Bridging Continuous and Discrete Optimization in Julia

Thibaut Cuvelier Google Research France (Operations Research)

https://developers.google.com/optimization

OR @ Google

Routing: logistics, Google Street View

- Open-source solver
- B2B API: <u>GMPRO</u>

High-level solvers:

- Workforce scheduling (API)
- Shipping network design (API)

Low-level solvers:

- Glop: LP solver (simplex)
- <u>CP-SAT</u>: CP solver (SAT, LP), 10+ gold medals in <u>MiniZinc competition</u>
- PDLP: LP solver (first order)
- MathOpt: modelling layer

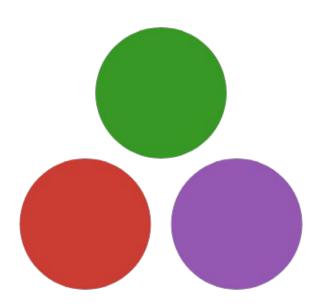
Open-source product: OR-Tools

Julia for optimisation

O1 What is Julia?

Julia for optimisation

Ease of modelling
Ease of writing new solvers

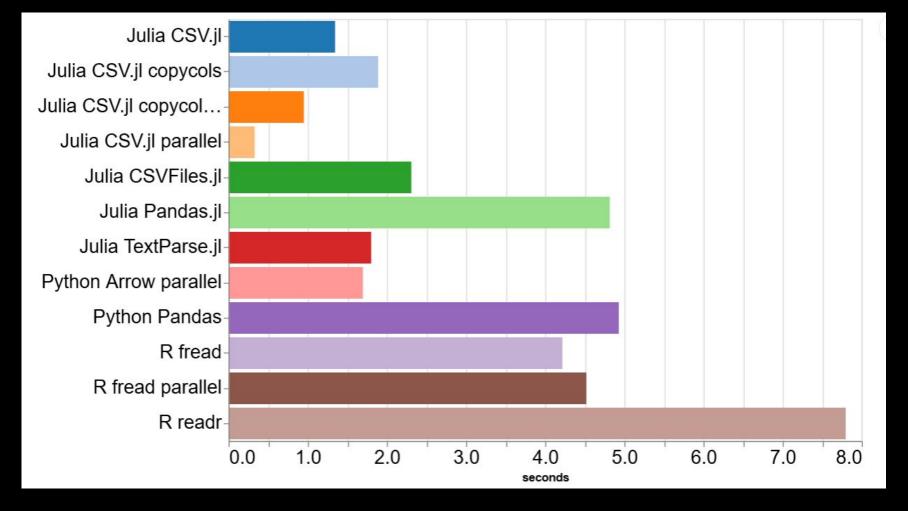


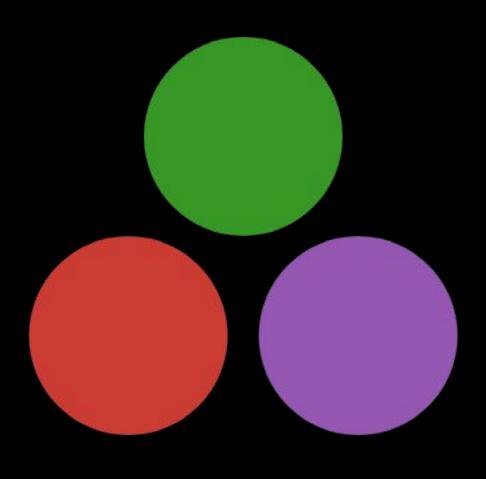
OBridging the gap

The example of CP-SAT

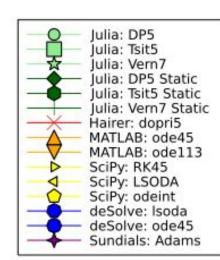
01

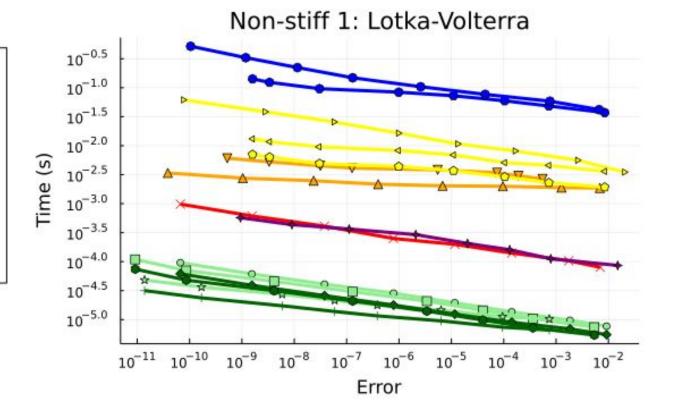
Why Julia?

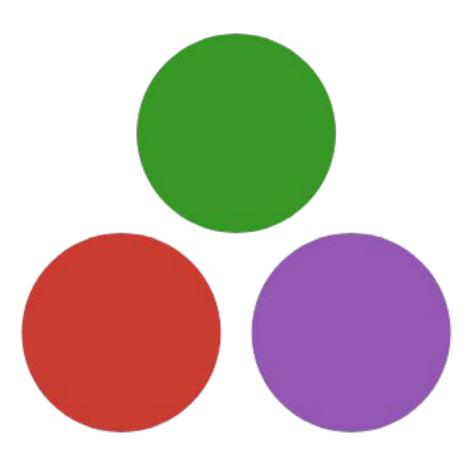




Why Julia?







Why Julia?

1

Extremely fast

2

Extremely readable for mathematics

You don't need a second language for performance!

Your code reads like a paper!

@parameters
$$\sigma \rho \beta$$

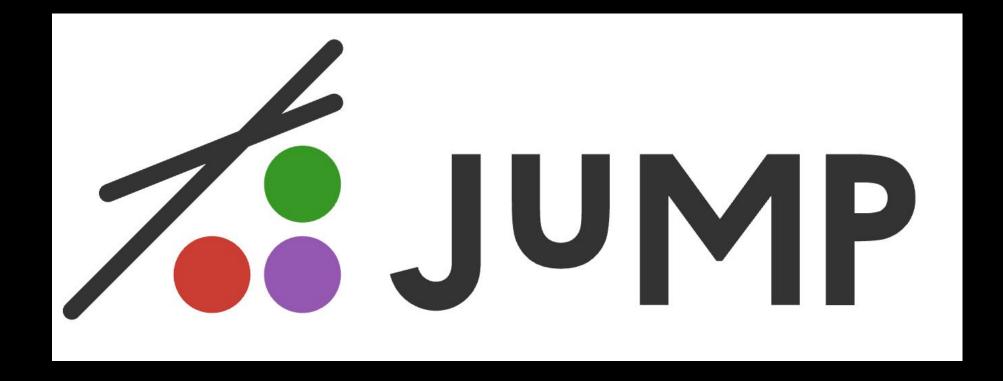
@variables x(t) y(t) z(t)

eqs =
$$[D(D(x)) \sim \sigma * (y - x),$$

 $D(y) \sim x * (\rho - z) - y,$
 $D(z) \sim x * y - \beta * z]$

02

Julia for optimisation



This is a least-squares model

```
m, n = size(A)
model = Model(Ipopt.Optimizer)
@variable(model, x[1:n])
@variable(model, residuals[1:m])
@constraint(model, residuals == A * x - b)
@constraint(model, sum(x) == 1)
@objective(model, Min, sum(residuals.^2))
optimize!(model)
```

What's behind?

JuMP

The modelling layer
Like AMPL

MathOptInterface

The generic interface for solvers

Like AMPL's ASL or MP

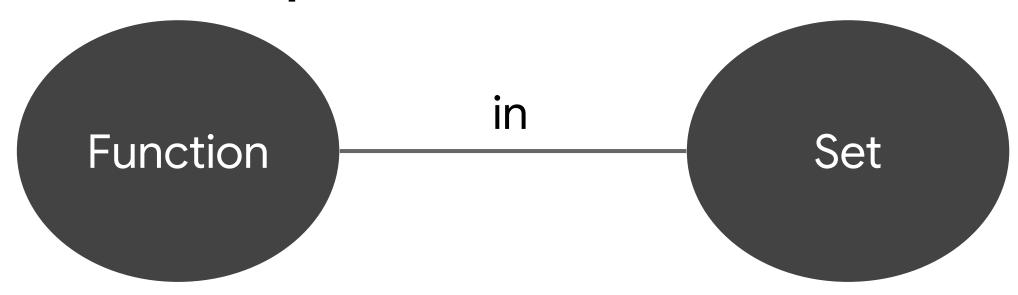
Great performance!

A solver

Well, a solver, you know

JuMP and MathOptInterface were made for mathematical optimisation: LPs, QPs, MIPs, conic programs, etc.

MathOptInterface's formalism



Single variable
Affine expression
Quadratic expression
Nonlinear expression
Vector of expressions

...

Less than
Greater than
Equal to
Zero or one
SOCP cone
SDP cone
Exponential cone

. . .

Julia-native solvers

Mostly research codes:

- Hypatia: generic conic interior-point solver
- Pavito: MINLP
- <u>Pajarito</u>: mixed-integer convex solver
- Alpine: MINLP
- MathOptIIS: computing IIS in 600 lines of code
- FirstOrderLp: gradient descent for LP (now part of OR-Tools!)
- Manopt: optimisation on manifolds
- ...

03

Bridging the gap

MathOptInterface and constraint programming

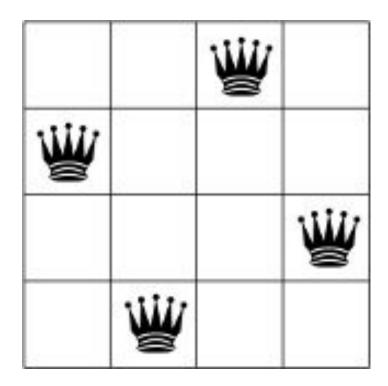
Constraint programming

A constraint doesn't need to be algebraic!

"Global" constraints:

- alldifferent
- notequal ≠
- Reified constraints
- Interval constraints

In the end: potentially more efficient algorithms



- One queen per row: variables are column positions
- alldifferent(positions): not all queens in the same column
- alldifferent(positions[i] ± i):
 no two queens in the same diagonal

Constraint programming and MathOptInterface

A good fit?

- Yes, the function-in-set formalism is great!
 - o Function-in-set:
 - Vector of affine expressions -in-alldifferent
 - Vector of affine expressions -in- countdistinct one variable has a special role
 - Vector of affine expressions -in-path(graph)
 - **..**
 - In total: ~ 80 sets in <u>ConstraintProgrammingExtensions.jl</u>
 - 11 backported to MathOptInterface

Constraint programming and MathOptInterface

A good fit?

- Yes, the solvers have the same way of thinking!
 - It's quite easy to write wrappers for existing solvers
 - Chuffed, CPLEX-CP, FlatZinc (many solvers like CP-SAT!)
- No, people want to build complex constraints like

$$|x| + |y| \mod 5 == 2$$

That's still possible with MathOptInterface's nonlinear expressions

MathOptInterface bridges

- Not all solvers support all constraints
 - Intervals: 0 ≤ x ≤ 10
 - Semi-continuous variables: x = 0 or $x \ge 10$
 - SOC for a SDP solver
- MathOptInterface has the notion of bridge:
 - Map one constraint into another
 - Graph: nodes are constraint types, bridges are edges between them

And constraint programming? It maps more or less cleanly to MIP!

Nearly 70 CP-to-MIP bridges in ConstraintProgrammingExtensions.jl

MathOptInterface bridges

- Constraint programming maps more or less cleanly to MIP
- **But**: bridges work per constraint
 - You could have a much better formulation with several constraints

- Still, very useful to model higher-level constraints, like circuits
 - A MIP model, but easier to read
 - A richer representation can be useful for decompositions

CP-SAT

The CP-SAT sauce

CP

High-level constraints

More efficient handling

Tree search, like a CP solver

2

SAT

Internally, reformulate as a satisfaction problem

Clause generation: **why** is a branch of the search tree infeasible?

3

LP relaxation

Find bounds (objective, variables) in the search tree

The CP-SAT sauce

Heuristics

SAT heuristics, RINS Large neighbourhood search 5

Scheduling

Many scheduling components: interval variables, scheduling constraints

Portfolio

Many threads in parallel: LNS, various heuristics, all of them communicating

CP-SAT's LP relaxation

- Relaxation: an LP encoding of a CP model
 - Only a few constraints have a relaxation, most are expanded
- Variable encoding for integer variables:
 - o Dynamic: create a new variable, such as " $x \le 5$ " during conflict detection
 - Static: when you will likely need many variables, do it up front
- LP relaxation means... cuts!
 - Goal: have an LP relaxation closer to the integer program
 - Typical MIP cuts for scheduling, for instance

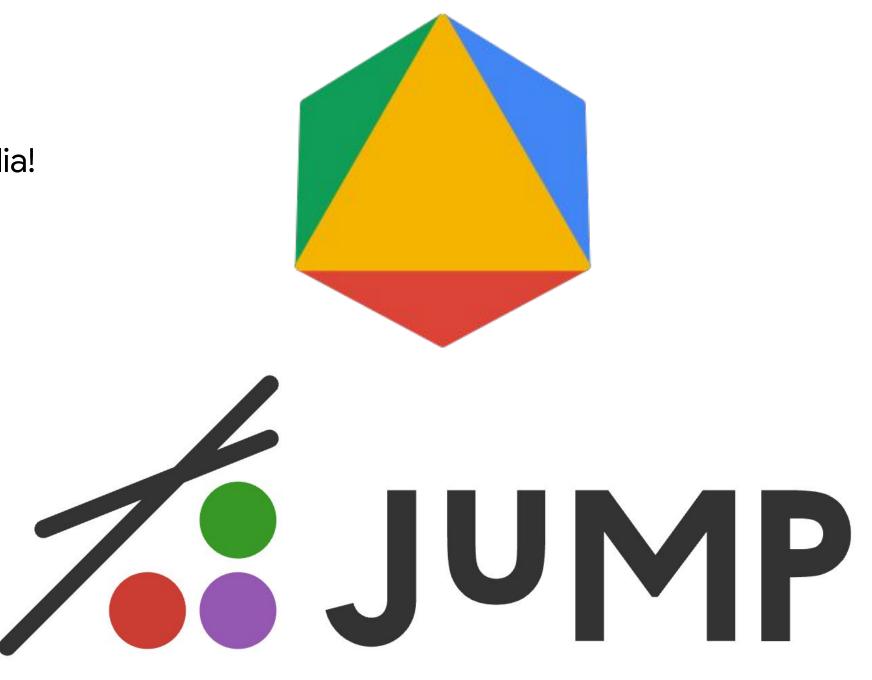
04

Final words

By the way...

 All Google solvers for mathematical programming are now available in Julia!
 ORTools.jl

Details: JuliaCon 2025, July 24th



Key takeaways

- Julia is great!
 - Great for scientific and numerical use cases — performance and syntax
 - Same syntax for continuous and discrete optimisation
- Several bridges between continuous and discrete optimisation
 - CP models are very similar to MIPs/LPs
 - State-of-the-art CP solvers use linear relaxations in novel ways

Google Research

Bridging Continuous and Discrete Optimization in Julia 07/2025

Thank You