Thinking about Availability in Large Service
Infrastructures

Jeffrey C. Mogul, Rebecca Isaacs, and Brent Welch — Google Inc., Mountain View, CA

ACM Reference format:

Jeffrey C. Mogul, Rebecca Isaacs, and Brent Welch — Google Inc.,
Mountain View, CA.2017. Thinking about Availability in Large Service
Infrastructures. In Proceedings of HotOS ’17, Whistler, BC, Canada,
May 08-10, 2017, 6 pages.
https://doi.org/10.1145/3102980.3102983

1 Introduction

With the rise of the Internet, the Web, and cloud computing,
we have come to depend on a complex stack of interdependent
online services. Successful operation of a cloud-hosted service,
such as NetFlix or SnapChat, can depend on dozens of underly-
ing distributed systems, some of which in turn depend on each
other. While most people (excepting teenagers) do not view
SnapChat as a life-critical service, past failures of systems such
as Healthcare.gov [12, 33] have had real-world consequences.
Cloud providers are under pressure to deliver more “nines” of
availability as traditional enterprise computing moves to the
cloud.

The need for an end-to-end approach to availability is
highlighted by the “blameless postmortem” culture of some
providers [5, Ch. 15]. However, learning the patterns of success-
ful and harmful practices does not in itself lead to the creation
of principles that can defend against the unexpected. Mean-
while, the research community has not given the same attention
to these end-to-end availability issues, especially for large-scale
infrastructures, as it has to various point solutions, such as dis-
tributed consensus and state-machine replication (see § 5).

We have observed that system designers struggle to define
overall availability goals suitable for large infrastructures, and
then struggle again to convert these to goals for component ser-
vices. In this paper, we describe the challenges of providing a
precise and principled definition for availability (§ 3), the possi-
bility of thinking about availability in much the same way that
we have learned to think about security (§ 4), and some general
ideas for designing highly-available infrastructures (§ 6). We do
not claim to have solved these challenges.

1.1 Context

Our company has learned to design and operate planetary-
scale services with reasonably high availability. Historically,
these have been Software as a Service (SaaS) systems (search,
YouTube, GMail, etc.), implemented as scale-out distributed
systems that could tolerate all sorts of failures in lower layers,
through the use of traditional techniques such as replication,
distributed consensus algorithms (e.g. Paxos), and transactions,
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or newer techniques like straggler-tolerance [17]. Our underly-
ing infrastructure is based on a large number of relatively small
compute and storage nodes, and on networks built from large
numbers of small switches [39]. So, as long as low-level faults
are uncorrelated, the overall SaaS systems keep running.

Two trends have driven us to improve the availability of our
infrastructure, while continuing to exploit the cost advantages
of relatively unreliable components. First, users who originally
adopted low-cost SaaS services as useful novelties now increas-
ingly rely on these services. (E.g., automobile drivers have
shifted from paper maps, to GPS devices with self-contained
maps, to online apps with real-time traffic reports.)

Second, and more challenging, the growth of Infrastructure-
as-a-Service (IaaS) cloud-computing platforms makes avail-
ability of the underlying infrastructure significantly more criti-
cal, since many laaS tenants lack the expertise or scale to build
applications that tolerate low-level faults!, yet desire the low
costs associated with cheap scale-out hardware.

Prior work by colleagues [21] categorizes and analyzes a
large data set of network failures, and describes techniques for
improving availability. Here we focus on broader aspects of
availability, and we look at distributed systems in general.

2 A simple case study

In parts of this paper, we will use an existing, moderately
complex stack of services, depicted in Fig. 1, as an example to
make our discussions more concrete.

Datz plane(s) TE control plane services
Long-term
[va | [wm | ] ww | l g tarm H Spanner |
Tenant's virtual nefwork

Current-Model
Service

Network virtualization layer
(maps tenant network to real network)

Demand measurement

Per-VM rate limiters

Underlay route selection
monitoring pipeline

Provider's actual network

Figure 1: Traffic engineering (TE) infrastructure

Bandwidth
Enforcer

Network

Consider a cloud VM that wishes to communicate over the
network. To meet its bandwidth needs while isolating it from
other tenants, we route its packets over less-utilized links, while
throttling its maximum rate; these are two aspects of traffic
engineering (TE), which we implement using Bandwidth En-
forcer (BWE) [29]. BWE in turn depends on a Current-Model
Service, which builds an abstract model of the network’s cur-
rent state (link utilization and link failures). That service uses

! including “legacy” applications that must be ported to IaaS platforms without
significant rewrites.
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low-level network monitoring data delivered by a scalable net-
work monitoring pipeline, as well as static models of the net-
work’s intended state. Models reside in a Long-term Model
Store, using Spanner [16] for consistent storage.

3 Defining infrastructural availability

Without a precise definition of infrastructural availability, it
is impossible to evaluate whether availability goals are being
met, yet we continually struggle to find such a definition. We
believe this confusion results from (1) the underlying multi-
dimensionality of a precise definition, (2) the need to reduce
this dimensionality to something that is feasible to measure and
explain, and (3) the need to then decompose a top-level goal
into goals for the component services.

Defining availability starts with choosing Service Level Indi-
cators (SLIs): something feasibly measurable about the utility
of a system, like latency, packet loss or network path length.
A simple Service Level Objective (SLO) is just a tuple: (SLI,
comparator, threshold) [5, Ch. 4]. In reality, meaningful SLOs
are multi-dimensional, which means that we must define a func-
tion over multiple SLIs that says whether the system is meeting
its objectives. Much of the confusion around availability defi-
nitions involves choosing this composition function, as well as
the underlying SLIs.2

3.1 Reasons for multi-dimensional SLOs

What makes real-world availability SLOs multi-
dimensional? We discuss several dimensions below (there
are others!)

Probabilistic SLOs: We generally cannot afford to build sys-
tems that truly never fail, so SLOs are often probabilistic in sev-
eral dimensions. An SLO of “99.9% of packets will arrive with
low delay, during 99.5% of the minutes during a month” allows
for some minor short-term congestion and some rare switch re-
boots, but complicates SLO definition by requiring us to choose
a second threshold and several measurement intervals.

Performance: Performance and availability are often treated
as orthogonal. For example, Brewer writes that “the CAP the-
orem ignores latency, although in practice, latency and parti-
tions are deeply related”. A system that never times out its inter-
nal communication is placing consistency over availability [7].
However, for a tenant whose VMs can communicate but only
with inadequate bandwidth, its virtual network is “unavailable"
for practical purposes.

Therefore, useful availability SLOs are best defined over per-
formance SLIs; e.g., “the service handles 1000 requests/sec at
a 99%ile latency < 100msec. during 99.99% of the minutes
in a month.” (Note that even a performance-only SLO can be
multi-dimensional, requiring a minimal throughput at a maxi-
mum latency.)

There are numerous public examples that demonstrate a lack
of integration between the measurement of performance and
availability. The root cause of a major AWS outage was de-
scribed as a complicated inter-dependency between a brief net-
work disruption and service load. AWS proposed “stricter mon-
itoring on performance dimensions” as one defense [3].

2 Contracts between providers and customers are stated as Service Level Agree-
ments (SLAs); an SLA is an “SLO with consequences” (such as a substantial
refund) [5, Ch. 4], [44]. Providers sometimes use SLAs for internal interfaces,

as well, to allocate blame or bonuses. SLA definition, inherently involving legal,
managerial, or marketing concerns, is beyond our scope.

Multiple kinds of operation: Systems are often required to
have different availability guarantees for different types of op-
eration, e.g., reads vs writes, sends vs receives. Thus, we may
wish to define SLIs for each individually; e.g., travellers can
check flight status even if they cannot update reservations (fa-
voring reads over writes), while security logging systems value
uninterrupted appends over read availability.

We may also need separate SLOs for control-plane and data-
plane availability (e.g., existing VMs should keep running even
when we cannot create new ones). Complex control-plane APIs
might provide higher availability for local operations (create
a new VM) than for global ones (create an administrator ac-
count).

Fig. 1 helps to illustrate these points. The VMs should be
able to communicate, perhaps with degradation that increases
over time, even if BWE is down (data-plane availability >
control-plane availability). BWE can continue to throttle based
on new demand measurements even if the Current Model Store
is down, but with less accuracy (read-stale > read-consistent).

3.2 Dimensionality reduction

The second source of difficulty in defining availability is
the need for dimensionality reduction. In practice, nobody uses
SLOs defined via all relevant dimensions; they are too hard to
understand, and measuring all the SLIs costs too much. So, we
need a way to reduce this complexity, either by using proxy
SLIs (e.g., packet-loss rates as a proxy for TCP throughput), or
by constructing weighted sums over SLIs. Much of the debate
we observe is over how to balance utility with feasibility in this
dimensionality reduction.

One common approach is to define tiered SLOs, where you
pay more for a better threshold, or set thereof. (These are of-
ten called “gold,” “silver,” and “bronze” SLOs.) This shifts
some control over dimensionality reduction to customers, but
also shifts conceptual complexity, which can create confusing
choices [15]. Another is to sweep the complexity under the rug:
Azure user documentation [20] alludes to “effective availabil-
ity” as the cumulative effect on total system availability of all
the constituent service SLAs, but the SLAs do not cover perfor-
mance, and the advice to users is simply to “take care.”

3.3 Choosing sub-system SLOs

After choosing top-level SLOs, one must then decompose
this into individual SLOs for component sub-systems. The re-
lationship between component and end-to-end SLOs is non-
trivial; naive approaches (such as multiplying probabilities or
subdividing downtime budgets) can mislead in both directions:
e Good choices for subsystem SLOs depend on an accurate un-

derstanding of dependencies between components in a com-

plex, multi-layered infrastructure; unknown correlations can

cause underestimates of systemic risk [19].

e We often design higher-level components that tolerate lower-
level failures, or that convert total failures at a lower level to
degraded service at a higher level. Such fault-masking tech-
niques can yield higher overall availability than simple math
suggests, reducing the utility of trying to improve component
SLOs.

These sub-system SLO choices also require balancing costs;
it might be much cheaper to improve some components vs. oth-
ers, or it might be necessary to re-architect the entire system



instead of throwing resources at bullet-proofing a particular de-
pendency.

3.4 Tactical vs. strategic SLOs

We use SLOs for both tactical (operational) decisions —
should pagers go off? Do we need to fix something now? — and
strategic (compositional) decisions — what can the designers of
client systems rely on?

Tactical SLOs, to be useful, must be easily and cheaply mea-
sured on short timescales, and must make sense to service op-
erators, but do not need to be sensible for customers. E.g.,
“packet loss rate” could be a tactical SLO; it is easy to mea-
sure, and early operator intervention can avoid a strategic-SLO
(user-visible) failure. (Note that tactical SLOs can also be used
in automatic control loops, not just for operator interventions.)

Strategic SLOs must be stated in terms that a client system’s
designer can understand and build on, but can often be stated
and measured over relatively long timescales. If these are not
high-nines SLOs, that is OK; the client designers at least know
they must compensate for that.

It is tempting to use one SLO for both tactical and strate-
gic purposes, but we believe that leads to trouble; end-to-end
composition of systems from components is not the same prob-
lem as managing the operation of each component. The metrics
and timescales for tactical and strategic SLOs often could and
should be different.

In another paper in this workshop, Huang et al. point out
that mechanisms for checking compliance with tactical SLOs
can suffer from “gray failure,” where subtle faults in the infras-
tructure go un-detected by the provider’s failure detectors, but
still cause outages to end-user applications [23]. They discuss
this problem of “differential observability” and propose some
possible approaches to ameliorating it.

4 Availability is like security ... somewhat

We have explained why defining availability SLOs can be
difficult. In this section, we argue that one should think about
availability with the same kind of mindset that we have learned
to use when thinking about security [36]. Of course availability
is not exactly the same as security — but it is also not exactly
the same as fault tolerance, either. This analogy to security has
helped us clarify our thinking about availability.

Many aspects of the analogy reflect the need, in both do-
mains, for “adversarial thinking” on the part of system design-
ers and operators:

e When designing a system for either security or availability,
one should start with a well-defined threat model [42]. Both
kinds of “threats” include misconfigurations, unknown depen-
dencies, poor assumptions, and system overload.

o In a system that actually approaches 6 nines of availability, al-
most every loss-of-availability failure is a new one (e.g., over
2 years, Google’s networks experienced at least 103 previ-
ously unknown outages [21]). Therefore, these are hard to an-
ticipate, analogous to “zero-day” security vulnerabilities.

e Measuring past availability of 6 nines cannot tell you whether
you’ll get the same in the future, in the same way that measur-
ing past security compromises cannot tell you whether you
are immune from future ones.

Other aspects of the analogy relate to mitigation:

o Configuration errors afflict both security [31] and availabil-
ity [21], especially because configurations are often updated
by operators who have less understanding of a system’s de-
sign than its developers, and who are under time pressure.
The overall system needs to tolerate misconfiguration, not
merely detect it (although detecting misconfigurations is cer-
tainly worth the effort); designs that make it hard to express a
misconfiguration are even better.

e A service can be designed to “fail-static”: to continue to op-

erate when another service, on which it depends, has failed.

(We discuss this more in § 6.) Fail-static for availability is

analogous to default-deny [36] in security mechanisms. Both

follow the principle of “if you don’t know what to do, do the
least harmful thing.”

Systems need to detect and mitigate large-scale, fast-

spreading failures, both for availability and security, even be-

fore you know what caused them. Security practices can in-
volve locking down a system during crisis (e.g., disconnect-
ing it from the Internet, or disabling changes to the user-
authentication database). Similar availability-preserving prac-
tices include mechanisms to rapidly, sometimes automati-

cally, roll back to a known-good configuration [41] or to im-

plement a “Big Red Button” [21] that disconnects a complex,

new part of a system from the simpler, older part.

The analogy can also guide system-wide choices:

o Security and availability both conflict with execution ve-
locity. In both cases, we have to discourage or prevent
user/developer/operator short-cuts, which become sources of
risk. Also, we avoid new-feature introductions into a system
whose availability has been poor.

o Practical solutions require defense in depth, rather than rely-
ing only on proof-based and test-based confidence in the sys-
tem’s behavior. No one mechanism guarantees overall avail-
ability, in the same way that no one mechanism provides full
security.

The analogy is not perfect: availability is not like security
in many ways. For example, redundancy is far more useful in
preventing availability problems than security problems, and
while attackers have incentives and skills to seek out new ex-
ploits, many causes of unavailability (aside from DoS attacks)
are benign. But when a design or implementation flaw takes
a provider’s infrastructure offline, customers might not care
whether the proximate cause was malice or just bad luck.

4.1 Analogous operational practices

Availability, like security, also requires adherence to good
operational practices, which cannot be implemented entirely by
added or improved software. Instances abound where serious
security breaches have been attributed to poor organizational
practices, for example [35] and [37].

Reviews: Good security begins with early-stage design re-
views by outside experts. These reviews require consulta-
tion with security experts, rather than relying on the lim-
ited security-related experience of the average engineer. Simi-
larly, availability-conscious organizations should use an expert-
consultant process for early-stage availability reviews.



Penetration testing: In a “penetration test,” a team of se-
curity experts, distinct from the system designers and opera-
tors, attempts to defeat or evade the system’s security mech-
anisms. System designers cannot be expected to fully under-
stand either their security-threat or availability-threat models,
or to test whether their designs properly defend against these
threats. Our Site Reliability Engineers regularly play a “Wheel
of Misfortune” game to role-play human responses to possi-
ble disasters [5, Ch. 28]. Regular testing of disaster recovery
mechanisms is critical to ensure they will actually work when
needed.

S Past research: successes and gaps

Fifty years of active research into networked-systems avail-
ability has had only limited impact on engineering practice.
Why? We posit that the most influential outcomes from that
body of research have largely been point solutions that are ei-
ther domain-specific or address just one aspect of availability.

For example, Byzantine Fault Tolerance (BFT) protocols [2,
11, 14, 28, 45] are not widely deployed. This could be due to
performance and scaling concerns, or the perceived risk to over-
all availability associated with running a synchronous protocol
in the data center [6]. As a real-world example, we had a router
within the network in Fig. 1 that falsely reported a lightly-
loaded link as 100% utilized. Control-plane services faithfully
reported this “alternative fact” to BWE, which tried to throttle
server traffic until the reported link utilization dropped — which
it never did. The network risked becoming unavailable to some
servers, even though all of the services were fully “available.”
While this is a form of Bzyantine failure, 3f + 1 replication of
routers is infeasible; we must instead engineer the control plane
to detect anomalous inputs. Critically, while we can quantify
the risk of Byzantine faults, we lack a framework for systemat-
ically trading off that risk against availability and performance
guarantees.

Providers have not entirely ignored research results.
Paxos [30] is widely used within Google [4, 8] and else-
where [24]. Many academics and practitioners have explored
the tradeoffs between consistency, performance and availabil-
ity [1, 9, 18, 43, 46], efforts that have had tangible impact on
global-scale production services.

The notion of performability [32] captures, via a Markov
model, how the performance of a multi-node hardware or soft-
ware system degrades as a function of the availability of indi-
vidual nodes. To model availability, we would like to have the
dual of performability: a formal way to express how availability
varies as a function of the performance of the nodes.

Several authors have provided useful taxonomies. Jain pro-
vides a taxonomy of performance evaluation metrics [25] in
which availability is as important as speed and reliability. Ster-
benz et al. offer an architectural framework for network re-
silience [40], identifying classes of engineering solutions to op-
erational threats, and metrics to assess effectiveness of these
techniques. However, we are not aware of widespread adoption
of either approach; industry mostly seems to treat performance
and availability as unrelated issues.

6 Techniques for improving availability

Here we discuss a few techniques to address end-to-end in-
frastructure availability, which are distinct from prior point-
solutions research and the fundamental technique of redun-
dancy. A precise and principled definition of availability for the
target system is, of course, a prerequisite.

Don’t try to solve availability in one layer: While an IaaS
provider cannot expect its tenants to tolerate high failure rates,
it can work cooperatively with them to achieve higher redun-
dancy at lower cost than it could provide unilaterally. Specif-
ically, providers encourage tenants to replicate their services
across VMs in different zones or regions.

Such cooperation allows a provider to engineer single zones
for somewhat lower availability (therefore lower cost) than a
tenant requires overall; this is analogous to defense-in-depth.
However, any services that are inherently global, such as ac-
count creation and authentication, or BWE in Fig. 1, must meet
higher availability targets. Providers therefore need to be cau-
tious about introducing dependencies on too many global-scope
services.

Fail-static: Govindan er al. discuss how a network’s real-
time packet-forwarding layer can keep operating even when
its SDN controller crashes and restarts3; this is analogous to
default-deny. We can also apply fail-static to service stacks, be-
tween multiple layers. For example, in Fig. 1, BWE can stash a
recent model from the current-model service, to use if the latter
service fails. During such a failure, BWE’s view of the network
will grow stale, as links fail or recover, so its throttling might
need to gradually become more conservative, but it can still re-
spond to new demands.*

Generalizing fail-static poses challenges: reliably detecting
component failure, designing a system to continue to operate
in such cases, testing against hard-to-anticipate failures, and es-
timating overall system availability with fail-static enabled for
sub-components. Availability is no longer as simple as multi-
plying failure probabilities.

Fail-static also requires retraining developers. Instead of writ-
ing fail-stop code using ASSERT and PANIC, they must reason
about unwinding gracefully after errors.

Avoid cyclic dependencies: Large organizations that build
complex distributed systems tend to accidentally introduce de-
pendency cycles, which can create unexpected correlations be-
tween apparently independent systems, and can make it ex-
tremely hard to recover when all instances of a component have
failed. Or, if a failure detector depends on a system that has
failed, failures can go unnoticed (and similarly for access to
logs necessary to understand the cause of a failure [21]). Cycles
can be detected if the global graph is known, but developers of-
ten have only a local and informal understanding of the depen-
dency graph; requiring explicit registrations of inter-component
dependencies can help build such a graph. However, some cy-
cles are hard to live without.

We lack space for details on these other techniques:

o Replicated systems suffer when replica failures are correlated;
pushing the same configuration change to all replicas at once
creates a correlation, so config-push policies and mechanism
should exploit “canarying” and gradual rollout [21].

3 Their term is “fail-open,” but we prefer “fail-static.”
“4This is similar to “hoarding” for disconnected computing [27].



e Emergency systems must be tested before actual emergencies;
if the system design can execute its “emergency” code paths
even in normal operation, at least occasionally, recovery times
tend to improve [5, Ch. 17].

Capacity planning, to avoid “outages” caused by predictable
increases in demand that would lead to overloading even non-
failed resources.

Partitioning a larger system into N distinct scopes (‘“‘colors”)
with almost no sharing, means that faults (especially miscon-
figurations and maintenance errors) remove only 1/N capac-
ity [21].

Continuous assessment of risk of failures due to faults that
reduce redundancy without yer causing capacity loss; redun-
dant systems are hard to probe for risk from outside, unless
designed to support this [21, 38]. This includes monitoring
implementation-internal metrics, such as queue lengths, mem-
ory consumption, and RPC delays, to detect if the system is at
risk of reaching internal limits. (E.g., hard-coded timeout val-
ues can be an implicit threat to availability, unless response
times are monitored w.r.t. this risk.)

6.1 Availability is not just avoiding failure

Availability suffers when Mean Time Between Failures
(MTBF) is too low, but also when Mean Time To Repair
(MTTR) is too high. Govindan et al. [21] report MTTRs of 10s-
100s of minutes, so one such failure per year limits availability
to no better than 4 nines. Overall availability might be better
served by improving MTTR, together with rapid and accurate
failure detection [13], rather than by expensive approaches to
reducing MTBF.

This point is recognized by some past work that addresses
MTTR (e.g., Recovery Oriented Computing [34] and Microre-
boot [10]). Nevertheless, in a recent high-profile incident, code
in Cloudflare’s “RRDNS” DNS proxy saw time go backward
as a result of the leap second in December 2017, starting a
chain of events that caused “some DNS resolutions to some
Cloudflare managed web properties” to fail. While the original
non-monotonic time anomaly lasted just one second, it took 90
minutes to restore DNS service [22]. (This also illustrates the
need to define unusual SLOs in order to support composition;
here, the DNS proxy needs to cope with a time-service SLO
in which time might go backwards, but not by much, and not
often.)

7 Next Steps
We have explained why defining and measuring availability

is difficult, and we have described a number of techniques for
improving availability. We identify a way to think about avail-
ability that draws from how we think about security, analogous
to Saltzer & Schroeder on security [36]. We hope this approach
leads to a general framework that provides principles and mech-
anisms for:

o Clearly defining multi-dimensional SLIs and their composi-
tion into system-level SLOs, and then choosing sub-system
SLOs.

¢ Defining sub-system SLOs to minimize overall system cost
while attaining end-to-end SLOs, rather than focusing on
point solutions that try to provide “perfect” availability for
just one layer.

o Given a system or component SLO, predicting whether the
system’s design will actually meet that SLO, especially given
complex dependency graphs, and partial or cascading failures.
(Keeton et al. applied this approach to storage systems [26]).

e Deciding when to use design patterns such as fail-static vs.
fail-stop, and how best to use them.
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