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1 Introduction

Many empirical microeconomics studies rely on consumer panels. For example, TV and web meter-

ing panels track TV and online usage of individuals to estimate reach and frequency of a campaign:

reach is the fraction of the population that has been exposed to an ads and frequency measures

how often they have seen it on average. As reach and frequency are used in media planning, i.e.,

optimal mix between online ads and TV ads (Jin et al. (2012)), it is critical to obtain accurate reach

and frequency from panel data. However, panels often suffer from underreporting, i.e., they record

only a fraction of all events. Missingness can stem from various sources such as non-compliance,

work usage or the use of unregistered devices (see Sudman (1964a), Sudman (1964b) for details).

To tackle missingness problem, Fader and Hardie (2000) build a Poisson model for underreported

counts; Schmittlein et al. (1985) apply beta-binomial negative binomial (BBNB) model to panel

data when not every purchase occasion is recorded; Goerg et al. (2015b) extend the BBNB model

with a hurdle component (BBNBH) to account for excess zeros in the data-generating process of

actual counts; Goerg et al. (2015a) add categorical covariates to the BBNBH model and propose a

categorical missingness estimation via a penalized maximum likelihood estimator (MLE) in order

to capture heterogeneity across categories, e.g., demographic groups.

Sometimes more than one panel representing the same subject population are available. These

panels may have different screens coverage, use different metering technologies and are subject to

varying degrees of missingness. The problem we consider here is how to do imputation based on two

panels which have similar but not identical statistical characteristics. Each panel measures a set of

variables and some common variables are partially observed in both panels, however, there are no

direct observations of the joint distribution of the two sets of variables. Variables appear in one panel
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but not in the other are called target variables. For example, Figure 1 shows that panel A measures

TV and publisher provided desktop impressions and panel B measures publisher provided desktop

and mobile impressions. The common variables observed in both panels are desktop impressions

and demographic profiles, while the target variables are TV and mobile impressions. Neither panel

is able to record all impressions on each and every device and the device-wise missing rates vary

across panels. We want to estimate a count of ad impressions across all three screens out of the

two two-screen panels.

Figure 1: Joint imputation of panel A and panel B. Panel A measures TV and desktop impressions
from the publisher and panel B measures desktop and mobile impressions from the publisher. We
want to fuse panel A and panel B to create a single panel measuring TV, desktop and mobile
impressions.

Both panels should be probabilistically recruited and calibrated to the same population. They

do not have any overlap in the panelists recruited. The problem considered in this paper is different

from data enrichment (see Chen et al. (2013) for details) because the latter aims to combine

information from a small cross-media panel with a larger, cheaper but potentially biased single

media panel, while in this paper, both panels are representative.

If both common and target variables are fully observed, the problem becomes estimating a joint

distribution of (X,Y, Z) from panel A and B where X variables are common to both panels, Y

variable is only observed in panel A and Z variable is only observed in panel B. The term “data

fusion” is coined for this problem. Data fusion is also called statistical matching (D’Orazio et al.,
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2006), which aims at integrating two or more data sources referred to the same target population

and creating a “synthetic” data source in which all the variables are available. It assumes that

the common variables are fully observed in both panels (no measurement errors) and share the

same marginal distribution. Kadane (2001) view the data fusion problem as a matching problem

by forming groups of observations that are “similar” as measured by their common variable values.

The groups of observations can be used to impute the values of the target variables that are

not observed or missing in a particular data set. Gilula et al. (2006) develop an approach that

directly estimates the joint distribution of binary variables of interest that are consistent with the

marginal distribution observed in each panel. As the joint distribution is not identifiable given the

marginal distributions, conditional independence of target variables is usually assumed. To account

for possible departure from conditional independence, they propose a multinomial model with an

additional parameter allowing conditional dependence among the target variables. The problem

addressed in this paper is not exactly data fusion because neither common nor target variables are

fully observed in either panel. Imputation pooling information across two panels is required before

we can employ any data fusion methodology.

In this work, we extend previous work on the BBNBH model (Section 2) and develop a joint

imputation model by pooling desktop impression counts observed in both panels (Section 3). The

idea is that we fix the distribution of true desktop impressions to be the same across panels but

allow the missing schemes to be different. After imputing the panels, we model the distribution of

mobile visits using the panel B (Section 4) and then “fuse” the mobile impressions to panel A by

assuming conditional independence (Section 5). We apply the methodology to two US panels to

facilitate measurements of TV, Youtube viewership across devices in Section 6. All computations

and figures were done in R.

2 Review of BBNBH Model

Let Ni be the actual (but unobserved) number of visits by panelists i from a specific device type

(e.g., desktop, mobile). The population is a mixture of people who do not visit the publisher’s site

at all and those who visit at least once. We assume that
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Ni ∼ NBH(N ; q0, r, q1),

where q0 = P(Ni = 0) indicates the fraction of people who do not visit the publisher’s site at

all and Ni − 1|Ni > 0 follows a negative binomial distribution with the number of failures r

and success probability q1. Let pi be the probability a visit is recorded in the panel. Assuming

independence across visits, the recorded visits by panelist i, Ki, follows a binomial distribution

Ki|Ni ∼ Bin(Ni; pi). To account for heterogeneity across the population we assume pi ∼ Beta(µ, φ),

which has mean µ and precision φ. Here µ represents the expected non-missing rate. Integrating

out pi gives a Beta-Binomial (BB) distribution,

Ki|Ni ∼ BB(Ni;µ, φ).

Let the negative binomial distribution parameter θNBH = (q0, r, q1) and beta-binomial distribution

parameter θBB = (µ, φ) and θ = (θNBH , θBB) = (q0, r, q1, µ, φ). The marginal distribution for

recorded visits can be derived explicitly as a function of θ. The maximum likelihood estimator

(MLE) for θ can be obtained by numerical optimization. More details can be found at Goerg et al.

(2015a).

3 Joint Imputation of Two Panels

Let ks = {ks1, · · · , ksP s} be the number of recorded events for all P s panelists in panel s, s ∈ {a, b}.

Each panelist in panel s is assigned a weight wsi based on socio-economic characteristics, indicating

the number of people he represents in the entire population. As both panels are representative of

the same population, W =
∑

iw
a
i =

∑
j w

b
j equals the total population count (obtained from, e.g.,

census data).

Assume the recorded events in both panel A and B follow the BBNBH model and the correspond-

ing parameters are θa, θb. As panel A and B are both probabilistically recruited and representing

the same population, we can treat them as independent samples and assume that the distribution of

true impressions is the same across panels, i.e., θaNBH = θbNBH. The log-likelihood of θa,b = (θa, θb),
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l(θa,b;xa,xb) = l(θa;xa) + l(θb;xb),

is the sum of log-likelihood of events in each panel and it depends on the sufficient statistics

xs = {xsk|k = 0, 1, · · · ,max(ks)} , s ∈ {a, b}, where xsk =
∑

i|ksi=k
wsi is the total weight of panelists

with k visits in the panel s. The maximum likelihood estimator (MLE)

θ̂a,b = arg max
(
l(θa;xa) + l(θb;xb)

)
, s.t. θaNBH = θbNBH

can be obtained by numerical optimization.

3.1 Fix expected non-missing rate µ

The above optimization takes place over a 7-dimensional parameter space. If we have access to

internal publisher logs, we can reduce it to 5-dimensional space by fixing the expected non-missing

rate in each panel a-priori by comparing panel data with publisher logs. Let ksW =
∑P s

i=1w
s
i k
s
i , s ∈

{a, b} be the recorded visits in panel s projected to the entire population. In the internal publisher

logs, we get nW visits during the same sample period. The ratio µsLogs =
ksW
nW

, s ∈ {a, b} indicates

the fraction of actual events captured by panel s on average. By fixing the expected non-missing

rates to be µsLogs, s ∈ {a, b}, the parameter θa,b can be obtained by a constrained MLE

θ̂a,b = arg max
(
l(θa;xa) + l(θb;xb)

)
s.t. θaNBH = θbNBH

µa = µaLogs

µb = µbLogs.

In applications we found that the additional linear constraint on µa, µb gives more stable estimates.
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3.2 Demographic-dependent estimation

As advertisers use panels to measure viewing behavior of specific target audience, e.g., young

males, demographic-specific inference is important. However the missing scheme may be different

across demographic groups. Relying on the same θ̂a,b for all demographic groups does not pro-

vide good demographic-specific inference. We thus extend the model with categorical parameters

Θa,b(1:G) =
(
Θa,b(1), · · · ,Θa,b(G)

)
, one for each of G exhaustive demographic subgroups D1, · · · , DG

and Θa,b(g) =
(
θa(g), θb(g)

)
, g = 1, · · · , G, where θa(g), θb(g) are the BBNBH parameters for demo-

graphic group Dg in panel A and B, respectively. We can estimate the overall expected non-missing

rate in each panel using the internal publisher logs µsLogs =
ksW
nW

, s ∈ {a, b} but we can not estimate

the expected non-missing rate for each demographic group of each panel as most internal publisher

logs do not contain reliable demographic labels for viewers. If we have mandatory login with trusted

demographic labels, we might set the non-missing rate of Dg of panel s µs(g) = µ
s(g)
Logs =

k
s(g)
W

n
(g)
W

directly,

where k
s(g)
W and n

(g)
W are recorded visits in the panel s and in the logs restricted to demographic

group Dg. By fixing the overall expected non-missing rates to be µsLogs, s ∈ {a, b}, Θa,b(1:G) can be

obtained by a constrained MLE

Θ̂a,b(1:G) = arg max
G∑
g=1

(
l(θa(g);xa(g)) + l(θb(g);xb(g))

)
s.t. θ

a(g)
NBH = θ

b(g)
NBH g = 1, · · · , G

G∑
g=1

k
a(g)
W

µa(g)
=

kaW
µaLogs

G∑
g=1

k
b(g)
W

µb(g)
=

kbW
µbLogs

,

where xs(g) =
{
x
s(g)
k |k = 0, 1, · · · ,max(ks(g))

}
, s ∈ {a, b} and x

s(g)
k is the total weight of panelists

with k visits in demographic group Dg of panel s. It is an optimization with 7G − 2 degrees

of freedom, which is numerically challenging when G is large. Hence, we develop an alternative

method which can be parallelized easily and reduces the degrees of freedom to 6G.

We first combine the panelists from panel A and B as if they were coming from the same
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enlarged panel. The sufficient statistics for demographic group Dg of the combined panel is

x(g) =
{
x
(g)
k = x

a(g)
k + x

b(g)
k |k = 0, 1, · · · ,max(ka(g),kb(g))

}
.

Let the BBNBH parameter for demographic group Dg of the combined panel be Θ(g) and Θ(1:G) =(
Θ(1), · · · ,Θ(G)

)
. By fixing the expected overall non-missing rate of the combined panel to be

µLogs =
kaW+kbW
2×nW

, Θ(1:G) can be obtained by a constrained MLE

Θ̂(1:G) = arg max

G∑
g=1

l(Θ(g);x(g))

s.t.
G∑
g=1

k
a(g)
W + k

b(g)
W

µ(g)
=
kaW + kbW
µLogs

.

We take the approach of iterative exact-constraint estimator from Section 3.3.2 of Goerg et al.

(2015a) for the optimization. The algorithm alternates between the estimation of µ(1:G) and the

rest of the parameters Θ
(1:G)
−µ . By fixing the expected non-missing rate in demographic group Dg to

be µ̂(g), we can estimate the panel specific BBNBH parameters Θa,b(g) =
(
θa(g), θb(g)

)
by another

constrained MLE

Θ̂a,b(g) = arg max
(
l(θa(g);xa(g)) + l(θb(g);xb(g))

)
s.t. θ

a(g)
NBH = θ

b(g)
NBH

k
a(g)
W

µa(g)
+
k
b(g)
W

µb(g)
=
k
a(g)
W + k

b(g)
W

µ̂(g)
.

This step can be parallelized across G demographic groups.

4 Modeling mobile impressions

The mobile impression counts in panel B can be imputed the same way as desktop in Goerg et al.

(2015a) and only for panelists with mobile devices. Panelists without mobile devices are assigned

zero mobile impression. Panelists with mobile devices may or may not have a different weight from
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that of panelists with desktops. It would not be an issue as imputation are done separately for

desktop and mobile visits. Let Na
d , N

b
d be the actual desktop visits in panel A and B and Ka

d ,K
b
d be

the recorded visits. Let N b
m be the actual mobile visits in panel B and Kb

m be the recorded visits.

Assuming that desktop and mobile missing schemes are independent given recorded cross-device

visits, we can simulate M replicates of paired N b
d and N b

m for each panelist from imputation model

inferred distributions N b
d |Kb

d and N b
m|Kb

m independently. Each simulated replicate becomes a new

panelist with weight shrunken proportionally. Let r(i), i = 1, · · · , P bM be the index of the original

panelist from whom the ith replicate comes from and then w̃bi =
wb

r(i)

M is the demographic weight of

the ith replicate.

Let Z be the number of desktop visits and demographic features of a panelist. For example,

Z = (Nd, age, gender). The demographic features are not limited to age and gender and could be

generalized to include education and income as well if such data is available. In order to model the

conditional distribution of Nm|Z, we assume that it follows a negative binomial hurdle model:

Nm|Z ∼ NBH(N ; p0(Z), τ(Z), η),

• p0(Z) = exp(ZTγ)/(1 + exp(ZTγ)) is the probability of not being reached by the publisher

on mobile devices

• τ(Z) = exp(ZTβ) is the mean of the negative binomial distribution

• η is the dispersion of the negative binomial distribution.

Parameters (γ, β, η) can be obtained by maximizing the log-likelihood function

l((γ, β, η) ; zb,nb
m) =

P bM∑
i=1

w̃bi logP (Nm = nbm(i)|Z = zbi ; (γ, β, η)),

where zb =
{
zb1, z

b
2, · · · , zbP bM

}
are the number of desktop visits and demographic features and

nb
m =

{
nbm(1), · · · , n

b
m(P bM)

}
are the number of mobile visits of P bM replicated panelists from the

panel B.
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4.1 Right-truncation of impressions

We have found empirically that panel observations could have heavy tails, that is, some panelists

have an extremely large number of recorded visits. Figure 4 illustrates the heavy tail property of

the empirical distribution of online visits on desktop and mobile devices. To make the estimation

more robust to these extremes, we right-truncate the desktop impressions at some nd = ndq :

Nd = min(Nd, n
d
q).

Besides, we also right-truncate the summation in the log-likelihood at some nm = nmq , and add the

cumulative probability for the event Nm > nm. The approximation of the log-likelihood function

can be written as:

l((γ, β, η) ; zb,nb
m)trunc =

∑
i|nb

m(i)
<=nm

q

w̃bi logP (Nm = nbm(i)|Z = zbi ; (γ, β, η))

+
∑

i|nb
m(i)

>nm
q

w̃bi logP (Nm > nmq |Z = zbi ; (γ, β, η)).

As Nm, Nd grows with length of the time period, it is not possible to propose a universal value

for ndq , n
m
q . Thus we choose ndq , n

m
q based on the empirical quantile. We found that using sample

quantile q = 0.995 works well in practice.

4.2 Demographic-dependent estimation

The right-truncated negative binomial hurdle (RNBH) regression model can be applied indepen-

dently for each demographic group to account for heterogeneity and interactions between predictors.

The demographic groups may or may not be the same as the ones used in section 3.2.

4.3 Model inferred marginal distribution of mobile impressions

With the estimated distribution Nm|Nd from the RNBH model and Nd|Kd from the extended

BBNBH imputation, we can calculate the model implied distribution of actual mobile visits given

recorded desktop visits Nm|Kd for panel s ∈ {a, b},
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P s(Nm = r|Kd = h) =
∑
l≥h

P s(Nm = r,Nd = l|Kd = h)

=
∑
l≥h

P (Nm = r|Nd = l)P s(Nd = l|Kd = h).

Panel A and B are sharing Nm|Nd but have separate Nd|Kd distributions. The model implied

marginal distribution of mobile impressions for panel s can thus be expressed as

P s(Nm = r) =

∑P s

i=1w
s
iP

s(Nm = r|Kd = ksd(i))∑P s

i=1w
s
i

,

where ksd(i) is the recorded desktop visits for panelist i in panel s.

5 Data Fusion of Two Panels

Let Nm be the mobile visits, Nd be the desktop visits and Nt be the TV visits. As panel A captures

TV and desktop visits, we can obtain p(Nt, Nd) after imputing the recorded desktop visits. Let

nat(i) be the TV visits and kad(i) be the recorded desktop visits for panelist i in panel A. The joint

distribution of TV and desktop visits can be calculated as

P (Nt = r,Nd = l|na
t ,k

a
d) =

∑
i|na

t(i)
=r w

a
i P (Nd = l|Kd = kad(i))∑Pa

i=1w
a
i

.

As panel B captures desktop and mobile visits, we can obtain p(Nm|Nd) from section 4. However,

the joint distribution p(Nd, Nm, Nt) is not identifiable given the two marginal distributions. Hence

we have to assume conditional independence,

p(Nm, Nt|Nd) = p(Nm|Nd)p(Nt|Nd).

And it implies

p(Nm, Nt, Nd) = p(Nt, Nd)p(Nm|Nt, Nd) = p(Nt, Nd)p(Nm|Nd).

The joint distribution of TV, desktop and mobile visits for panel A can be written as
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P (Nt = r,Nd = l, Nm = h|na
t ,k

a
d) = P (Nt = r,Nd = l|na

t ,k
a
d)P (Nm = h|Nd = l).

The particular quantity of interest is the incremental reach of the publisher across devices versus

TV P (Nd + Nm > 0, Nt = 0). In practice, for each panelist in the panel A we simulate actual

desktop impression counts nad(i) from Nd|Kd = kad(i) and actual mobile impression counts nam(i) from

Nm|Nd = nad(i). As long as the simulated panel size is large enough, the incremental reach of the

publisher over TV can be estimated by

P (Nd +Nm > 0, Nt = 0) =

∑
i|na

m(i)
+na

d(i)
>0,na

t(i)
=0w

a
i∑

iw
a
i

.

6 Case Study

We now illustrate the cross panel imputation methodology on data from two panels in the United

States. Panel A monitors TV and Youtube desktop watchpage usage and panel B monitors Youtube

desktop and mobile watchpage usage for the period from 2014-12-01 to 2015-01-01 (31 days). We

know the mobile device ownership in the panel B but not in the panel A. After data cleaning, we

remain with 17352 panelists in panel A and 7728 panelists in panel B both representing the online

population of the United States. We know the age and gender of each panelist and divide the

panelists into 6 demographic groups, 0-35Female, 0-35Male, 36-50Female, 36-50Male, 50+Female

and 50+Male.

6.1 Joint imputation of desktop impressions

Figure 2 shows the empirical frequency of recorded desktop impressions in the two panels. The

proportion of zero visits is quite high, around 80% for panel A and 60% for panel B. As both panels

are probabilistically recruited, the panel B does a better job of capturing desktop impressions than

panel A in general and thus a higher non-missing rate across demographic groups.

Our internal Youtube logs show that the combined panel has a non-missing rate of µ̂Logs = 0.26

for Youtube desktop visits. We carry out the demographic specific joint imputation for the desktop

impressions of the two panels. Figure 3 shows the estimated model parameters for each demographic

group. As we impose the constraint that the actual impression distributions are the same for panel
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Figure 2: Empirical frequency of desktop Youtube impressions in panel A and panel B. Left figure
shows the proportion of no visits and the right figure shows the fraction of panelists having k|k =
1, 2, · · · visits in each panel by demographic groups.

A and B, the estimated parameters q0, q1, r are the same across panels. The estimated non-missing

rates in panel B is higher than that in panel A in all demographic groups. Consider females aged

between 36 and 50, the estimated hurdle probability of q̂0 = 0.46 suggests that the excess zeros in

the panels are the result of missingness and a high probability of not visiting a Youtube watchpage

at all.

6.2 Mobile Imputation

Figure 4 shows the empirical cumulative distribution functions of mobile and desktop visits in the

panel B. Some panelists have more than 1000 desktop visits during the 31-day sample period. The

0.995 sample quantile of desktop visits and mobile visits are 235 and 135, respectively. We fit a

right-truncated negative binomial hurdle (RNBH) regression of mobile visits over desktop visits

and age for each demographic group.

In order to evaluate the performance of the RNBH regression model, we randomly split panel B

into two equal-sized sub-panels B1 and B2. The plan is to build the model using B1 and evaluate

its performance using B2 where we know the ground truth.

We first perform joint imputation (section 3) on desktop impressions and mobile impressions
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Figure 3: Estimated imputation parameters for desktop Youtube impressions across panels.

over sub-panels B1 and B2 so that the distribution of actual desktop and mobile impressions

per panelist are the same across the sub-panels. The joint imputation for mobile impressions

is only performed over panelists who use mobile devices. Panelists without mobile devices get

zero imputed mobile visits and panelists with mobile devices get imputed mobile visits following

(Nm|Km, age, gender), where Km is the recorded mobile visits.

We then fit a RNBH regression for mobile visits using all the panelists from the sub-panel

B1 and then predict the mobile visits for each panelist in B2, which follows the distribution

(Nm|Kd, age, gender), where Kd is the recorded desktop visits. This model is agnostic to whether

a panelist uses mobile devices at all. On the other hand, each mobile device owner in the sub-panel

B2 has imputed mobile visits (Nm|Km, age, gender), which serve as the ground truth for evaluating
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Figure 4: Empirical CDF of desktop and mobile recorded visits for panel B.

the model. Figure 5 shows the cumulative distribution functions for the RNBH model (section 4.3)

and the extended BBNBH model inferred marginal mobile visits in the sub-panel B2. The two

distributions are close in general.

We also study the model performance at the individual panelist level. For each panelist, we

compute his model inferred mobile visits expectation ξ = E (Nm|Kd, age, gender) as well as the

imputed mobile visits expectation ζ = E (Nm|Km, age, gender). The relative error rate is

Relative Error =

∑
iwi (ξi − ζi)2∑

iwiζ
2
i

,

where the sum is over all the panelists in the sub-panel B2. Figure 6 shows the relative errors across

demographic buckets. The female36-50 bucket has the lowest relative error and the female50+

bucket has the highest relative error. The overall relative error rate is 76% and the weighted pearson
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Figure 5: RNBH regression model inferred and imputed marginal mobile visits cumulative distri-
bution functions. The red curve is the cdf based on RNBH regression and the black vertical bar is
the cdf from the extended BBNBH imputation of recorded mobile visits.

correlation between imputed and RNBH model fitted expectation is 0.23 over all the panelists in

B2.

The above RNBH regression model assumes that mobile device ownership is unknown in the sub-

panel B2. However, in practice, we may collect panelist device ownership through panel surveys.

In that case, we would assign zero mobile visits to panelist without mobile devices in the sub-panel

B2 directly. We then fit the RNBH regression model over panelists with mobile devices in B1

and apply the model only to mobile device users in B2. With the knowledge of mobile device

ownership, the overall relative error rate decreases to 66% and the weighted pearson correlation

between imputed and RNBH model fitted expectation increases to 0.42 over all the panelists in B2.

6.3 Data Fusion

We fit the RNBH model using the panel B and then “fuse” mobile impressions to the panel A.

Figure 7 compares the “fused” Youtube mobile 1+ reach in the panel A with the imputed Youtube

mobile 1+ reach in the panel B. Figure 8 compares the “fused” Youtube cross-device 1+ reach in
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Figure 6: Relative error rates across demographic buckets

the panel A with the imputed Youtube cross-device 1+ reach in the panel B. The reach curves are

close to each other in general. Although the relative error of mobile visits for individual panelist

is high, the model does a good job in capturing the marginal distribution of mobile visits and

cross-device visits and thus successfully recovers the reach curves in the panel A.

7 Discussion

Motivated by the applied problem of imputation using two panels representing the same population,

we extend the BBNBH model and propose a constrained likelihood approach to obtain imputation

estimates. The methodology is used to estimate incremental cross-device reach of Youtube versus

TV in the United States.

In future work, we aim to extend the methodology to combine more than two panels with similar

but not identical characteristics and introduce additional parameters to account for departure from

conditional independence. Another direction is to combine biased panels with calibrated panels for

cross-device measurement.
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Figure 7: Youtube mobile 1+ reach curves across panels.
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Figure 8: Youtube cross-device 1+ reach curves across panels.
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