valid, allocated objects, as well as tem-
poral memory safety violations such 
as accessing memory that was already 
deallocated (“use-after-free”).

Memory safety issues rank 1, 4, 7, and 
12 in the 2023 CWE Top 25.4 Several or-
ganizations have reported that memory 
safety issues cause a substantial major-
ity of severe vulnerabilities in large C/
C++ codebases, including Chrome (bit.
ly/482j6Ms), Android (bit.ly/4a6DYnC), 
Project Zero (bit.ly/416oXxS), and Mi-
crosoft (bit.ly/3RpRMCj).

Guidance for developers in memory-
unsafe languages such as C and C++ is, 
essentially, to be careful: For example, 
the section on memory management of 
the SEI CERT C Coding Standard11 stip-
ulates rules like, “MEM30-C: Do not ac-
cess freed memory” (bit.ly/3uSMBSk).

While this guidance is technically 
correct, it’s difficult to apply compre-
hensively and consistently in large, 
complex codebases. For example, con-
sider a scenario where a software de-

veloper is making a change to a large 
C++ codebase, maintained by a team 
of dozens of developers. The change 
intends to fix a memory leak that oc-
curs because some heap-allocated 
objects are not deallocated under cer-
tain conditions. The developer adds 
deallocation statements based on the 
implicit assumption that the objects 
will no longer be dereferenced. Unfor-
tunately, this assumption turns out to 
be incorrect because there is code in 
another part of the program that runs 
later and still dereferences pointers to 
this object.

This example illustrates why the 
coding rule can be difficult to adhere 
to in practice: Attempting to fix a mem-
ory leak, the developer changes exist-
ing code by adding a statement to free 
memory they assume is no longer used. 
After the change, code elsewhere in 
the program—code the developer did 
not modify, and perhaps was not even 
aware of—now violates the “do not ac-
cess freed memory rule,” resulting in a 
memory safety bug.

The part of the program the devel-
oper modified, and the separate part 
of the program that contains a new bug 
after the change, are implicitly connect-
ed through assumptions about the allo-
cation state of the object in question. 
These kinds of implicit assumptions 
about the state of a large and complex 
program are easy to miss for a devel-
oper who is familiar with only parts of 
the whole, which is common for large 
programs worked on by teams of many 
developers.

In some cases, it’s possible to design 
and structure a program to make such 
assumptions more apparent—for ex-
ample, using pointer types that explic-
itly encode an ownership and lifetime 
discipline (such as unique _ ptr and 
shared _ ptr in C++). These kinds of 
considerations are not always applied 
comprehensively and consistently, how-
ever, and memory safety vulnerabilities 
are quite common in C++ as well as C.

When the risk of classes of defects is 
viewed as emerging from the design of 
the developer ecosystem, it follows the 
prevalence of memory safety defects 
emerges from the design of the pro-
gramming language and surrounding 
tooling. Simply put, when millions of 
lines of code are written in a program-
ming language that places the onus 
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ing developers rather complex rules 
(see, for example, OWASP’s XSS Pre-
vention Cheat Sheete) for treating po-
tentially untrusted data before it is in-
corporated into HTML markup or SQL 
queries. This does not work well in prac-
tice: The rules are complicated, and it’s 
often difficult to keep track of which 
rules were applied to a given string. For 
example, when a string that originated 
in a system’s backend storage layer is 
incorporated into HTML markup in a 
Web application frontend, it can be dif-
ficult for the frontend developer to tell 
whether that string was sanitized at the 
time it was stored. Large Web applica-
tions can have hundreds of code sites 
that pass data to JavaScript injection 
sinks, and incorrect or omitted saniti-
zation or escaping in a single instance 
can result in a vulnerability that com-
promises the entire application.

Again, the prevalence of these class-
es of defects can be viewed as an emer-
gent property of the design of the devel-
oper ecosystem rather than a failure of 
developers to apply the correct one of a 
set of obscure rules, a thousand times 
over. In this framing, the root cause 
for these classes of defects is in the de-
sign of APIs that represent potential 
injection sinks: Typically, these APIs 
accept statements and expressions in 
domain-specific languages such as 
HTML, JavaScript, CSS, or SQL, repre-
sented as values of a general-purpose 
String type. In this API design it is 
the developer’s responsibility to ensure 
that untrusted values incorporated into 
these strings are sanitized or escaped 
according to the domain-specific lan-
guage’s rules. This is brittle and prone 
to mistakes that can result in injection 
vulnerabilities.

Based on this view of the problem’s 
root cause, these classes of vulner-
abilities can be addressed by introduc-
ing higher-level abstractions that take 
responsibility for separating trusted 
code or markup and untrusted data. 
For example, there are strict contextu-
ally auto-escaping template systems6 
for HTML to ensure untrusted inputs 
are appropriately sanitized or escaped 
before being interpolated. Similarly, 
we provide builder APIs to construct 
SQL statements from trustworthy state-
ment fragments.

e	 https://bit.ly/47I90At

on developers to ensure every derefer-
ence of a pointer is valid and in bounds, 
there are going to be defects.

In contrast, memory-safe languages 
remove this responsibility from devel-
opers and ensure memory safety invari-
ants through the design of the language 
and its runtime. For example, in gar-
bage-collected languages such as Java 
and Go, developers do not write explicit 
statements to deallocate memory; in-
stead, the language and its runtime take 
this responsibility and deallocate mem-
ory only when an object is no longer ref-
erenced. Alternatively, in Rust, object 
ownership and lifetime are expressed as 
native concepts in the language’s type 
system. This allows rigorous verification 
of memory-safety invariants at compile 
time, avoiding the runtime overhead of 
garbage collection.

Code injection vulnerabilities. Injec-
tion vulnerabilities arise when strings 
derived from untrusted inputs are 
passed to an API—referred to as an 
injection sink in this context—that in-
terprets the string as code in some do-
main-specific language, such as SQL or 
HTML. In this setting, it’s crucial to en-
sure a rigorous separation between the 
trusted code and the untrusted data: If 
untrusted, potentially attacker-provid-
ed data can be unintentionally inter-
preted and evaluated as code, then the 
attacker can exploit the trust placed on 
the execution environment and execute 
actions with its (elevated) privileges.

For example, XSS vulnerabilities 
arise when untrusted inputs are incor-
porated into HTML or passed to certain 
Web browser APIs without context-
appropriate escaping, sanitization, or 
validation. This can allow attackers to 
cause JavaScript code under their con-
trol to execute in the context of a user’s 
Web application session, which would 
then allow the attacker to exfiltrate or 
modify user data. Similarly, SQL injec-
tion vulnerabilities can arise when un-
trusted input strings are incorporated 
into a SQL database query; in this case 
an attacker could alter the intended 
function of the query, causing it to re-
turn or modify data that should not be 
accessible to the attacker. Both types of 
vulnerabilities are quite common and 
impactful, and occupy ranks 2 and 3, 
respectively, of the 2023 CWE Top 25.4

In the past, mitigation of these class-
es of vulnerabilities focused on teach-
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nerabilities at modest initial and ongo-
ing costs:13

	˲ We rely primarily on judicious API 
design that takes advantage of lan-
guage-native type systems, augmented 
with inexpensive code conformance 
checks where necessary—for example, 
the CompileTimeConstant check 
implemented as part of the Error Prone 
framework (bit.ly/3RsSVIf). This results 
in minimal additional resource de-
mands at application runtime and on 
build systems and continuous integra-
tion/continuous delivery (CI/CD) infra-
structure.

	˲ Beyond initial efforts to develop 
safe APIs and frameworks, ongoing 
maintenance and support costs are 
modest. For example, at Google a small 
team of security engineers maintains 
Safe Coding libraries, framework com-
ponents, and code conformance checks 
for secure Web application develop-
ment, and provides user support for a 
population of many thousands of Web 
application developers at Google.

Safe Deployment
Production deployments of services, 
and the underlying infrastructure, can 
quickly get complicated, even in orga-
nizations much smaller than Google.

Consider a site reliability engineer 
(SRE) who is tasked with setting up a 
new production environment. The pro-
duction environment includes devices 
(routers, firewalls, load balancers, data-
base servers, applications servers, and 
more) made by several vendors, each 
with its own configuration UIs and 
config languages. The engineer has a 
playbook document that outlines the 
changes to be made, but setting up the 
environment is essentially a manual 
process.

This is error-prone—the engineer 
might accidentally make a change to 
the wrong device (perhaps caused by a 
simple typo in a command-line argu-
ment) or make a change that has unin-
tended consequences, because of subtle 
discrepancies in configuration seman-
tics across different vendor devices.

This could result in a misconfigura-
tion with security impact, such as ex-
posing an internal network service to 
the public Internet, a missing or over-
broad access-control list, or an outage 
in an unrelated service hosted in the 
same production environment.

In addition, we developed a W3C 
standards proposal, Trusted Types, to 
integrate corresponding types natively 
into the Web platform.7

Like the type-constrained SQL query 
API, we augmented server-side applica-
tion frameworks, HTML templating 
systems, server-side response APIs, and 
browser-side application frameworks 
and templating systems to constrain 
API parameters to the corresponding 
type that, by its contract, is safe to use 
in the given API’s context.14

Constraining potentially unsafe 
usage of injection sinks through vo-
cabulary types and safe abstractions 
achieves a high degree of confidence 
that any program accepted by compile- 
and runtime type checks is free of injec-
tion vulnerabilities—if it compiles, it’s 
secure! (See Adkins et al.,1 Kern,6 Wang 
et al.14 for more details on preventing 
injection vulnerabilities through Safe 
Coding.)

At Google, we found that Safe Cod-
ing is the only approach that can sub-
stantially reduce the incidence of in-
jection vulnerabilities, especially at 
the scale of Google’s codebase. For 
example, 10 years ago, we tended to en-
counter tens of XSS vulnerabilities per 
year for each large, complex Web appli-
cation like Gmail. Since then, Safe Cod-
ing practices and safe-types discipline, 
including browser-side Trusted Types 
enforcement, have been incorporated 
into internal Web application frame-
works that are widely used for new and 
existing Web applications.g

Today, the residual incidence of XSS 
vulnerabilities across all frameworks-
based applications is in the low single 
digits (some residual XSS risk arises 
from, for example, pre-existing applica-
tion components that have not yet been 
refactored to conform to the safe-types 
discipline and are exempted from en-
forcement on a “legacy” basis). Some 
large services, such as the Google Pho-
tos Web frontend, have not had any XSS 
vulnerabilities reported over their en-
tire lifetimes. Similarly, SQL injection 
is essentially a nonissue in the Google 
internal codebase. In contrast, XSS 
and SQL injection occupy spots 2 and 
3 in the CWE project’s 2023 Stubborn 
Weaknesses ranking.3

Safe Coding prevents injection vul-

g	 https://bit.ly/3uLHFip

To ensure all statements and ex-
pressions passed to an injection sink 
API are constructed using these safe 
abstractions, the design of sink APIs 
has been changed to require a domain-
specific vocabulary type rather than 
plain strings. The vocabulary type’s 
type contract captures the safety pre-
condition of the injection sink API. 
In turn, values of these types are pro-
duced only by corresponding safe ab-
stractions, which ensures they adhere 
to their contract.

For example, the SQL query APIs by 
which internal Google developers inter-
act with the Spanner database2 expect 
values of type TrustedSqlString and 
do not accept queries represented as 
simple Strings. This type represents 
strings that are safe to use as a query 
without risk of SQL injection vulner-
abilities. Values of type TrustedSql-
String can be created only by using 
builder APIs and factory functions that 
ensure this type contract. These APIs 
allow queries to be constructed from 
query snippets of known, trustworthy 
provenance such as trusted configura-
tion files or literal strings that are part 
of the program itself. Arbitrary, poten-
tially untrusted strings cannot be in-
corporated into a SQL statement—the 
TrustedSqlString builder API sim-
ply has no append method that ac-
cepts arbitrary String-typed values. 
This results in a typing discipline that 
enforces the (otherwise ad-hoc) secure-
coding guideline to assemble SQL que-
ries from trusted strings and to supply 
dynamic parameters via query param-
eter binding (see, for example, OWASP’s 
guidance at bit.ly/3LUPyrk).

Similarly, XSS risk is addressed by 
defining a set of vocabulary types to 
represent strings that are safe for Web 
platform injection sinks. For example, 
values of type SafeHtml can be safely 
returned as text/html Web server re-
sponses, interpolated into an HTML 
document in an “HTML tag content” 
context, or assigned to the .innerHT-
ML DOM property in browser-side JavaS-
cript. These types and their associated 
safe builder APIs have been implement-
ed in Google production languages.f

f	 For example, open source implementations 
for TypeScript and Go are available at https://
github.com/google/safevalues and https://
github.com/google/safehtml, respectively.
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terposed between human engineers 
and a production environment (see Ad-
kins1). The safe proxy mediates all inter-
actions with the production environ-
ment and can, for example:

	˲ Validate the safety of requested ac-
tions.

	˲ Impose security policy such as 
mandatory auditing and mandatory 
multiparty authorization.

	˲ Rate-limit potentially destructive 
actions.

In addition to enhancing safety with 
respect to human error (such as honest 
mistakes), these techniques also pro-
vide an effective control against insider 
risk and external compromise of privi-
leged operators. When in place, these 
measures remove engineers’ ambient 
privileges to unilaterally execute pow-
erful and sensitive actions in the pro-
duction environment. Instead, changes 
and actions in production are guarded 
by two-person review, automated vali-
dation, and mandatory auditing.

Scaling Secure Design across 
Application Archetypes
The previous sections discussed how to 
achieve substantial leverage over imple-
mentation bugs and deployment de-
fects, by treating them not as individual 
defects but rather as an entire class of 
defects to be addressed through devel-
opment and deployment ecosystem de-
sign (programming languages, applica-
tion frameworks, build systems, cloud 
platforms, and so on).

Similar thinking can even be applied 
to defects that, in isolation, are true de-
sign flaws rather than implementation 
bugs—that is, defects that arise from a 
fundamental choice about the shape or 
architecture of a product or service.

A key observation is that many types 
of potential architectural and design 
flaws, and the safety and security con-
siderations and practices to avoid them, 
apply to all applications of a software-ar-
chitectural archetype. Examples of such 
archetypes might include:

	˲ A system consisting of an end-user-
facing Web application frontend com-
municating with backend microser-
vices through RPCs, which in turn rely 
on a SQL database for persistence.

	˲ A mobile application backed by a 
service API; the service API frontend 
in turn makes RPCs to backend mi-
croservices.

Config-as-code. Making changes to 
production systems directly—through 
configuration user interfaces (UIs) or 
command-line interfaces (CLIs)—is 
risky: Changes are actuated immedi-
ately, including any mistakes.

A safer approach is to capture the 
entire configuration in machine-read-
able config files stored in a versioned 
repository, and to automatically actu-
ate changes to the production environ-
ment based on this configuration. This 
pattern is often called config-as-code 
(or sometimes GitOps) because authori-
tative configuration is maintained in a 
source repository, just like an applica-
tion’s source code.

Maintaining configuration in this 
fashion allows the introduction of safe-
guards against configuration mistakes:

	˲ The configuration repository can 
be set up to require two-person review. 
This gives a second engineer the oppor-
tunity to catch mistakes.

	˲ Changes to the configuration can 
be guarded by conformance checks 
that execute pre-submit and/or before a 
configuration change is actuated. Like 
conformance checks on source code 
discussed earlier, such conformance 
checks can ensure safety and correct-
ness invariants on the configuration 
on an ongoing basis. For example, a 
conformance check can ensure the 
authorization policies of backend RPC 
services adhere to common guidelines 
and best practices.

	˲ Common types of changes can be 
automated through tools that generate 
sections of configuration. The configu-
ration for a new service instance can 
be generated automatically based on a 
template, reducing the opportunity for 
mistakes caused by typos.

Zero Touch Prod and safe proxies. 
Zero Touch Prod is a set of principles 
and tools to ensure every change to a 
production environment is made by 
trusted automation (not directly by a hu-
man), prevalidated by trusted software, 
or made through an audited break-glass 
mechanism.5

Conformance checks imposed on 
config-as-code are one way of adhering 
to this principle. It can be challenging, 
however, to accommodate all actions 
in a production environment through 
config-as-code, especially those needed 
when responding to an incident.

Safe proxies are trusted systems in-

When this happens, it’s tempting to 
say “They should have been more care-
ful” but it’s ultimately an unreasonable 
expectation that any human has a per-
fectly accurate mental model of a pro-
duction environment consisting of hun-
dreds of devices with thousands of config 
settings expressed in several different 
configuration models. Instead, just as 
for common coding mishaps, the poten-
tial for deployment mishaps should be 
treated as a hazard, and it should be the 
deployment environment’s responsibil-
ity to protect engineers from encounter-
ing these hazards.8

Safety from deployment hazards can 
be incorporated into deployment en-
vironments in several ways. Examples 
of practices found useful at Google in-
clude cloud platforms, config-as-code, 
and Zero Touch Prod and Safe Proxies.

Cloud platforms. When deployment 
environments are based on “bare-
metal” servers and network devices, 
engineers are exposed to the full com-
plexity and nonuniformity of their con-
figuration surfaces. In contrast, cloud 
platforms provide a higher-level ab-
straction and a consistent vocabulary of 
configuration points, and they expose 
common functionality (such as data-
bases) as managed services. This reduc-
es cognitive load caused by differences 
between configuration surfaces of dif-
ferent types of network devices and the 
need to manage lower-level aspects of 
servers that host higher-level services 
such as databases.

Cloud platforms can integrate en-
forcement of security invariants into 
their control planes. For example, 
Google’s production environment12 en-
forces binary authorization policiesh to 
govern whether a deployment package 
can run with the privileges of a given 
role. For sensitive roles, these policies 
typically require that the binary pack-
age is accompanied by a provenance 
attestationi that it was built by an autho-
rized, trusted build system from code 
in a trusted source repository where 
changes are reviewed under the two-
person principle. This mechanism en-
sures, on an ongoing basis, the invari-
ant that only explicitly authorized code 
can exercise the privileges of a given 
production role.

h	 https://bit.ly/3TnKcZT
i	 https://slsa.dev/provenance/v1
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pects of the architecture and design 
(both in terms of code and mapping to 
production resources) of applications 
and services built on the framework.9 
These applications inherit security (also 
privacy and reliability) best practices 
designed and built into the framework, 
usually through collaboration between 
domain experts (security engineers, 
SREs) and framework engineers.

Many design choices (Which secure 
transport protocol should I use? How 
should I authenticate and authorize re-
quests? How do I encrypt data at rest?) 
are incorporated in the design of the 
framework, and application developers 
are relieved from making these deci-
sions—and from potentially making a 
suboptimal choice.

This approach reduces the risk of 
design-level security defects and gives 
leverage to scarce expert bandwidth—
experts can focus their attention on the 
design and implementation of frame-
works and platforms, while having an 
impact on many development projects 
that rely on that framework.

Furthermore, after frameworks are 
widely adopted as a platform for appli-
cation development, future security im-
provements and mitigations for novel 
attacks and defect classes can often 
be deployed swiftly, scalably, and ef-
ficiently, taking advantage of the well-
defined structure of frameworks-based 
applications. For example, security and 
Web frameworks teams at Google rou-
tinely roll out new security features and 
mitigations at scale to existing frame-
works-based applications, often with-
out any need for involvement or time 
investment by the teams that maintain 
individual applications. (See the blog 
post A Recipe for Scaling Security, at bit.
ly/3u6C71R, for more details.)

Continuous Assurance at Scale
At Google, we sometimes say, “Soft-
ware engineering is programming 
integrated over time,” to recognize 
the vast difference between one or a 
few people writing a few-thousand-
line program in days or weeks, versus 
hundreds of teams of hundreds of de-
velopers jointly working, over years or 
even decades, on a codebase of several 
hundred million lines of code.15 This 
distinction matters when it comes to 
ensuring security invariants for soft-
ware products and the degree of confi-

While many threats and secure-de-
sign considerations are indeed specific 
to a given application (for example, a 
banking app is inherently different 
from a photo editor), typically a sub-
stantial degree of commonality exists 
in the threat models across the entire 
class of applications of a given arche-
type.

For example, the safety and security 
design of (almost) any application that 
falls into either of these archetypes 
must consider areas such as:

	˲ Protecting the confidentiality and 
integrity of network and RPC traffic 
over the public Internet and internal 
networks.

	˲ Ensuring that all external client-
server requests and internal RPC re-
quests are appropriately authenticated 
and authorized, governed by an explicit, 
intentional policy (although the details 
of the policy itself are usually specific to 
the application and its features).

	˲ Ensuring the confidentiality and 
integrity of user/customer data is ap-
propriately protected in conformance 
with the service provider’s policies (for 
example, through appropriate crypto-
graphic schemes).

	˲ Ensuring user data is deleted ac-
cording to the service provider’s poli-
cies (such as when requested by a user 
or when a user leaves the service).

	˲ And many more.
Google has hundreds of Web and 

mobile applications and external-fac-
ing API endpoints, and thousands of 
microservice backends and internal 
RPC endpoints, but even organizations 
much smaller than Google usually have 
at least several. It’s undesirable for each 
team responsible for one of these ser-
vices to develop a comprehensive threat 
model from scratch and to design ap-
propriate mitigations for each one. 
Taking such a decentralized approach 
results in not only duplication of work, 
but also inferior outcomes: Threat 
modeling and secure design require 
expertise that is often not available in 
product development teams; while an 
organization’s security experts can help 
through consulting, their bandwidth is 
typically limited.

At Google, we take advantage of 
common threat model aspects and se-
cure design considerations by building 
frameworks and platforms that inform, 
govern, and constrain important as-
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and without having to consider or un-
derstand application-specific code. 
There is still a residual risk of defects, 
but it is confined within those key com-
ponents. These tend to be stable, and 
domain experts can thoroughly scruti-
nize them for potential defects.

Considering the framing as pro-
gramming over time, designing develop-
er ecosystems as Safe Coding and Safe 
Deployment environments allows us to 
achieve continuous assurance at scale: 
It provides confidence that every pro-
duction release of every application of 
supported archetypes satisfies desired 
safety and security invariants. 
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dence in the product adhering to these 
invariants. For a small, self-contained 
program written by a small group over 
a short period of time, developers are 
less likely to make mistaken assump-
tions that lead to defects, and it is in-
deed feasible for an expert to read and 
understand the entire codebase and 
perform a high-confidence security 
assessment.

Once a service’s design, codebase, 
and production footprint get larger 
and more complex, this no longer 
works: The risk of defects caused by 
mistaken assumptions (or plain mis-
takes and forgetfulness) increases. It 
becomes infeasible for an expert, or 
even a group of experts, to understand 
the entire artifact fully and deeply, re-
sulting in limits on high-confidence 
security assessments.

If the experts must read and under-
stand most of a codebase of many hun-
dreds of thousands of lines of code, 
it’s likely they will miss something, or 
make a mistake in their assessment. 
(Tool support such as static analyzers 
can sometimes help; however, these 
typically need to accept some degree of 
imprecision to scale to large codebas-
es, and hence can also “miss things.”) 
Furthermore, security assessments by 
human experts apply to the specific 
version under review and are difficult 
to scale to every release of software 
that is under active ongoing feature de-
velopment.

As explained here, Google address-
es this challenge by designing a devel-
oper ecosystem to ensure all services 
developed and deployed in this envi-
ronment have the desired properties. 
We achieve high levels of assurance by 
applying the principle of “Design for 
Understandability”1—Key developer 
ecosystem components are designed 
to ensure the property for any arbi-
trary application, assuming only that 
application code is well-typed, passes 
conformance checks, and satisfies ba-
sic assumptions. (Code written and re-
viewed under the two-person principle 
is generally assumed not to deliber-
ately subvert security invariants—for 
example, through use of reflection or 
unsafe casts.)

This allows us to have confidence 
that the property holds for all applica-
tions, based solely on understanding 
key developer ecosystem components, 
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