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Identifier names are often used by developers to convey additional information about the meaning of a program
over and above the semantics of the programming language itself. We present an algorithm that uses this
information to detect argument selection defects, in which the programmer has chosen the wrong argument to
a method call in Java programs. We evaluate our algorithm at Google on 200 million lines of internal code and
10 million lines of predominantly open-source external code and find defects even in large, mature projects
such as OpenJDK, ASM, and the MySQL JDBC. The precision and recall of the algorithm vary depending on a
sensitivity threshold. Higher thresholds increase precision, giving a true positive rate of 85%, reporting 459
true positives and 78 false positives. Lower thresholds increase recall but lower the true positive rate, reporting
2,060 true positives and 1,207 false positives. We show that this is an order of magnitude improvement on
previous approaches. By analyzing the defects found, we are able to quantify best practice advice for API
design and show that the probability of an argument selection defect increases markedly when methods have
more than five arguments.
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1 INTRODUCTION
Identifier names are often used by developers to convey additional information about the meaning
of a program over and above the semantics of the programming language itself. Recent research
has shown that this information is useful for various program analyses that address common
software engineering tasks, such as defect detection [Pradel and Gross 2011, 2013], code recom-
mendation [Liu et al. 2016], recommending identifier names [Allamanis et al. 2015], and enforcing
coding conventions [Allamanis et al. 2014]. Analyses that compare identifier names of arguments
passed to a method and formal parameter names in method declarations have been used to detect
programming errors, such as accidentally interchanging arguments of the same type [Pradel and
Gross 2013] or using a type-compatible yet incorrect argument [Liu et al. 2016].
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As a motivating example, consider the following two code snippets. Both are sanitized versions
of real defects discovered in code developed at Google:

private User getUser(String companyId , String userId) { . . . }

public void doSomethingWithUser(String companyId , String userId) {

User user = getUser(userId , companyId );

. . .

}

The call to getUser has swapped the arguments, which are both Strings. A simple check of
whether the argument names match the parameter names would have prevented this defect. The
defect caused a surprising UserDoesNotExist error when calling the doSomethingWithUser method.

Consider a second example:
class JanitorFn {

static Value configure(String fileUser , . . . ) { . . . }

}

public class KeywordSink {

private String fileUser;

public Value write(String stageName , . . . ) {

. . .

return JanitorFn.configure(stageName , . . . );

}

}

The call to JanitorFn.configure passes stageName as the first argument; however, the correct
argument should have been the fileUser field from the enclosing class, whichmatches the parameter
name in the method declaration.
These are examples of argument selection defects. When a programmer makes a method call,

each argument they choose is drawn from an implicit set of candidate expressions. These might be
local variables, fields from the enclosing class (and perhaps the superclass), method calls on local
variables, and so on. We define an argument selection defect as occurring on arguments at call sites
which satisfy the following conditions: a) the programmer has selected an incorrect argument; and
b) the set of candidate expressions contains the correct argument.
We first present a study of 84 real argument selection defects that have been previously found

and fixed in Google’s codebase (Section 3). This kind of error is rare, with fixes occurring at a rate of
approximately 1 in every 1.5 million changesets. However, 7 of the 11 bug reports associated with
these fixes were associated with high severity issues, so analysis tools capable of detecting these
defects would have a notable benefit. We then describe our defect detection algorithm (Section
5) and report on its effectiveness (Section 6). With a reasonable sensitivity setting we were able
to achieve a true positive rate of 85% whilst detecting 459 true defects, including some in mature
software libraries such as java.util.concurrent. We found 2,305 defects overall and analyze these
to quantify existing best practice advice on API design (Section 7). We compare against two different
approaches: Order [Pradel and Gross 2013] and Nomen [Liu et al. 2016], and show that our algorithm
produces an order of magnitude improvement in precision (Section 9).

The contributions of this paper are:
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• evidence that argument selection defects do occur in deployed production systems and can
cause high severity issues
• a new algorithm for argument defect detection which is an order of magnitude better than
existing approaches
• a summary of the 2,305 defects we discovered and their implications for API design
• an implementation of this algorithm as part of the open-source Google Error Prone project [Af-
tandilian et al. 2012]

We perform our evaluation on 200 million lines of internal code and 10 million lines of external
code and show that we achieve comparable performance on both. Our work is the first to deploy,
and report on, a name-based analysis at very large scale. We believe the evidence here makes a
strong case for general deployment of this style of analysis.

2 RELATEDWORK
2.1 Name-Based Analysis
This paper builds on earlier versions of name-based static analyses of arguments passed to methods,
we refer to these techniques as Nomen [Liu et al. 2016] and Order [Pradel and Gross 2011, 2013].
We compare our work to these techniques in detail later in the paper (Section 9). The IntelliJ IDE1
compares argument names and parameter names to flag call sites that pass unexpected arguments.
This check is based on a small, built-in set of commonly-confused identifier names, such as width
and height. In contrast, our analysis considers arbitrary identifier names and does not require any
built-in knowledge about common mistakes.

The observation that source code has properties similar to natural language documents [Hindle
et al. 2012] has motivated several NLP-based approaches, e.g., for learning coding conventions [Al-
lamanis et al. 2014] and coding idioms [Allamanis and Sutton 2014]. Høst and Østvold [2009] and
Allamanis et al. [2015] address the problem of finding unusual names of methods and classes and
of suggesting more appropriate names. In contrast, our work focuses on errors caused by using
incorrect method arguments.
The importance of identifier names has been studied empirically, showing the importance of

function identifiers [Caprile and Tonella 1999], that poor names correlate with poor code qual-
ity [Butler et al. 2010], and that descriptive and long names improve code comprehension [Lawrie
et al. 2007].
An important component of many name-based analyses is tokenization of identifier names.

Enslen et al. [2009] propose to infer a tokenizer via source code mining. Work by Butler et al. [2011]
considers tokenization beyond the commonly used camel case and underscore conventions. These
techniques could be easily combined with our current approach, which splits identifiers based on
the camel case and underscore conventions. Cohen et al. [2003] survey several similarity measures
for entity names and compare them with each other empirically. Our work also considers several
distance functions (Section 5.1), which we evaluate specifically for the purpose of identifier name
matching using a labelled dataset of ground-truth matches.
An approach orthogonal to detecting incorrect arguments once the code has been written is

automated recommendation of arguments during development, e.g., as part of IDE-based code
recommendation. Existing approaches include mining of clients of a particular API [Zhang et al.
2012] and code completion via inferred statistical language models [Nguyen et al. 2013; Raychev
et al. 2014].

1https://www.jetbrains.com/idea/
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2.2 Rule Mining Approaches
Name-based analysis techniques use the convention (or rule) of name agreement in programs.
There are various techniques for finding bugs by mining other rules or specifications from a
large codebase and by searching for violations of these mined rules. PR-Miner [Li and Zhou
2005] mined rules of the form “when calling functions f and g, you should also call function
h.” AntMiner [Liang et al. 2016] improves this idea by slicing functions before the rule mining.
Chang et al. [2007] use frequent subgraph mining on program dependence graphs to find missing
condition checks. Other approaches consider the order of method call sequences, e.g., by mining
graph-based rules for method call sequences [Nguyen et al. 2009], sequence association rules that
encode how to handle exceptions [Thummalapenta and Xie 2009], object usage models expressed
as finite state machines [Wasylkowski and Zeller 2009; Wasylkowski et al. 2007], or multi-object
specifications [Pradel and Gross 2009; Pradel et al. 2012]. Wang et al. [2016] learn an n-gram-based
model of token sequences and use it for detecting anomalies. Deployment is more of a challenge
with these approaches since they learn specific features from the codebase they are trained upon
and therefore need periodic retraining. In contrast, name-based analysis uses a simple, general rule
and so can be applied locally to the call sites of a single method at a time without reference to the
rest of the code.

2.3 Deploying Automated Bug Detection Techniques in Industry
Other automated bug detection techniques have been deployed in industry. Our work is the first to
deploy a name-based analysis at a very large scale.
Bessey et al. [2010] report their experience from commercializing a static bug detection tool.

They share the insight that a scalable detection algorithm and a low false positives rate are crucial
for real-world applicability. Our work provides additional lessons learned both related to the nature
of the analysis, e.g., the need to know identifier names, and to the considered codebase, e.g., the
prevalence of generated code.

FindBugs has been deployed at large scale and found several thousands of issues [Ayewah et al.
2008]. Checks in FindBugs are written to target a specific issue and so achieve high precision. In
contrast, the analysis considered here searches for a much more general form of error, so it is harder
to reason about how well it will perform. We tackle this question in this paper through thorough
evaluation at scale.

A recent article describes the infrastructure used to store andmanage the codebase at Google [Potvin
and Levenberg 2016]. Our focus on local analysis is particularly relevant to the ultra-large-scale
infrastructure described in their paper. Our analysis is implemented using Google’s Error Prone
static analysis tool [Aftandilian et al. 2012] and is integrated into the code review process using
Tricorder [Sadowski et al. 2015], a general program analysis platform that addresses challenges
related to scaling static analyses to a huge codebase. See Section 6.1 for more information.

3 ARGUMENT SELECTION DEFECTS IN THEWILD
To understand whether and what kinds of argument-related bugs exist in a professionally developed
codebase, we searched Google’s revision history for changes related to incorrect arguments. To this
end, we searched commit messages with combinations of terms [argument, parameter], [order, swap,
incorrect, wrong] and manually inspected the results. This process yielded a total of 84 argument-
related defects that were fixed in 23 revisions. Revisions fixing argument related bugs occurred
approximately once in every 1.5 million revisions. Figure 1 shows a representative selection of
(partially sanitized) bugs. We acknowledge that this methodology misses an indeterminate number
of this kind of bug, but it does show that such bugs occur in production code. Most importantly, we
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establish that these bugs are not only latent issues present in dead or unimportant code; they can
represent actual defects that developers do (eventually) fix.

We further summarize these 84 defects to answer several questions about the kind of argument-
related anomalies that occur in the wild.
• How long do argument-related bugs remain in the codebase before being discovered? An
argument-related bug remains in the codebase for amean of 66 days and a median of 4
days. 45% of such bugs were fixed within 1 day. One explanation for this is that these defects
are being detected by post-submission testing. An automated detection technique would be
valuable here since it would catch these defects earlier in the development process, which is
a considerable cost saving [Shull et al. 2002].
• Do argument-related bugs correspond to severe issues? In our data set, 16 of the 84 fixed
anomalies were tagged with 11 related bug reports, and 7 of those 11 were marked as
“high priority” by developers. One was at the highest priority; company policy is that the
team should drop everything and immediately address the bug. It was fixed within an hour
of the report.
• Are most argument-related bugs the result of swapping multiple arguments or of using a single
incorrect argument? We find that 79 of the 84 bugs are the result of accidentally permuting
two or more arguments. In contrast, only 5 bugs result from accidentally passing a single
incorrect argument that should be replaced by another expression available in the current
scope. Figure 1 summarizes information from a selection of the bugs that we found.
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Fig. 2. Lengths of names in our External and Internal corpora

4 SOFTWARE CORPORA
Having established that argument selection defects are important to production systems, we now
develop and evaluate a suitable technique for detecting them. We do this with reference to two
software corpora obtained by dividing our source code into two sections: the internal corpus
consists of approximately 200 million lines of Java code developed at Google, and the external
corpus consists of approximately 10 million lines of code developed externally. Some code in the
external corpus is proprietary, so we cannot go into full details, but this corpus is predominantly
open-source and includes popular, well-studied programs such as Apache Commons3, Apache
Tomcat4, Eclipse5, Mockito6, and OpenJDK7. Figure 2 shows the distribution of the lengths of
argument names and parameter names from the external corpus (top row) and the internal corpus
(bottom row).

We observe from Figure 2 that the two codebases differ significantly in their use of identifier
names, with internal code having longer names, in particular for parameters. We attribute this
difference to the style guide at Google, which recommends avoiding names such as temp, var or
data, that do not aid the reader’s understanding, and avoiding visually similar names (e.g. limit
and limits) to prevent accidental confusion. Figure 2 shows evidence of this policy: we see far
fewer single character names and many more long names in the internal corpus than in the external
corpus.

2We would argue that this is a bug (albeit non-severe). This manifests as a problem when tests fail and the wrong error
message is generated.
3https://commons.apache.org/
4https://tomcat.apache.org/
5http://www.eclipse.org/
6http://site.mockito.org/
7http://openjdk.java.net/
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The distribution of name lengths in our external corpus is similar to the distribution reported
for the open-source programs used to evaluate Nomen [Liu et al. 2016]. We therefore suggest that
our external corpus can be used to understand the performance of these algorithms on a general
open-source codebase whereas our internal corpus shows results that arise from within a more
uniform software engineering process.

5 DETECTING ARGUMENT SELECTION DEFECTS
We now explain the various elements of our defect detection algorithm. The first priority is to
select a suitable method for determining the similarity of parameters and arguments (Section 5.1).
We then describe our strategy for deciding if an argument should be changed which we justify by
simulating its behavior on our software corpus (Section 5.2). Finally, we combine these elements
and describe the defect analysis algorithm as a whole (Section 5.3).

5.1 Determining the Similarity of Names
We first set out to find a suitable method for identifying whether an argument name matches its
corresponding parameter. This is comprised of two steps: first, one must extract a name from an
arbitrary expression used as an argument, and second, a suitable distance function must be used to
determine if the extracted name and the parameter name are similar.

Java developers tend to follow either a camel case or underscore-separated naming convention.
We therefore follow these conventions to split names into terms when required below.

5.1.1 Argument Name Extraction. We based our approach on that in Nomen, which we reformu-
late as follows:
(1) Identifiers use the string representation except in the case of the this keyword, which uses

the name of the class it represents.
(2) Field accesses use the name of the field (rather than the receiver name).
(3) Method invocations use the name of the method.
(4) Constructor calls use the name of the class being constructed.
(5) All other cases use a reserved name *unknown* which is defined to never match any name

except that of the parameter in the same position. This means that arguments with *unknown*

names are always left in their original position.
Bug 3 from Figure 1 demonstrates how errors can occur with null arguments. The word null

itself should match equally well with all parameter names, so we add the concept of a wildcard
name to represent this.
(6) Null literals use a reserved name *wildcard*which we define to match all parameter names.
We also notice (Bug 2) that naming conventions mean that some method prefixes (e.g. get)

provide no additional information, so we remove these.
(7) If the first term of a method name is get, set, or is, we remove it. If this causes the method

name to be empty, we recursively examine the receiver expression. For example, given a
method getAge() which returns an Optional<Integer> we would extract the name Age from
the argument person.getAge().get().

5.1.2 Lexical Distance Functions. Our technique requires a distance function that takes two
names and estimates the difference between them. A distance of 0 indicates the names are identical
and a distance of 1 indicates the names are (maximally) different. For this work we limit ourselves
to functions which can estimate distances using only local information available at the call site
and so exclude measures which require knowledge of the whole corpus, such as the likelihood of a
name.
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Fig. 3. Levenshtein distance between parameters and arguments

We evaluated four candidate algorithms by building a test set of 4000 pairs of names from our
corpus which we manually classified as matching or different. Cases for which we felt that the
name was so general that it was not possible to determine whether it matched or not were classified
as unknown. We first describe how we built this test set and then use it to evaluate our distance
functions.

5.1.3 Constructing the Test Set of Example Names. The test set was built by visiting every call-site
in the corpus and considering each method parameter in turn. For each parameter we emitted a
pair for every argument that was assignable to the parameter. This ensured that we only generated
pairs that have the potential to be an argument selection defect. This method extracted around 4.7
million unique pairs.

Figure 3 shows the distribution of Levenshtein distances8 for these pairs on our two corpora. We
can see from this distribution that drawing a direct sample of these names would be uninformative
because the distribution is highly skewed towards dissimilar names. We therefore used weighted
reservoir sampling [Efraimidis and Spirakis 2006] with each pair weighted in inverse proportion to
the probability of its distance. This yielded a test set with a uniform distribution of Levenshtein
distances. We note that the particular choice of distance function is not especially significant here:
our objective was to build a balanced sample for labelling.

All 4000 pairs in the test data were independently labelled by two professional software engineers.
After the labelling was completed, we extracted the pairs where they disagreed and discussed them
further to reach a consensus.

5.1.4 Evaluating Distance Functions. Approximately 800 pairs (20%) were still marked undecided
at the end of this process. We deem these to be cases where the names were so general that it was
not possible to determine if they matched or not. This observation was also made in Nomen in
which a (large) set of general names was extracted by looking for parameters with large differences
amongst the set of arguments used to call them. We excluded undecided pairs from the analysis
below.

We considered 4 string distance functions:
(1) String equality assigns two identical strings a distance of 0, and all other pairs a distance of

1.

8https://en.wikipedia.org/w/index.php?title=Levenshtein_distance&oldid=770797278
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Fig. 4. ROC curves for the string distance functions

(2) Levenshtein distance is the minimum number of insertions, deletions, and updates required
to convert one string to the other normalized by the maximum distance between strings of
that length.

(3) Needleman-Wunsch distance [Needleman and Wunsch 1970] considers adjacent changes
to have a different cost to isolated ones. We set the cost of a change to 8, the cost of beginning
a sequence of changes to 8, and the cost of continuing a sequence of changes to 1, then again
normalize by the maximum distance.

(4) Jaccard distance 9 reports the number of terms in common normalised by the total number
of distinct terms. This is equivalent to the metric used in Nomen.

For the whole-string algorithms (1, 2, 3), we converted names to lowercase and separated terms
with underscores since pairs such as PERSON_ID and personId should match.

We can consider each of these functions as a binary classifier. If the distance returned is less
than some threshold, the strings are deemed to match; otherwise they are deemed not to match.
Figure 4 shows the ROC curves for each of our functions. We can see that for both corpora the
Needleman-Wunsch algorithm is best for almost all trade-offs of true- and false-positive rate.
We found this result surprising; we expected that the Jaccard distance would be more reliable

since it is exploiting extra structure in the names. However, we note that one common difference
between names involved the addition of an extra term, e.g. html and htmlBody. This applied to 30%
of names we labelled as matching but only 1% of names labelled as different. We also saw substrings
of terms used as abbreviations, e.g., stringLength and strLen. This applied to 7% of matching names
and 1% of different names. In both these cases the Jaccard distance imposes a significant penalty
because we have a relatively small total number of terms in the names. Both of these changes
appear as adjacent edits to the Needleman-Wunsch algorithm.
We also experimented with a range of different edit penalties for the Needleman-Wunsch

algorithm, but the values used above performed best.

5.2 Decision Strategy
Given a suitable distance function we next need to be able to determine if an alternative pairing (p,a)
for a parameter is better than the original pairing (p,o). One way to do this is to use the distance

9https://en.wikipedia.org/w/index.php?title=Jaccard_index&oldid=773856787
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Fig. 5. Overall operation of the defect detection algorithm

function as a black box classifier which classifies a pair as matching if the distance is less than some
threshold. In this case we would suggest replacing the original argument (o) with the alternative
argument (a) if distance(p,o) >= t and distance(p,a) < t . However, because we are considering two
pairs (the original and the proposed alternative), we can instead classify them by applying a threshold
to the difference in their distances and suggest a change if distance(p,o) − distance(p,a) ≥ t . The
latter approach is preferable since it allows us to factor the certainty of the replacement against the
certainty of the original into the decision.

Because of the difficulty in classifying names, this technique generates too many false positives to
be useful. We discovered this by looking at method calls in our corpus and calculating the distance
between each original argument and its assignable alternatives. This then allows us to predict how
many warnings we would generate for different thresholds. If we assume (based on our earlier
study) that argument defect bugs are relatively rare, we should expect a small number of warnings.
In reality we found that this approach generates unreasonably high warning rates. For example a
threshold of 0.6 generates approximately 1000 warnings per million lines of code.
Considering all the arguments for a method call at the same time rather than independently

offers a vast improvement. We consider only permutations of the method’s arguments and report a
defect only if 1

n
∑
distance(pi ,oi )−distance(pi ,ai ) ≥ t , where n is the number of proposed changes,

and pi ,oi ,ai are the parameter, original argument and proposed alternative for the ith change. This
generates a much more reasonable warning rate: a threshold of 0.6 generates approximately 6
warnings per million lines of code.

5.3 Argument Defect Detection Algorithm
Figure 5 shows an overview of our defect detection algorithm. We formulate the problem as a
bipartite graph problem matching the parameters of a method call to the minimum cost choice of
arguments.

5.3.1 Visit Call Sites. The analysis operates by iterating over all method (and constructor)
invocations, collecting the names and types of parameters and arguments.
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Recovering the names and types of arguments (and other alternatives which are in scope) is a
local analysis. This is highly beneficial from a performance viewpoint. However, recovering the
parameter names requires information from the method declaration. There are three main options
to recover this information:

• Source availability. If the source file containing themethod declaration is in the list of source
files to compile, then the compiler will resolve parameter names from this. This is unlikely
to be the case in any significant project since most Java build systems pass dependencies as
compiled class files.
• Local symbol tables. If the class file has been compiled with debugging information (-g)
then names can be recovered from local symbol tables. However, these tables are not present
in interfaces or abstract classes.
• Parameter annotations. Java 8 adds a compiler option (-parameters) which stores extra
attributes in the class file containing the parameter names.

It is worth noting that changing compiler flags in a large production environment is a challenge.
For example, parameter annotations create a change in the bytecode. This can cause feature-
incomplete bytecode processing tools to fail, or brittle tests which rely on ‘golden’ bytecode to no
longer pass. The annotations also increase the size of class files which can provoke out of memory
failures on services. The results we report in this paper arise from running with local symbol table
information (option 2).

5.3.2 Add Arguments to Graph. We next begin construction of the bipartite graph with an edge
between each parameter and its associated argument. The cost of the edge is computed by the
lexical distance function. For varargs methods with a variable number of arguments, we ignore the
varargs parameter and arguments (if any).

5.3.3 Add Edges for Alternatives. We then add an edge between parameters and alternative
arguments. Edges are only added if the alternative is assignable to the parameter and its distance
score is lower than for the original argument. We consider type equality, subtyping, and auto-boxing.
In the case of generic methods we assume that the currently instantiated type is correct rather than
considering all of the generic type.

5.3.4 Find Minimum-Cost Matching. We use the Hungarian algorithm10 to find the minimum
cost assignment of parameter names to argument names. If the assignment differs from the original
set of arguments, we have a candidate change.

5.3.5 Suggestion Heuristics. Even with a perfect name distance function we would still expect
to report false positives. These arise from legitimate usage by the programmer. We therefore apply
heuristics to identify this kind of usage.

Nested in reverse. In some cases, the purpose of the code is to call a method with arguments in a dif-
ferent order. For example, when rotating an image by 90 degrees, one swaps width and height when
creating the destination canvas.We detect cases such as these by inspecting the names of anymethod
or class definitions enclosing our method call. If these names contain a keyword indicating a delib-
erate swap then we reject suggestions within that method. We look for keywords matching any of
the following regular expressions: backward(s)?, complement, endian, flip, inver(t|se), landscape,
opposite, portrait, reciprocal, reverse(d)?, rotat(e|ed|ion), swap(ped)?, transpose(d)?, or undo.

10https://en.wikipedia.org/w/index.php?title=Hungarian_algorithm&oldid=772831921
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Style Block after Block before Line after Line before Mixed

Example
test(a /*a*/,

b /*b*/);

test(/*a*/ a,

/*b*/ b);

test(a, //a

b); //b

test(//a

a,

//b

b);

Proportion of
commented
method calls

58% 4% 21% 13% 4%

Fig. 6. Argument commenting styles and their frequency in our corpus

Duplicate method calls. We often see multiple calls to the same method with different argument
orderings. One example pattern is as follows:

switch(orientation) {

case LANDSCAPE:

bitmap = new Bitmap(width , height );

break;

case PORTRAIT:

bitmap = new Bitmap(height , width);

. . .

}

In this case reordering method arguments is unlikely to be correct since the programmer has
demonstrated the intention of using different orderings nearby. Another similar case is a recursive
call with the arguments permuted.

public boolean test(int a, int b, boolean direction) {

if (b < a) {

return test(b, a, !direction );

}

. . .

}

In this case the programmer is in the body of the method to be called and therefore will have the
correct ordering in mind so that alternative ordering used in the recursive call is likely deliberate.

To detect these instances we find other uses of the inspected method and discard changes to an
argument which would be identical to another call. If the inspected call site is within a method
body, we include all other calls in the same method body and also the method definition itself. If
the inspected call site is in a field declaration, we include calls in all other field declarations in the
same class.

Parameter name in comment. A common stylistic convention is to include the parameter name in
a comment to indicate that the argument is correctly matched. We extracted instances of method
invocations containing comments from our corpus and identified a variety of commenting styles,
which we show in Figure 6. All of these are recognised by our implementation. We note that the
‘line after’ style is particularly problematic to parse because the final comment lies outside the
bounds of the AST node for the method invocation, so a parser will naturally associate it with the
subsequent node instead.
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Fig. 7. Precision and recall of the checker

Low information names. When labelling names for evaluating the distance functions (Section
5.1.3), we found that some pairs did not contain sufficient information to determine a match or a
difference. We therefore attempted to remove names such as these from consideration. From our
labelling we decided to exclude:
• all names with one or two letters optionally followed by a digit
• argX, paramX, and strX, where X is any single digit
• the literal strings: key, value, and label

Any surviving candidate changes are then emitted to the developer as a warning.

6 RESULTS
We implemented a static checker based on the algorithm in Section 5.3 as part of Google’s open-
source Error Prone project [Aftandilian et al. 2012], a static analysis framework built on top of the
javac compiler. We then executed this checker on our two corpora.
We explored the performance of our checker for a variety of different threshold values. The

number of warnings generated varied from over 300,000with the least restrictive (smallest) threshold
to 165 with the most restrictive (largest) threshold. Overall, we classified 8,925 of these warnings as
either true or false positives. This total comprises all warnings for thresholds of 0.4 or higher and a
random sampling of warnings for lower thresholds. We conservatively assume that all remaining
unclassified warnings are false positives. We found a total of 2,305 argument selection defects (true
positives) over all thresholds. Figure 7 shows the precision and recall of our checker on our two
corpora.
We are of course not able to report an accurate value for recall because we do not know the

true number of argument defects in the corpora. Our reported recall is therefore an upper bound
computed against the 2,305 defects that we discovered. Precision (true positive rate) only relies
on counting true and false negatives, so we can report a true value for this. These values are very
encouraging. A threshold of 0.6, for example, yields an overall precision of 73% on the external
corpus and 87% on the internal corpus, reporting a total of 459 correctly identified defects.

Figure 8 shows the total number of results eliminated by each heuristic (left) and the total number
of true positives (incorrectly) eliminated by each heuristic independently (right). All of these are
highly effective and eliminate many results at the cost of excluding relatively few true positives.
The ‘Comment on argument’ heuristic only matches a small number of results but has 100%

precision. This could be helpful as a suppression mechanism: engineers can override warnings

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 104. Publication date: October 2017.



Detecting Argument Selection Defects 104:15

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

0

5000

10000

15000

20000

25000

30000
N

um
be

r o
f w

ar
ni

ng
s 

ex
cl

ud
ed

Low information names
Duplicate call

Nested in reverse
Comment on argument

All

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

0

5

10

15

20

25

30

35

40

45
N

um
ber of true positives excluded

Fig. 8. Number of results eliminated by each heuristic
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Fig. 9. Precision and recall for each of the string distance functions

from this check by providing explicit naming comments on arguments, with the added benefit that
this also provides useful documentation for others. We note that during our evaluation we found
two examples where the comment attached to an argument referenced the wrong parameter, as in
a call to test(int a, int b) made as test(b /*b*/, a).
In Section 5.1 we predicted that Needleman-Wunsch edit distance would provide the best per-

formance for our check. Figure 9 shows the precision and recall for each of our string distance
functions. We see that in our prediction was correct: Needleman-Wunsch has in general higher
precision than all other methods and also higher recall except for very high thresholds.
Figure 10 shows a selection of some of the more common parameter names (in any order) for

which we found reordered arguments. The most common pair is associated with calls to methods
in the family of JUnit’s assertEquals(Object expected, Object actual). In total 1,627 (71%) of the
defects found had parameters containing the words “expected” or “actual”. It is plausible that these
would exist undetected in code because this kind of error is unlikely to be found at runtime since
it is only visible when a test fails and the system prints out the wrong error message. Mistakes
in calls to assertEquals are well known, and various alternative libraries have been developed to
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Parameter names (in alphabetical order) Number of defects
actual, expected 46
height, width 13
familyName, givenName 2
autoSync, isSyncable 2
allowSharingIn, allowSharingOut 2
listingId, timestamp 2
columnName, rowName 2
handoffAttempted, isIncoming 2
payerShippingAddressDaysSinceFirstPurchase,

payerShippingContactNameDaysSinceFirstPurchase

2

country, postalCode 1

Fig. 10. Sample of reordered parameter name pairs

avoid this problem. One example is the Truth library11 which uses a fluent interface12 to increase
clarity for the programmer.

We found no other library APIs in our results which accounted for defects across more than one
source file. Notably, the next most common pair were height and width, but these occurred as pairs
of ints across a range of API calls rather than in one place in particular.

Instead, the remainder of the defects were mostly one-off mistakes. Below we give four examples,
all of which have been reported and accepted by the upstream developers.

ConcurrentHashMap in OpenJDK. We found a defect 13 within an inheritance chain of three
classes in which the middle class had reordered parameter names in its constructor. This manifested
as two mistakes: in the call from the derived class to the middle class’ constructor, and in the call
from the middle class to the base class’ constructor. These two mistakes negated each other, so the
reordering had not been noticed.

MethodWriter in the ASM Library. We found the arguments maxLocals and maxStackwere swapped
in a call to Attribute.put. This was accepted as a defect14 by the ASM developers, who noted that
it was introduced 13 years ago. The defect is in code which is used if the user is writing their own
custom attributes, so it would not affect the JVM but might affect any downstream user of the
attributes.

SAXDocumentSerializer in OpenJDK. The arguments systemId and publicId were swapped in
a call to encodeDocumentTypeDeclaration15. The XML standard requires that a systemId must be
provided if a publicId is given so this error could result in emitting invalid documents in some
cases which would be rejected by a validating parser.

ServerPreparedStatement in the MySQL JDBC driver. The arguments resultSetConcurrency and
resultSetType were swapped in a call to prepareStatement16. This would result in the returned
result having the wrong behavior and could have resulted in a subtle data concurrency bug for a
system under load. The defect occurred in a method with protected visibility, so impact was limited
11https://github.com/google/truth
12https://en.wikipedia.org/w/index.php?title=Fluent_interface&oldid=774034077
13https://bugs.openjdk.java.net/browse/JDK-8176402
14Personal communication with Eric Bruneton
15https://bugs.openjdk.java.net/browse/JDK-8178411
16https://bugs.mysql.com/bug.php?id=85885
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to a particular use case of PreparedStatement. We reported this defect upstream, and it has been
verified and accepted.

Finally, we observed that the majority of the defects were swaps of two (not necessarily adjacent)
arguments, but a small number (21) involved permutations of 3 or 4 arguments.

6.1 Workflow Integration
We integrated our checker into the development workflow at Google to catch new bugs before they
enter the codebase. In addition to detecting likely bugs, our checker suggests two potential fixes:
swap the arguments to the best-performing arrangement, or add inline comments like /* param= */

to make it explicit that the arguments were intentionally bound to those parameters.
We deployed this check into Google’s code review tool through Tricorder [Sadowski et al. 2015].

The integration emits diagnostics generated by our checker into the code review tool and provides
a way to apply the suggested fixes via a button click.

We find that for warnings on code changed in the proposed commit, 60% are addressed by applying
the swap suggested fix, 25% are resolved in a different manner (e.g., swapping the parameters
in the method declaration instead), and 15% are not acted upon. Only a very small number of
users chose to apply the second suggestion of adding comments to names. There are a variety of
possible reasons for this, such as user-interface issues, preference for a different comment style, or
preference for no comments. We will be investigating these in our future work

Of note, we do not surface these warnings in IDEs. There are a variety of IDEs in use at Google,
so, to save engineering effort, we choose to integrate analysis tools at the workflow points that all
developers must pass – the command-line build tool and the code review tool. This is discussed
further in the Tricorder paper.

7 API DESIGN IMPLICATIONS
The defects found on calls to assertEquals provide a quantitative argument for improving its API
design. The defects we found also provide evidence to support some more general advice in this
area.

7.1 Methods Should Have 5 or Fewer Parameters
Various work discusses the benefits of APIs with fewer parameters [Bloch 2006] or using a builder
pattern instead of a many-parameter constructor [Bloch 2008]. Here we show that the probability
of a defect increases markedly with the number of method parameters.

We estimated the following probabilities:

• P (n parameters|defect) is the probability of a defect occurring on a method with n parameters
given that a defect occurred. We calculated this from the proportion of defects found on
methods with n parameters.
• P (n parameters) is the probability of a method with n parameters occurring. We calculated
this from the proportion of methods in our corpus with n parameters.
• P (defect) is the probability of a defect occurring. We calculated this by dividing the number
of defects found by the number of method invocations in our corpus

We excluded defects because of assertEquals from these figures in order to avoid bias, since
they count for such a large proportion of the defects found. By application of Bayes rule, we then
calculated P (defect|n parameters), which is the probability of a defect given that a method has n
parameters (Figure 11). A clear correlation is visible. It is also noticeable that the probability of a
defect increases markedly after 5 parameters.
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Fig. 11. Probability of an argument selection defect against number of method parameters

7.2 Parameters Should Be Sequenced Consistently
Previous authors have also proposed that parameters with similar meaning should be sequenced
consistently to reduce API usage issues [Rama and Kak 2015]. We found evidence to support this:
23 of the defects found were in calls to an implementation of an assertEquals-style method which
took parameters in the order actual, expected rather than expected, actual, as is the convention.

7.3 Ensure Names Are Consistent Through Inheritance Hierarchies
We found defects in very mature libraries because of mismatching of names in inheritance hierar-
chies. This was the case with ConcurrentHashMap. Another example defect was in the definition of
namespaceAfterStartElement in the interface org.apache.xml.serializer.ExtendedContentHandler.
This library is included in a variety of software packages, including OpenJDK. The method is defined
to take parameters (uri, prefix). However, we found errors where callers of this method reorder
these parameters. This resolves itself because all classes of the interface reorder the parameters
again and thus negate the first error.

8 THREATS TO VALIDITY
This work addresses argument-related bugs only in Java code, which has particular naming con-
ventions, style conventions, and program structure. As such, our choice of distance metrics and
heuristics may not hold across other programming languages. However, our methodology for
selecting among a set of candidate distance metrics and heuristics is applicable to other languages.
The majority of the code in the study comes from a single codebase at a single company, and

thus our findings might be affected by company-specific style rules and tool usage. For example,
Google’s codebase makes heavy use of the Protocol Buffer17 DSL and code generator, which affects
our results (Section 9) via the generated names. Another potential issue is our wide use of the JUnit
assertEquals methods (Section 6). Our study of the external corpus shows that our findings do
generalize across other Java codebases with different style practices and tool usage.
We ignore low information names, but it is unclear how to match names that contain little

semantic information. We only exclude names that lead a great number of undecided pairs, and we
find that excluding matches involving these names leads to more useful results. Nomen [Liu et al.
2016] also excluded such names.

17https://developers.google.com/protocol-buffers/
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Other threats include our exclusion of undecided pairs and varargs from consideration. It is not
clear how to handle name pairings that cannot be determined to match even by human inspection.
Nor is it clear how to apply name matching to a pair which includes a single parameter name to a
variable-length list of arguments.

There may exist better heuristics than the ones we list in Section 5.3.5, or tweaks to our heuris-
tics that improve their performance (e.g., better regular expressions for nested in reverse). Better
heuristics could further improve the false positive rate of our checker.

9 COMPARISON TO EXISTING APPROACHES
Order [Pradel and Gross 2011, 2013] looks for swaps between equally typed arguments in method
calls by looking at the lexical similarity between arguments and parameters. Their analysis groups
equally typed parameters together into sets and then considers a total lexical similarity score for
each permutation of the set. If the permutation scores higher than the current combination, a swap
is suggested.

Orderwas evaluated using a corpus of 12 Java programs (around 1million lines of code) taken from
the DaCapo benchmarks, and two anomalies affecting correctness were found from 31 warnings.
However, the authors also considered warnings which arose from poor naming style (but which
did not correspond to a defect) to be true positives and measure a naming true positive rate of 74%.
These do not count as argument selection defects, so we discount them. This yields a defect true
positive rate of 6.4%. The authors also investigated injecting synthetic defects. In this case, the
injected true positive rate was around 80%.
There is a significant difference here between the real true positive rate and the synthetic rate.

The authors do not comment on this, presumably because their naming true positive rate was
similar to their injected true positive rate even though they were technically measuring different
things. One explanation for this is that injecting defects assumes that programmers make these
errors uniformly on all method calls. However, we see from our investigation that this is not the
case.

The major difference between our approach and Order is the additional heuristics we developed
for excluding false positives. With these heuristics disabled our true positive rate agrees with Order
at around 10% on the external corpus. The algorithm used in Order is O (n!) in the number of
parameters since it considers all permutations, whereas our graph matching approach is O (n3).
Nomen [Liu et al. 2016] is a more aggressive approach which considers potential replacements

from anywhere in scope rather than only looking for permutations of arguments. 5 of the 84 bugs
we found in our original survey from commit messages fall into this class of error. Alternatives
are drawn from scope based on the kind of the argument: local variables or fields of the enclosing
class have all local variables or fields of the enclosing class as alternatives; field accesses or method
invocations with no arguments have all fields and no-argument methods on the same receiver object
as alternatives; other method invocations have all method invocations with the same parameter
types on the receiver object as alternatives. The lexical distance is computed using Jaccard Distance.

Nomen was evaluated using a corpus of 11 open-source Java programs taken from SourceForge,
comprising around 1 million lines of code. The authors found 9 defects from 169 reported warnings.
The authors report their naming true positive rate of 80%, but the defect true positive rate is 5%.

The major question about this result is that of selection bias: the 11 programs were chosen
manually from a larger corpus as those which were known to contain an argument selection defect.
If the rate of these defects is low (as we have seen from our survey) then one would expect that the
reported true positive rates are higher than would actually be achieved. We therefore decided to
try to reproduce these results.
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Warning rate
(per MLoC)

Number of
warnings
inspected

Number of
true positives
found

True positive
rate

Nomen 157 169 9 5%
External 137 400 0 < 0.25%
Internal 223 400 1 0.25%

Fig. 12. Performance of Nomen on our corpora

The authors of Nomen noticed that some parameter names are used with a wide variety of
arguments (e.g. key, value) and so do not make good candidates for similarity comparison. They
exclude arguments for these parameters from consideration with a blacklist of approximately 7,000
names which is built by identifying parameter names which have high average distance to all their
corresponding arguments across all uses (globally).
The idea behind the blacklist is that there are certain names which are commonly overloaded

and that this overloading is agnostic to the particular corpus under study. For example, we would
expect key and value to be overloaded whatever the codebase. We therefore chose our blacklist
parameters by experimentation so as to generate a similar number of names to Nomen.
Our results are shown in Figure 12. Our external corpus had a similar warning rate to Nomen,

but our internal corpus rate was 42% higher. One explanation for this is the common use of the
Protocol Buffer DSL and code generator in the internal codebase. When an enum is defined in
this DSL, the code generator also generates additional, infrequently used constant fields that are
needed for deserializing different versions of the same message type. These constant fields share
the name of the enclosing type, whereas the enum values themselves do not (e.g., MyEnum.VALUE1
vs. MyEnum.UNKNOWN_MY_ENUM). Because method parameters are often named after their type, these
tend to match more frequently than the existing argument. A manual inspection of the warnings
on the internal corpus showed that 88 of the 400 were caused by this issue; removing that fraction
from the set results in a warning rate of 173 per MLoC, which is in line with Nomen.

We found a true positive rate at least 20 times worse than reported in Nomen. We attribute this
to the selection bias issue described earlier in Nomen’s choice of corpus.

10 SUMMARY AND FUTUREWORK
In this paper, we focused on the issue of detecting argument selection defects. These are situations
where an incorrect argument is chosen for a method parameter when the correct alternative was
also available. We show that making judgements on single parameters at a time would produce
high false positive rates and so focused on permutations of method arguments.

Our resulting algorithm has a true positive rate that is an order of magnitude more precise than
comparable previous techniques. We found 2,305 defects, some of which were in mature libraries.
We also analyzed the defects to quantitatively support existing best practice advice about API
design.

Previous research has classified ambiguous or poor naming by developers as naming errors and
included these as true positives. We excluded these and focused on incorrect arguments that were
not the programmer’s intent. This is important from an industrial context in particular: responding
to error reports consumes developer time, so successful static analysis checks must maximise the
value of their suggestions.

A significant proportion of the defects that we found did not actually result in incorrect behavior
of the program because they were countered by an equal and opposite reordering elsewhere in the
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program. We believe that these are still worth fixing as they pose a risk to future maintenance of
the code.
Many of the defects we found in existing code corresponded to subtle or uncommon use cases

and are unlikely to occur in day-to-day use. This is to be expected since we would expect such
defects in commonly used code to manifest themselves in testing. We deployed our checker as
part of the code review process at Google, and 85% of issues reported are addressed by developers
before committing their code.
We were able to show that the probability of an argument selection defect increases markedly

beyond 5 parameters. One option for methods with many parameters is to redesign using a fluent
interface or parameter objects. Another alternative is the use of named parameters, which could be
emulated in Java with a static check in Error Prone which inspects the comments on arguments.
The choice of distance function is key to the performance of this algorithm and it is likely that

there is room for improvement here. When labelling parameter and argument pairs, we noticed a
variety of conventions that help in distinguishing names. For example, the parameters start, end

might be legitimately passed endOfPrevious, start and the parameters parent, child might be
legitimately passed grandparent, parent. It would be interesting to see whether a machine learning
algorithm could learn these similarities.
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