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Abstract

This article discusses strategies for end-to-end training of state-
of-the-art acoustic models for Large Vocabulary Continuous
Speech Recognition (LVCSR), with the goal of leveraging Ten-
sorFlow components so as to make efficient use of large-scale
training sets, large model sizes, and high-speed computation
units such as Graphical Processing Units (GPUs). Benchmarks
are presented that evaluate the efficiency of different approaches
to batching of training data, unrolling of recurrent acoustic
models, and device placement of TensorFlow variables and op-
erations. An overall training architecture developed in light of
those findings is then described. The approach makes it possi-
ble to take advantage of both data parallelism and high speed
computation on GPU for state-of-the-art sequence training of
acoustic models. The effectiveness of the design is evaluated
for different training schemes and model sizes, on a 20,000
hour Voice Search task.

Index Terms: speech recognition, tensorflow

1. Introduction

In recent years there has been an explosion of research into
new acoustic models for LVCSR. Large performance gains
have resulted from the shift from Gaussian Mixture Mod-
els (GMMs) to feed-forward Deep Neural Networks (DNNs)
trained at the frame level [1], and further gains have been ob-
tained from utterance-level sequence training of DNNs [2, 3].
Significant additional gains have resulted from switching from
feed-forward DNNs to Recurrent Neural Networks (RNNs), in
particular Long Short Term Memory Models (LSTMs), again
trained both at the frame level and sequence level [4]. Fur-
ther architecture exploration has included evaluation of Convo-
lutional Neural Networks [5] and much deeper networks such
as Residual Networks [6].

A common thread in the rapid evolution of modeling archi-
tectures is increasing model size, and use of larger training sets,
creating new challenges for the efficient use of computational
resources. There is a clear need for well engineered, carefully
designed acoustic model trainers which can leverage both data
and model parallelism and high performance computational re-
sources such as Graphical Processing Units (GPUs), while still
allowing the use of the complex, non-cohesive decoder or lat-
tice operations necessary for state-of-the-art sequence training,
which easily scales up to much larger models and larger training
data sets, and that produces state-of-the-art performance.

A number of general purpose neural network training pack-
ages such as TensorFlow [7] are now available to the research
community, as are off-the-shelf fast computation hardware re-
sources such as GPUs. However, speech recognition has its own
specific needs. For example, the current state-of-the-art model
in speech is the LSTM, which presents unique challenges for ef-
ficient computation. The specific choices for unrolling, e.g. full
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Figure 1: The end-to-end training system: Parameter Server
(PS), Example Server (ES) and workers. The Example Servers
pass training examples to server queues which then can be
parsed and batched by worker queues. ES’s have access to PS’s,
necessary for sequence training.

unrolling up to the utterance length [8] vs truncated unrolling
[9], optionally with state-saving, and the choice of batching,
have significant consequences for training efficiency. In addi-
tion to the modeling complexities, there are ASR-specific opti-
mization challenges. In particular, sequence training of acoustic
models is a critical step, but the decoder and lattice operations
it involves are not easy to implement on GPUs efficiently, in a
manner that scales to larger models. This has led to hybrid use
of CPU and GPU (placing decoding/lattice operations on the
CPU, and computation of local acoustic posterior scores on the
GPU) [10], “lattice free” use of a simplified training LM with
forward-backward based sequence training on GPUs [11], or
biting the bullet on porting complex lattice operations to GPUs
[12], among many studies.

In this article we present a comprehensive, “end-to-end”
view of these critical issues in acoustic model trainer design, in
light of the functions provided by the TensorFlow platform. We
benchmark different strategies for recurrent model unrolling,
data batching, and device placement of TensorFlow operations.
Building on a previous approach to asynchronous sequence
training of DNNs and LSTMs [4, 13], we describe an archi-
tecture in which the computation of outer and inner derivatives
is decoupled between CPU and GPU, while still leveraging data
parallelism using e.g. 100s of workers. We then present experi-
mental results evaluating this TensorFlow-based training archi-
tecture on a 20, 000 hour Voice Search training set, for different
model sizes, achieving high final word accuracy in much re-
duced training times.



2. Acoustic Modeling Training with
TensorFlow

TensorFlow distinguishes itself from other machine learning
platforms such as DistBelief [14] in the way it expresses com-
putation as stateful dataflow graphs. The dataflow computa-
tion paradigm and ability to distribute computation across ma-
chines gives us a powerful tool for acoustic model training.
With careful placement of different parts of this graph onto dif-
ferent machines and devices, we can train complete state-of-
the-art LVCSR systems using a mix of GPU and CPU devices.
Figure 1 presents one way of constructing an acoustic model
trainer which uses three major components, Example Servers
(ES), Training Workers and Parameter Servers (PS). The level
of parallelization of this system is specified by the number of
training workers, n, the number of ES’s per worker, r and also
efficient parametrization of TF queues used to communicate be-
tween example servers and training workers.

2.1. Distributed Feature Extraction

A typical ASR front-end consists of a sequence of computa-
tions such as Framing, Windowing, Short Term Fourier Trans-
form, and finally log Mel filtering. In addition, we add noise
and distortion to training examples on-the-fly, which is expen-
sive to compute and requires I/O from additional data sources.
We distribute front-end feature extraction and noisification onto
a set of machines, as shown in the right side of Figure 1.
Each machine, denoted as an Example Server (ES), is a multi-
core CPU machine with access to a shard of training data,
and optionally for sequence training, access to the parame-
ter servers in order to compute sequence loss outer deriva-
tives. For each training worker 4, there are r example servers,
ESi5i, ..., ES,_; extracting features using a shared compu-
tation graph to serve worker ¢. Each example server con-
verts extracted information into t £ . SequenceExample for-
mat and streams the result back to the corresponding train-
ing worker using TF native queues. On the client side,
standard parsing and queueing functions in TF are used to
produce batches of training data. For truncated unrolling,
batch_sequences_with_states creates batches of seg-
ments of sequences and propagates states between segments.
For full unrolling, bucket_by_sequence_length groups
training examples by their length and batching examples of sim-
ilar length into buckets. Correct tuning of the input queue pa-
rameters, such as queue capacities, is very important to the per-
formance of the training setup.

2.2. Parallelization methods

Data parallelism uses copies of the model, processing different
batches from the training data in parallel. In a standard Tensor-
Flow data parallel training setup, each training replica computes
gradients for a mini-batch and then asynchronously applies gra-
dient updates to weights stored in a parameter server.

For model parallelism, each layer of the stacked LSTM ar-
chitecture is assigned to its own GPU. As step n of a given
layer only depends on step n — 1 of that layer and step n of the
previous layer, it is possible to pipeline computation and make
effective use of multiple GPUs with close to linear scaling. Par-
allelizing data movement is handled transparently by Tensor-
Flow and latency of data transfers overlaps well with compute.
The limitation of this approach is that GPU use is dictated by
architecture, each layer must map to a single compute device.

2.3. Training Recurrent architecture

TensorFlow provides two functions for unrolling RNNs:
static.rnn and dynamic_rnn. The weights and architec-
ture of the RNN are separated from the mechanism of unrolling
them in time. static_rnn creates an unrolled graph for a
fixed RNN length; a complete subgraph of the RNN operations
is repeated for each time step. The limitations of this are excess
memory use, slow initial creation of a large graph, and sequence
length cannot be longer than the fixed unrolling. However, this
simple unrolling can better pipeline timesteps across multiple
GPUs more effectively. dynamic_rnn solves memory and se-
quence length limitations by using a t £ .while_loop to dy-
namically unroll the graph when it is executed. That means
graph creation is faster and batches can be of variable sequence
length. Performance for both is similar, and both can be used
with state saving for truncated unrolling.

Figure 2 shows the number of frames per second for dif-
ferent batch and unrolling sizes. It can be seen that increas-
ing batch size increases throughput much more than longer un-
rolling. The fixed unrolling setup can also be made faster using
model parallelization placing each layer of the model on one
GPU.

3. End-to-end training scheme

Cross Entropy (CE) training is performed using the tandem of
example servers described earlier, running on CPU, and training
workers, running on either CPU or GPU, that compute model
updates using the standard CE loss function, calculated with
the features and targets provided by the example servers. The
tf.nn.softmax_cross_entropy_-with_logits can be
used for CE training. Alternatively, Connectionist Temporal
Classification (CTC) [15] can be used; this is provided in TF
asthetf.nn.ctc_loss op.

Sequence training uses the same tandem of example servers
and training workers, illustrated in Figure 1, but with outer
derivatives instead of CE targets, and a simple auxiliary loss
function that implements an asynchronous chaining of outer and
inner derivatives [13] constituting the total sequence-level loss
gradient,
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for a sequence X of 1" feature vectors x;, unfolded RNN log-
its a (x¢, k, ), for all N network output classes, and all net-
work parameters 0; [3]. The example servers compute the outer
derivatives,
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for a snapshot of the parameters 0’ obtained from the parameter
server; and the training workers use the auxiliary function

T N
Lavx (X,0)=> "> w(xi,k,0)logpy (klx:), (3)

t=1 k=1

where po (k|x¢) is the network output, i.e. the usual softmax
over the logits. It is easy to show that the gradient of this aux-
iliary function with respect to the live parameters 6 then ap-
proximates the chaining of outer and inner derivatives in Eq. (1)
[13]. The computation of sequence loss outer derivatives on the
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Figure 2: Benchmark of different training schemes for training 5-layer LSTMs with 768 cells per layer using 5 GPUSs.

example servers uses on-the-fly lattice generation and forward-
backward over the error expectation semi-ring.

Using difference matchines (example servers vs. training
workers) to compute outer and inner derivatives allows for faster
computational throughput, but results in a significantly higher
degree of asynchrony than in [3, 13]. Tuning the number of
workers, queue size, and filtering out outer derivative sequences
computed for a " deemed overly stale, were found to be impor-
tant to obtaining good convergence.

The snapshot parameters ' must be periodically refreshed,;
this can be implemented in TensorFlow by adding to the in-
ference graph used in the example server sequence training
pipeline a set of operations copying live variables on the pa-
rameter server to the snapshot variables.

This asynchronous approach to sequence training offers
flexibility in the choice of batching and unrolling schemes for
RNN training discussed in Section 2.3, as it decouples compu-
tation of outer and inner derivatives. As outer derivative compu-
tation for the sequence-level loss requires the entire utterance,
dynamic_rnn can be used. The issues with full unrolling pre-
viously discussed are mitigated by the fact that the outer deriva-
tives are computed with just a forward pass. On the inner deriva-
tive side, large batches with limited unrolling can leverage the
efficiency of GPU-based computation.

Sequence training is performed starting from a CE-trained
acoustic model. The sequence training criterion in this study
is state-level Minimum Bayes Risk (sMBR) [2, 3]. Lattices
are generated on-the-fly using a bigram LM estimated over the
training utterance transcripts.

4. Experiments

Training a recurrent neural network involves the choice of many
parameters, including unrolling and batch size. Hardware can
impose constraints on the optimal choice of these parameters.
The experiments are designed to investigate the effect of these
choices on Word Error Rate (WER).

Data: The training data consists of about 20, 000 hours of spon-
taneous speech from anonymized, human-transcribed Voice
Search queries. For noise robustness training, each utterance
in the training set is artificially noisified using 100 different
styles of noises with varying degrees of noise and reverbera-

tion. The test sets are separate anonymized, human-transcribed
Voice Search datasets of about 25 hours each. Evaluation is pre-
sented on two sets, clean, from real Google voice search traffic
and noise, an artificially noisified version of the clean test set,
with the same configuration used for training set noisification.

Front-end: The training examples are 480-dimensional frames
output by the front end every 30 ms, generated by stacking four
frames of 128 log mel filterbank energies extracted from a 32
ms window shifted over the audio samples in 10 ms increments
[16]. During CE training, to emulate the effect of the right con-
text, we delay the output state label by 5 frames [17]. Each
frame is labeled with one out of 8192 context-dependent output
phoneme states; each feature frame and target label are bun-
dled by the example server in tf.SequenceExample for-
mat. For sequence training, the example server bundles outer
derivatives instead of target labels, along with the feature frame
and sMBR-related statistics, e.g. the utterance level loss value
itself, for summarization in TensorBoard. The outer derivatives
are computed over the entire utterance using the model param-
eters loaded in the example server at the time of processing the
utterance, as described in Section 3.

Baseline: For the baseline, an integrated architecture perform-
ing feature extraction and training on the same machine, and
parallelized across CPUs, was used to produce the state-of-the-
art system. This system was trained with a batch size of 1 and
full unrolling. The training used a total of 1600 CPU machines
for all training workers and parameter servers. The training pa-
rameters for this setup have been highly tuned for the same task,
with performances reported in first row of Table 1. The architec-
ture shown in Figure 1 was used for the rest of the experiments
presented in this paper.

Training: ASGD was used for all experiments. For CE train-
ing, a ratio of 10 to 1 is used for the number of example servers
per worker. For sequence training, a ratio of 30 to 1 is used.
All trainer workers are Nvidia K40 GPUs and use data paral-
lelism. In total, 32 GPU workers were used for CE training; 16
GPU workers were used for sequence training. The parameter
servers are multi-core CPU machines; For GPU experiments,
13 parameter servers were used.



Choice of unrolling scheme: The choice of full unrolling vs.
truncated unrolling can be evaluated from different perspec-
tives. In Table 1, these are compared in terms of WER per-
formance, convergence time, maximum number of frames per
mini-batch and Average Padding Ratio (APR), the average num-
ber of padded frames per step of training. The model used for
comparison was a 5 layer LSTM with 600 cells per layer, de-
noted as SXxLSTM(600). The fully unrolled model was trained
with batch 1, the setting for our best full unrolling system.
For truncated unrolling, the model was trained with batch 256
and unrolling of 20. The fully unrolled model was trained us-
ing 500 CPU workers and 97 parameter servers. The default
GPU setup described above was used for training the truncated
model. With respect to WER, both models converge to similar
WERSs for both clean and noise test sets. The convergence time
of the truncated model is significantly shorter than the fully un-
rolled model with batch size 1, due to the effectiveness of large
batches in the GPU setup. Though full unrolling can be sped up
using batching (with bucketing of sequences by length), the po-
tential speed up depends on the distribution of sequence length
over the training data. When bucketing, the number of frames
in each step of SGD varies with the bucket sequence length, af-
fecting step time proportionally. As step time changes, the num-
ber of asynchronous steps computed by other replicas changes,
introducing more variable parameter staleness. Attempting to
control for this, with e.g. variable batch size, introduces more
training parameters and complexity.

With truncated unrolling, the maximum number of frames
per step is bounded by batch size times unrolling size. The main
drawback to batching sequence data is the need for padding
each batch to the maximum sequence length in the batch. In
our case the average number of padded frames per mini-batch
(Table 1) is about one sixth of the mini-batch size. The number
of wasted padded frames increases as the unrolling is increased.
For full unrolling, padding depends on the bucket size used and
on the distribution of sequence length over the training set. For
the training set used for this paper, truncated unrolling was pre-
ferred for its simplicity and is used for the rest of experiments
presented here.

WER [%] Conv. Max APR
clean | noise | [days] | frames [%]

full 12.07 | 19.52 28 d 45k 0
truncated | 12.10 | 19.76 6d 5120 15.6

Table 1: WER, convergence time and mini-batch metrics (max-
imum # of frames & Average Padding Ratio (APR)) for full vs
truncated unrolling.

Choice of batching: Truncated unrolling is desirable, as it al-
lows the use of very large batch sizes, which significantly im-
proves the throughput of GPU parallel computation. However,
the choice of batch size is not completely independent of the
choice of unrolling size.

To examine this behavior, three pairs of batch and unrolling
sizes were chosen such that the total number of frames in each
mini-batch, b X wu, is constant. This allows us to avoid learn-
ing rate tuning for each model. Table 2 compares the WER
of a S5XLSTM(768) model trained with three batch sizes, 512,
256 and 128 with corresponding unrolling sizes of 10, 20,
and 40. The performances are presented for CE. The model
trained with unrolling of 20 and 40 performs similarly, while
the model trained with larger batch size of 512 and unrolling
of 10 shows some performance degradation. This might be due
to the fact that the unrolling size is not sufficient for learning

longer temporal dependencies, or to optimization issues such
as the padding ratio introduced by batching for truncated un-
rolling. Table 2 presents the mean and standard deviation of the
total number of padded frames over training steps. The mean
and stddev for an unrolling of 10 and a batch size of 512 are
the largest over the setups examined. This means that the num-
ber of frames used for learning varies significantly across steps,
which might explain the performance degradation.

(b, u) (512, 10) (256, 20) (128, 40)
clean 11.70 11.40 11.45
noise 19.21 18.51 18.56

| avg padding ratio [ 20.6 £19.2 [ 15.6 £10.0 [ 17.6 £7.4 |

Table 2: WER:s for different batching and unrolling schemes.

Choice of model parameters: Table 3 summarizes WERs af-
ter sequence training for three models with different number of
LSTM cells per layer. These models were trained with batch of
256 and unrolling of 20, with learning rate tuned for all models.
As discussed in Section 3, outer derivative staleness is an issue.
To address that, for each model we zeroed out the 32 most stale
examples in each mini-batch.

The model parameters can be chosen to make the best use
of the available hardware. In our examples, increasing the layer
size together with the batch size allows more efficient use of
GPU hardware. In Table 3, two LSTM topologies, one with 600
units per layer and one with 768 units per layer, are trained with
same resources; the convergence time for both models is simi-
lar. However, the larger model is significantly better in terms of
WER. Furthermore, the wider model with 1024 cells per layer
shows extra gains but of course this leads to extra training time.

cross_entropy | sequence_training | Num Conv.

clean | noise | clean noise params | [days]
S5xLSTM(600) | 12.10 | 19.76 | 10.43 15.56 22M 6+3
SxLSTM(768) | 11.40 | 18.51 | 10.10 15.01 28M | 6.5+3
5xLSTM(1024) | 11.04 | 17.35 | 9.88 14.13 38M 10+4

Table 3: Comparison of WER after sequence training.

5. Conclusion

This article discussed different approaches to efficient dis-
tributed training of RNNs in TensorFlow, with a focus on dif-
ferent strategies for data batching, recurrent model unrolling,
and device placement of TensorFlow variables and operations.
A training architecture was proposed that allows for flexible de-
sign of those strategies, enabling the use of a hybrid distributed
CPU/GPU training scheme that extends previous work on asyn-
chronous sequence training. Experimental results on a 20, 000
hour Voice Search task show that this training architecture suf-
fers no loss compared to a previous LSTM baseline of the same
model size that uses conventional settings (full unrolling, no
batching, synchronous sequence training), but in much reduced
time, thanks to the GPU-based implementation enabled by the
proposed design. Additional gains were obtained with signifi-
cantly wider models, again in much improved training time.
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