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ABSTRACT
Topic models are often applied in industrial settings to dis-
cover user profiles from activity logs where documents cor-
respond to users and words to complex objects such as
web sites and installed apps. Standard topic models ignore
the content-based similarity structure between these objects
largely because of the inability of the Dirichlet prior to cap-
ture such side information of word-word correlation. Sev-
eral approaches were proposed to replace the Dirichlet prior
with more expressive alternatives. However, this added ex-
pressivity comes with a heavy premium: inference becomes
intractable and sparsity is lost which renders these alterna-
tives not suitable for industrial scale applications. In this
paper we take a radically different approach to incorporat-
ing word-word correlation in topic models by applying this
side information at the posterior level rather than at the
prior level. We show that this choice preserves sparsity and
results in a graph-based sampler for LDA whose computa-
tional complexity is asymptotically on bar with the state of
the art Alias base sampler for LDA [6]. We illustrate the
efficacy of our approach over real industrial datasets that
span up to billion of users, tens of millions of words and
thousands of topics. To the best of our knowledge, our ap-
proach provides the first practical and scalable solution to
this important problem.

1. INTRODUCTION
Topic models [2] are an important statistical modeling tool

in the arsenal of any data miner. Given a collection of docu-
ments, a topic model allows us to infer the hidden structure
in this collection in the form of topics where each topic is a
distribution over a given vocabulary. Each document can be
then represented as a distribution over these topics which
helps visualize and navigate the otherwise unstructured col-
lection of documents.
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While topic models were mostly developed for textual doc-
uments, they found widespread usage in industry where doc-
uments correspond to users and words correspond to their
activities: for example clicked websites, issued queries and
installed apps, to name a few. The inferred user distribution
over topics can be used as a basis for personalization to help
serve the users with relevant content. Unfortunately, indus-
trial settings posit two main challenges for standard topic
models: 1) words are no longer surface tokens but rather
complex structures whose interdependency and relationships
are mostly ignored and 2) the heavy tail nature of the vocab-
ulary makes it hard to infer robust co-occurrence statistics
from the data. Both of these problems result in discovering
a large number of incoherent topics that need to be filtered
manually which limits the applicability of topic models in
large-scale industrial settings.

While the first problem can be addressed by represent-
ing the tokens as first citizen objects, for instance one can
represent each website as a bag of words, this rather compli-
cates posterior inference and forces the modeler to focus on
objects that are not the main goal of her original analysis.
Furthermore, in industrial settings, such as web companies,
there exist many tools that measure similarities between
tokens (such as website and app descriptions), using well-
established IR techniques; ignoring these tools is a waste
of modeling effort as it would help us combat the second
problem of data sparsity.

Given a sparse graph of token-token similarities, one
would like to bias the model to allocate similar tokens to
the same topic. While simple to state, a robust and scalable
solution to this problem is rather lacking from the literature.
The wide majority of popular topic models uses a Dirichlet
Prior over the topic-word distribution to force topics to be
sparse. This design choice is mostly motivated by computa-
tional efficiency due to the conjugacy between the Dirichlet
distribution and the multinomial distribution that enables
the development of many efficient samplers [6, 5, 3]. How-
ever, the Dirichlet distribution can not model correlations
between words and in fact the components of a sample from
the Dirichlet distribution are almost independent. To ad-
dress this problem, several alternative priors that can incor-
porate word-word 1 correlation were proposed to replace the

1we use token and word interchangeably in this paper to
denote an element from the vocabulary



said Dirichlet distribution [9, 10, 8], however, this came at a
premium: the lack of conjugacy makes inference dense and
inefficient compared to existing approaches that uses con-
jugacy to leverage the hidden sparsity pattern in the data
in deriving better samplers such as [6, 5]. As a result, those
more expressive priors are not applicable in industrial set-
tings.

In this paper we provide, to the best of our knowledge,
the first scalable and practical solution to the problem of
incorporating word-word correlation into topic models. Our
solution results in discovering significantly more coherent
topics without incurring a radical increase in the compu-
tational complexity of the inference algorithm. To achieve
this goal, we took a radically different approach that does
not incorporate word-word correlation at the prior level but
rather softly enforces it at the posterior level. To that regard
our approach is related, in spirit, to Posterior regulariza-
tion [12] but unlike Posterior regularization, we incorporate
word-word correlations as a proposal distribution. Via a re-
parameterization of the prior knowledge, and a careful con-
struction of the knowledge-enriched proposal distribution,
we were able to derive a graph-based sampler whose compu-
tational complexity is on par with the state of the art Alias
sampler [6].

The rest of this paper is organized as follows: in Section
2 we review the basic topic model and related work, in Sec-
tion 3, we detail our approach and provide an efficient graph-
based sampler. Finally in Section 4, we illustrate the efficacy
of our approach in several industry-scale datasets with fa-
vorable outcome.

2. BACKGROUND AND RELATED WORK
We give a brief introduction to topic models and the as-

sociated inference problems. Then we discuss related work
to incorporate token-token side information in topics model
and finally we give a brief introduction to the Shadow Dirich-
let distribution that motivates our sampler in Section 3.

2.1 Latent Dirichlet Allocation
In LDA [2] one assumes that documents are mixture dis-

tributions of language models associated with individual
topics. That is, the documents are generated following the
graphical model below:

for all i

for all d

for all k

α θd zdi wdi ψk β

For each document d draw a topic distribution θd from a
Dirichlet distribution with concentration parameter α

θd ∼ Dir(α). (1)

For each topic t draw a word distribution from a Dirichlet
distribution with concentration parameter β

ψt ∼ Dir(β). (2)

For each word i ∈ {1 . . . nd} in document d draw a topic
from the multinomial θd via

zdi ∼ Discrete(θd). (3)

Draw a word from the multinomial ψzdi via

wdi ∼ Discrete(ψzdi). (4)

A key property to derive an efficient sampler for LDA is the
fact that the the Dirichlet distribution is a conjugate prior to
multinomial distribution. This allows us to integrate out θd
and ψk and express p(w, z|α, β, nd) in closed-form [3]. This
yields a Gibbs sampler to draw p(zdi|rest) efficiently. The
conditional probability is given by

p(zdi|rest) ∝
(n−di

td + αt)(n
−di
tw + βw)

n−di
t + β̄

. (5)

Where ntd, ntw and nt denote the number of occurrences of
a given (topic,document) and (topic,word) pair, or a given
topic respectively. We use the superscript ·−di to denote the
same count without the contribution of (zdi, wdi). For in-
stance, n−di

tw is obtained when ignoring the (topic,word) com-
bination at position (d, i). Finally, αt is the prior of topic t
and β̄ :=

∑
w βw is the normalization constant.

A naive approach to sample from (5) costs O(k) time since
there are k nonzero terms in a sum that needs to be nor-
malized. Two approaches were proposed to break this O(k)
time complexity: The sparse LDA sampler of [5] and the
Alias Sampler of [6].

In SparseLDA [5], the authors proposed a very clever de-
composition of (5) to exploit the sparsity of the sufficient
statistics as:

p(zdi|rest) ∝ βw
αt

n−di
t + β̄

+ n−di
td

βw

n−di
t + β̄

+ n−di
tw

n−di
td + αt

n−di
t + β̄

In this formulation only the first term is dense, and more
specifically, whenever both ntd and ntw are sparse, sampling
from p(zdi|rest) can be accomplished efficiently in to O(kw +
kd) where, kw is the number of non-zero topics per word
w and kd is the number of non-zero topics that appear in
document d.

In Alias LDA, [6], the authors proposed a sampler to draw
from p(zdi|rest) in amortized O(kd) time. They accomplish
this via the following decomposition:

p(zdi|rest) ∝ n−di
td

n−di
tw + βw

n−di
t + β̄

+
αt(n

−di
tw + βw)

n−di
t + β̄

(6)

Here the first term is sparse in kd and can be drawn from
in O(kd) time. They use a Metropolis-Hastings-Walker sam-
pling algorithm to draw in an amortized O(1) time from the
second term that corresponds to the language model p(w|t)
and changes slowly. This makes the overall complexity of the
algorithm O(kd)

2.2 Incorporating Token-Token Relationship
Several approaches were proposed to incorporate side in-

formation in the form token-token relationships into the
generative process of the standard topic model. These ap-
proaches aim to bias the model towards grouping related
words into the same topic. Most of these approaches modify
the prior over the topic-word distribution ψ. For instance
[9] uses a Dirichlet Forest prior encode the Must-Links and
Cannot-Links relationship between words. Similarly, [7] uses
side information to define the prior β over the topic-word dis-
tributions. Finally, [10] proposed a quadratic regularizer and
a convolved Dirichlet regularizer. In contrast to the previous
approaches, [8] proposed an LDA-MRF (Markov Random



Field) that uses side information to bias similar words to
have similar topics inside each document. This was achieved
by imposing an MRF prior over the topic indicators inside
each document.

Notwithstanding these excellent developments, all of these
methods lack an efficient inference algorithm similar to those
described in Section 2.1. Since most of these methods break
the conjugacy assumption, a collapsed Gibbs sampler, with
its associated fast inference algorithms [6, 5, 1] can not be
used, and instead a variational inference based techniques
were proposed. The techniques materialize the topic-words
matrix ψ which can be prohibitive in industrial settings with
thousands of topics and hundred of millions of tokens. Fur-
thermore, variational inference algorithms can not leverage
sparsity in the model and as such the computational com-
plexity of the inference algorithm is O(k). Thus the usage
of side information comes with a heavy computational pre-
mium which precluded the usage of these techniques in real
industrial settings.

2.3 The Shadow Dirichlet Distribution
The problem with using the Dirichlet distribution as a

prior over the topic-word distributions is its inability to deal
with any correlation structure between its components. In
other words, the components of a sample from the Dirichlet
distribution, such as topic ψk, are almost independent as
they just need to sum up to 1. Several alternatives were
proposed to remedy this problem, and we chose the Shadow
Dirichlet Distribution[11] as an example since it inspires the
development of our graph-based sampler in Section 3.

The Shadow Dirichlet distribution, ShadowDir(β, S), is
parametrized by two parameters: the generating mean, β,
and a correlation structure S. S is a sparse stochastic matrix
of size V ×V where each row sums to 1 and V is the number
of words (i.e. components in the sampled multinomial). A
sample is drawn from the ShadowDir(β, S) as follows:

ψ̂ ∼ Dir(β) and ψ := ψ̂ST . (7)

The ShadowDir distribution can encode various con-
straints over the simplex that subsumes the regularizers en-
forced in [10]. Unfortunately, The ShadowDir distribution is
not conjugate to the multinomial distribution, however, in-
specting the structure of (7) gives us a key insight towards
our sampler: the model enforces apriori that components
of ψ are correlated via a convex combination according to
the sparsity structure in S. We use this insight in the next
section, however, not to define a prior that leads to an in-
tractable posterior, but rather to define a correlated poste-
rior that leads to a tractable proposal distribution.

3. GRAPH SAMPLER FOR TOPIC MOD-
ELS

In this section we detail our solution to utilizing token-
token side information to improve the coherence of topic
models. Unlike all previous approaches, we keep the genera-
tive process of LDA intact, thus enjoying the nice conjugate
properties between the Dirichlet and Multinomial distribu-
tions. Instead, we use the word-word correlation structure to
influence the posterior distribution over correlated words to
be similar. In that regard our approach is related to posterior
regularization [12], however, unlike Posterior regularization,
we utilize side information to define a proposal distribution

that biases the model towards the desired effect. We will
show in this section, that this results in a very efficient sam-
pler with minimal overhead over the samplers presented in
Section 2.1. We first specify how we represent side informa-
tion, then revisit the Alias sampler for notational consistency
and finally present our graph sampler.

3.1 Representation of Side Information
We represent side information as a sparse graph G where

two words are connected if they are semantically similar.
For instance, when modeling user interests from search click
history, words correspond to urls, and two urls are con-
nected in G if they are semantically similar based on their
content – an information that is otherwise unavailable for
the unsupervised LDA model. We also assume that G is a
stochastic graph, that is the edge weights are probabilities
(i.e. Guv ∈ [0, 1]) and each node defines a probability dis-
tribution over its neighbors (i.e.

∑
v∈N (w)Gwv = 1), where

we use N (w) to denote neighbors of w in G, and Nw to de-
note the average degree of nodes in G. Using G, we define a
similarity matrix S as follows :

S = (1− λ)× I + λ×G (8)

where, I is the V ×V identity matrix and V is the number
of words. λ ∈ [0, 1] and we refer to λ as the smoothness factor
since we use λ to control the influence of the words in N (i)
on i. By construction, S is a stochastic matrix as each row
of S sums to 1. Also by construction, the non-zero entires in
row Sw. are given by N (w) ∪ {w}.

3.2 Alias Sampler Revisited
Recall from Section 2.1 that the main operation in a Col-

lapsed Gibbs sampler is to sample a topic for each word
using:

p(zdi|rest) ∝
(n−di

td + αt)(n
−di
tw + βw)

n−di
t + β̄

. (9)

To break the naive O(k) complexity barrier, the alias sam-
pler postulates the following proposal distribution for each
instance (d,w):

q(t, w, d) :=
Pdw

Pdw +Qw
pdw(t) +

Qw

Pdw +Qw
qw(t) (10)

where

Qw :=
∑
t

αt
ntw + βw

nt + β̄
and qw(t) :=

αt

Qw

ntw + βw

nt + β̄
(11)

and

Pdw :=
∑
t

n−di
td

n−di
tw + βw

n−di
t + β̄

and pdw(t) :=
n−di
td

Pdw

n−di
tw + βw

n−di
t + β̄

(12)

The proposal in (10) is computed for every (d,w) pairs
and comprises two components: a document dependent part
pdw and a word-dependent (document-independent) part, qw
that can be shared across documents. Each of these compo-
nents is computed using the existing sufficient statistics in
the sampler. A sample can be generated from pdw in O(kd)



whereas a sample can be sampled from qw in an amortized
O(1) using Alias-Walker algorithm [4]. This can be done by
freezing the sufficient statistics in qw, computing an Alias
table over them in O(kw) and then generating O(kw) sam-
ples in O(1) per sample. Once this supply is exhausted, we
regenerate the table and compute new samples. This makes
the total amortized cost of generating a sample from qw to
be O(1) and as such making the cost of generating a sample
from q(t, d, w) to be O(kd). Once a sample is generated, we
use the standard MH acceptance probability to accept or
reject this sample.

3.3 Graph Sampler
Now we are ready to define our graph-based proposal dis-

tribution that incorporates the similarity matrix defined in
Section 3.1. In a nutshell, the basic idea is to define the graph
based proposals as a convex combination of their non-graph-
based counterparts where the convex combination is defined
using the non-zero elements of the stochastic similarity ma-
trix S. Formally we have:

q(t, w, d)S :=
PS
dw

PS
dw +QS

w

pSdw(t) +
QS

w

PS
dw +QS

w

qSw(t) (13)

where

qSw(t) :=
∑

v∈N (w)∪{w}

Swvqv(t) =
αt

QS
w

∑
v∈N (w)∪{w} Swvntv + βw

nt + β̄

(14)

and

pSdw(t) :=
∑

v∈N (w)∪{w}

Swvpdv(t)

=
n−di
td

Pdw

∑
v∈N (w)∪{w} Swvn

−di
tv + βw

n−di
t + β̄

(15)

Finally QS
w and PS

dw are the normalization constants for both
qSw and pSdw respectively. Since S is a stochastic matrix, It is
easy to show that:

QS
w =

∑
v∈N (w)∪{w}

SwvQv (16)

It is very instructive to notice how S appears in the graph
based proposals. In fact, the graph based proposals can be
simply obtained by replacing the word topic counts statistics
ntw in (11-12) by their graph-based convex counterparts:

nS
tw :=

∑
v∈N (w)∪{w}

Swvntv. (17)

As such, it is easy to see that naively sampling from
q(t, w, d)S using the same alias based algorithm can be done
in an amortized O(Nwkd) time, however, we will show below
how to improve over this bound. Furthermore, according to
(8), if λ = 0 then Sij = 0 if i 6= j and as such the the graph
based proposals are reduced to the standard alias proposals.
As we increase λ, the contribution of neighboring words in
the graph increases.

1 qs1

2qs2 3 qs3

4

qs4

5

qs5

6

qs6

0.1

0.1 0.1

0.1 0.1 0.1

0.7 0.2

0.1 0.10.4 0.1 0.6

0.4 0.3

Figure 1: Illustrating the efficient sampler for qSw(t).
The graph pictorially depicts entries in the similar-
ity matrix S. Each node is endowed with its own
samples generated from the graph-oblivious pro-
posal qw. To sample a topic from qSw(t), we first sam-
ple a neighbor and then chose a sample from that
neighbor’s alias samples. Both of these steps can be
accomplished in O(1) amortized cost.

Algorithm 1 Graph Sampling

1 [Graph Initialization] ∀w compute an alias table for
the distribution Sw..

2 [Word Initialization] ∀w compute an alias table for the
distribution qw and generate O(kw+Nw) samples from
it.

3 [Normalization Initialization] ∀w compute QS
w using

(16) in O(Nw).

4 [Maintenance]: generate a sample from qSw.

4.1 generate a sample node v from the alias table of
Sw..

4.2 pull a sample from those cached for qv, if no sam-
ples are left then repeat steps 2, 3 only for word
v.

3.3.1 Sampling from qSw(t):
As discussed earlier in (17, 14) the cost to compute the

alias table for qSw is O(Nwkw) and as such one needs to draw
O(Nwkw) samples from this alias table to achieve an amor-
tized cost of O(1). However this increases the risk of sam-
pling from a stale distribution. Inspecting (14) one notices
that since Sw is a distribution, we can sample from qSw(t)
in a two step process: first, sample a node v ∈ N (w) ∪ {w}
according to Sw in O(1) and then generate a sample from
qv in an amortized cost of O(1). In this case, one needs only
to generate only O(Nw + kw) to achieve an amortized cost
of O(1). The full algorithm is defined below and the overall
idea is illustrated in Figure 1. Note that we need to gener-
ate O(kw +Nw) from qw since we need also to compute QS

w

which is essential to sample from (13). The main steps are
summarized in Algorithm 1.



3.3.2 Sampling from pSdw(t):
Sampling from this distribution is dominated by the cost

to compute the normalization constant PS
dw(t). From (15),

it is clear that this costs O(kdNw). This cost is dominated
by the need to compute the smoothed word topic counts in
(17) for every topic that appear in the document. However,
we can leverage the fact that weights in S naturally follow a
power-law distribution and use a sample with replacement
technique to approximate the smoothed word-topic sum as
follows. For every pair occurrence of (d,w) we sample with
replacement a fixed set of nodes from N (w) ∪ {w} accord-
ing to Sw. and assign each of these samples (that might
include repeated occurrences of the same neighbor) a uni-
form weight to approximate the computation of (17). This
fixed-size neighborhood is regenerated dynamically for every
occurrence of (d,w) and is different every time we encounter
the same pair in subsequence iterations. In addition, these
samples can be generated in O(1) since as we described in
Section 3.3.1 we compute and store an alias table table for
every row of S. This allows us to sample from pSdw(t) in O(kd)
and in the experimental section, we will see that a size be-
tween [1, 5] is sufficient to achieve decent performance.

3.3.3 Summary
To recap our graph-based sampler. We have shown in the

previous two subsection that one can sample from the graph
based proposal defined in (13) in an amortized cost of O(kd)
which matches the same amortized cost of sampling from
the non-graph-based alias sampler defined in [6]. Once a
sample t′ is generated, we compute the acceptance ratio

π = min(1,
p(zdt′ |rest)q

S(d,t,w)

p(zdt|rest)qS(d,t′,w)
), and finally accept the new

topic assignment t′ with probability ∝ π.

3.4 Distributed Implementation
Since we run our experiments on industry-scale data, we

use the same parameter server architecture in [14] to imple-
ment the proposed sampler. In this architecture, the global
sufficient statistics (nt, ntw) are stored on a set of servers.
Documents are partitioned among clients and each client
maintains a partial view of the global state that is sufficient
to perform sampling over its assigned documents. For the
Graph-sampler discussed in this paper, the partial view at
each client contains the sufficient statistics corresponding to
words that appear in documents assigned to this client, in
addition to their closures in the word-word similarity graph
S. The later set of words are necessary in order to be able
to compute the graph-based proposal distributions locally.
A synchronization thread runs on each client in parallel with
the sampling thread(s) to synchronize the local partial view
with the global state at the servers.

4. EXPERIMENTS
In this section we illustrate the efficacy of our approach

over various datasets both qualitatively by inspecting the
coherence of the learnt topics and quantitatively using held
out Log Likelhood (LL). In the rest of this section we re-
fer to our approach as LDA+graph Sampler or Graph
Sampler for short. We compare our approach to the ba-
sic LDA model trained using the Alias Sampler in [6]. Since
none of the related work discussed in Section 2.2 is applica-
ble at this scale, we also compare our approach on a small
dataset to the recently proposed LDA-MRF [8] topic model.

Unless otherwise stated, all experiments were ran on a clus-
ter of 100 clients and 20 servers over 2000 topics. We set the
parameters of the graph sampler as follows: smoothness fac-
tor λ = 0.01 (Section 3.1) and dynamic neighborhood (i.e.
number of samples with replacement) of size 5 (see Section
3.3.2).

4.1 Datasets Overview
We considered four different datasets show characteristics

are detailed in Table 1.

• Wikipedia: set of Wikipedia pages. Each Wikipedia
page is considered as an LDA document and each tok-
enized word in that page body is considered as a word
in that document. As side information we used both
Word2Vec [13] embedding and a similarity measure
based on Google’s Knowledge Graph [16].
• App Installs: set of mobile applications installed by

users. Each user is regarded as an LDA document and
the set of apps installed by that user is considered as
the words in that document. For privacy reasons we
only subsampled some of the users and some of the
apps. As side information we used a graph based on
app tags and textual descriptions. Note that since in-
stalled data is binary (either an app is installed or not),
the frequency of each word in a given document will
always be at most 1, which is a challenging situation
for LDA .
• Search Click History: sub-set of user URL search

click history. Each user is regarded as an LDA docu-
ment and the list of URLs is considered as the words in
that document. As side information, we derive the sim-
ilarity graph based on the URL content using standard
IR techniques. For privacy reasons we only subsampled
some of the users and some of the top urls.
• Query History: We subsampled a sub-set of search

queries from a web search engine. Each user query
is assigned into a pre-computed query cluster where
the clustering is based on the language model of each
query . Each user is regarded as an LDA document and
each whole query cluster id is considered as a word.
As side information, we used similarities between lan-
guage models of the query clusters.

4.2 Qualitative Results
In Tables 2,3,4,5,6,7,8 we show some qualitative results

from each of the four analyzed datasets. We see that for
most cases, the incoherent words within the topics disappear
when the LDA training includes side information. For all fig-
ures, we show the top words discovered by different samplers.
Some observations are in order. For the Wikipedia dataset,
as shown in Tables 2 and 3 both forms of side-information
results in different form of topics and qualitatively, while
both sources of side information results in more coherent
topics compared to the baseline, none of them dominated
the other source, however, quantitively, the model with KG
similarity results in overall better held-out LL. Perhaps the
biggest improvement was observed over the query history
dataset in Tables 6 and 7 and in the app install datasets
show in Table 8. This happens largely due to the heavy tail
nature of these datasets and the binary nature of the app-
install dataset. As evident from Table 6, the ”gardening”
topic was largely garbled beforehand and became coherent



Dataset Vocabulary size Number of Documents Average similarity Degree.
Wikipedia KG 50,000 220,000 50
Wikipedia Word2Vec 50,000 220,000 50
App Installs 100,000 200,000,000 100
Search Click History 5,000,000 1,000,000,000 75
Query History 10,000,000 400,000,000 50

Table 1: General statistics for the document datasets and the side information similarity graphs. Voc: vocab-
ulary size; Train Docs: number of training documents; Test Docs: number of held out test documents; Avg
Degree: average node degree of side info similarity graph. . For all user data, we only subsampled a set of
users /items for privacy reasons.

Table 2: Wikipedia topic about World Class Sports

LDA

Graph Sampler

(KG)

Graph Sampler

(W2V)
World world championships
at men’s won
championships women’s championship
born olympics women’s
won olympic sport
team competition olympic
olympics results international
april tournament event
medal sports final

Table 3: Wikipedia topic about Architecture

LDA

Graph Sampler

(KG)

Graph Sampler

(W2V)
building building building
buildings buildings buildings
holders design built
timatic england construction
were houses located
england tower site
information architect city
ground side designed
birmingham hospital park

The left most topics in each table are generated from regular LDA model, the non coherent words are in red colors, the middle topics
in each table are generated with graph sampler utilizing side information from either the Knowledge Graph or W2V embedding.

Table 4: Search Click History topic about food recipes
LDA Graph Sampler
allrecipes.com allrecipes.com
foodnetwork.com foodnetwork.com
alohaorderonline.com food.com
food.com tasteofhome.com
bettycrocker.com marthastewart.com
realsimple.com realsimple.com
tasteofhome.com bettycrocker.com
kobobooks.com delish.com
accuweather.com myrecipes.com
thekitchn.com cookinglight.com

Table 5: Search Click History topic about sports
LDA Graph Sampler
nfl.com nfl.com
espn.com espn.com
fanduel.com fantasypros.com
ufrgs.br rotoworld.com
cbssports.com foxsports.com
foxsports.com bleacherreport.com
nba.com cbssports.com
nflshop.com nbcsports.com
rotoworld.com dallascowboys.com
ifsp.edu.br fanduel.com

The left topics in each table are generated from regular LDA model, the red urls are incoherent compared to the rest words in the same
topic; the right topics of each table are generated with side info, which have must less incoherent words.

Table 6: Query History topic about gardening
LDA Graph Sampler
companion planting companion planting
canker sore growing watermelon
age of wushu growing tomatoes
mre onion plant
words with friends app growing strawberries
waves lyrics powdery mildew
clarkson university heirloom seeds
car rental with debit card how to plant a garden
mountain view high school blueberry bush
words that end in z non gmo seeds

Table 7: Query History topic about Python
LDA Graph Sampler
python list python list
numpy array numpy array
pyplot python try except
python csv python sort
python random python random
python try except python try except
sloppy joes python string
machine learning python subprocess
deep learning python if else
naive bayes pycharm

Topics on the left side of each table are topics generated from regular LDA model, the non coherent words are in red . Topics on the
right side of each table are generated with side info. Note that while the Python topic was already decent in the baseline, it still contains
words not semantically related to Python.

with side information, while the Topic about Python in Ta-
ble 7 was decent beforehand but contains various spurious

queries about Machine learning largely because of the large
usage of Python to code ML models, however, with side-



Table 8: App install topic about action game
LDA Graph Sampler

The left side is an action game topic generated from the regular LDA model, the app themes are mixed and and are not very coherent.
The right side is a similar topic generated with sideinfo which gives more coherent results.

Baseline LDA-MRF (KG) LDA+GraphSampler (KG) LDA-MRF (W2V) LDA+GraphSampler(W2V)
Log-Likelihood -2327 -2275 -2256 -2314 -2307

Table 9: Comparison of held-out data log-likelihood for regular LDA, LDA-MRF, and LDA+GraphSampler
for Wikipedia dataset.

Table 10: Side-by-side comparison of baseline LDA and LDA+GraphSampler for all four datasets.

information, these ML related queries were factored out and
this improves the readability of the topic. In fact it is better
to factor these ML queries out since not every python coder
is interested in ML. Moreover, as clear from Table 8 the
app topic about Action games is much more clearer with
side-information. Overall, the addition of side-information

enables the model to trade lexical similarity with behavioral
similarity and prevents the model from capturing spurious
behavioral correlations in the data.

4.3 Quantitative Results



Search Click History App Installs
# Top Words (M) LDA LDA+GraphSampler Improvement LDA LDA+GraphSampler Improvement

5 -59.97 -54.72 8.75% -30.808 -28.601 7.16%
10 -283.49 -252.79 10.83% -161.81 -151.56 6.33%
20 -1236.45 -1094.82 11.45% -799.41 -743.93 6.94%
30 -2876.27 -2532.55 11.95% -1995.4 -1853.6 7.11%

Table 11: Topic coherence improvement observed by using LDA+GraphSampler. Table shows results for
different values of top words (M) across Search Click History and App Installs datasets.

Dataset Baseline SF = 0.001 SF = 0.01 SF = 0.1 SF = 0.2
App Installs -91.37 -91.51 -90.20 -87.65 -85.34

Table 12: Final data log-likelihood (×109) for baseline (LDA) and for LDA+GraphSampler under different
smoothing factors. SF: Smoothing factor.

Figure 2: Comparison of baseline LDA vs.
LDA+GraphSampler with different values of num-
ber of neighbors sampled (with replacement) for the
Search Click History dataset. SN = Sampled Neigh-
bors.

Table 10 contrasts the held-out LL over the four datasets
between LDA and LDA+Graph Sampler. As evident form
the Figure our Graph sampler algorithm that utilizes side
information both A) improves held-our LL and b) converges
at the same speed or even faster than the baseline LDA
standard Alias sampler. We also notice that improvement is
more noticeable as the dataset is more sparse (app-install
and query history). Furthermore, we noticed that for the
wikipedia dataset that using KG-based similarity gives bet-
ter results than using similarity driven from another form
non-linearity (i.e. w2v) that might be more relevant in the
context it was derived from but not as side information for
other models.

As we mentioned earlier, none of the baselines discussed
in Section 2.2 scales to massive datasets, thus we com-
pare our graph sampler with the LDA-MRF baseline on
the smaller wikipedia dataset using K = 100 since LDA-
MRF uses a Variational Inference based inference algorithm
that scale as O(K). The results are shown in Table 9. We
see that, while LDA+MRF outperforms the regular LDA
baseline, LDA+SideInfo yields slightly better results than
LDA+MRF. Which means that our approach while scalable

doesn’t compromise quality when compared to models that
use alternative priors.

Finally, we also compute the semantic coherence improve-
ment generated by our graph sampler. As proposed in [15],
topic coherence is defined as:

C(t;V (t)) =

M∑
m=2

m−1∑
l=1

log
D(v

(t)
m , v

(t)
l ) + 1

D(v
(t)
l )

(18)

Where V (t) = (v
(t)
1 , . . . , v

(t)
M ) are the top M words in topic

t, D(w) is the word frequency in a document, and D(w,w′)
is the co-document frequency across the dataset.

We observed a significant improvement in topic coherence
for different values of M , as shown in Table 11. As expected,
the topic coherence improvement was better for higher val-
ues of M since the incoherent words tend to become more
frequent as we move towards the lower-scored words in a
topic. For M = 30 we observed a topic coherence improve-
ment of 11.95% for Search Click History and 7.11% for App
Installs.

4.4 Ablation Study
In order to understand the effects of the different param-

eters involved in our Graph Sampler, we ran a sequence of
experiments varying the values of the number of sampled
neighbors (Section 3.3.2) and the smoothing factor (λ, sec-
tion 3.1).

4.4.1 Sampled Neighbors (SN)
This parameter corresponds to the number of neighbors

we sample with replacement for a given word during the doc-
ument proposal computation. As detailed in Section 3.3.2,
we use those sampled sub-set of N (w)∪{w} to compute the
effective smoothed word probability instead of N (w) ∪ {w}
itself.

We observe in Figure 2 that, as expected, the per-iteration
log-likelihood curve improves as we increase the number of
neighbors sampled since we are incorporating more informa-
tion from the similarity graph. However, the running time
of each iteration grows linearly with the number of sampled
neighbors. Even using a relatively low value of SN (such as 5
in our Figure) was enough to yield great improvements over
the baseline. Furthermore, using 5 samples we were able to
obtain a model that is similar in quality to the model ob-
tained with SN = ALL with practically little change in
runtime over the baseline LDA model. The key idea here



is that we use different 5 fresh samples each time we touch
a given word, hence we can provide a good approximation
with little extra computation.

4.4.2 Smoothing Factor (SF)
This parameter λ corresponds to the probability allocated

to neighbouring words (See section 3.1).
We can see in Table 12 that LDA+GraphSampler will out-

perform LDA in a very large range of values for the App In-
stalls dataset (due to the high cost of these experiments, we
have not run similar tests for the other 3 datasets). We ob-
serve that SF = 0.001 (under-smoothing) will yield results
similar to baseline. From SF = 0.001 to SF = 0.5, we ob-
served a monotonically increasing behavior of final data log-
likelihood, reaching final values that are significantly better
than the baseline. In general this value can be tuned using
cross validation if need be.

5. CONCLUSION
In this paper we proposed a Graph Sampler for topic mod-

els that utilizes side information in the form of a word-word
similarity graph. We showed that our approach is computa-
tionally efficient, and asymptotically scales as the efficient
Alias Sampler for LDA [6]. Our approach preserves spar-
sity in topic-word representation during inference and scales
gracefully with both number of documents, number of top-
ics and vocabulary size. We demonstrated the efficacy of our
approach over real big-data applications and showed quali-
tatively and quantitatively the added value of our technique.
To the best of our knowledge, we believe that our approach
is the first practical and scalable solution to the problem of
incorporating word-word side information in topic models.
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