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Abstract

Maximum Entropy (MaxEnt) language models are pow-
erful models that can incorporate linguistic and non-linguistic
contextual signals in a unified framework with a convex loss.
MaxEnt models also have the advantage of scaling to large
model and training data sizes We present the following two
contributions to MaxEnt training: (1) By leveraging smaller
amounts of transcribed data, we demonstrate that a MaxEnt LM
trained on various types of corpora can be easily adapted to bet-
ter match the test distribution of Automatic Speech Recognition
(ASR); (2) A novel adaptive-training approach that efficiently
models multiple types of non-linguistic features in a universal
model. We evaluate the impact of these approaches on Google’s
state-of-the-art ASR for the task of voice-search transcription
and dictation. Training 10B parameter models utilizing a corpus
of up to 1T words, we show large reductions in word error rate
from adaptation across multiple languages. Also, human eval-
uations show significant improvements on a wide range of do-
mains from using non-linguistic features. For example, adapt-
ing to geographical domains (e.g., US States and cities) affects
about 4% of test utterances, with 2:1 win to loss ratio.

Index Terms: speech recognition, language modeling, maxi-
mum entropy, model adaptation, contextual adaptation

1. Introduction

State-of-the-art Automatic Speech Recognition (ASR) systems
rely on n-gram Language Models (LMs) during first-pass de-
coding. Typically, these models have to be small enough to be
able to fit in RAM, and fast enough to perform real-time tran-
scription. At Google, for example, these first-pass LMs consist
of at most 200 million n-grams, depending on the language. The
output of first-pass decoding is a word-lattice. This lattice, in a
two-pass system, is then rescored using larger or more complex
LM(s) to capture a various and a wider range of contextual fea-
tures, to potentially improve the long tail of possible hypothe-
ses. This step is called second-pass rescoring. Traditionally,
the second-pass LM is simply a significantly larger n-gram LM,
trained on a large pool of textual corpora. While n-gram mod-
els can scale to billions of parameters and 10’s of billions of
training word tokens [1], they suffer from two problems:

(1) Model adaptation for in-domain data: Since most
textual data available to train LMs are not speech transcripts
(e.g., web documents, news article, books, or typed queries),
they may not necessary reflect the test distribution of ASR. To
address this problem, the LM is typically adapted on a given
in-domain manually transcribed data, aiming to better fit this
type of data. A well-known adaptation technique for n-gram
modeling is linear interpolation of k n-gram models, by opti-
mizing the perplexity on the in-domain data [2]. Although this
technique may be adopted by the research community due its
simplicity, the learned £ interpolation weights are at the cor-

pus level, hence context-independent. Alternatively, Allauzen
and Riley [3] have introduced Bayesian LM interpolation which
works at the context-dependent level. Bayesian interpolation of
large n-gram models can be expensive due to the need to provide
estimates from each domain of the probability of each n-gram
in the union.

(2) Domain Modeling: A central problem in language
modeling is how to build flexible and scalable models that can
combine information/signals from various domains. Examples
of these signal might be the gender, dialect, geographical lo-
cation of the user, is it weekend?, is it winter?, etc. N-gram
models are not flexible enough to straightforwardly incorporate
these types of knowledge in the model. We would like an effi-
cient and effective approach that allows us to add these type of
signals to the model without impacting the general model when
the feature is not observed. Also, in practice, a method that
learns such feature weights without the need of retraining the
entire model might be preferable.

This paper introduces solutions to the above two problems
for log-linear based LM. Log-linear LMs provide an alternative
to n-gram backoff. Instead of defining a specific model struc-
ture with backoff costs and/or mixing parameters, these models
combine multiple features into a single feature vector. Learning
can be via locally normalized likelihood objective functions, as
in Maximum Entropy (MaxEnt) models [4, 5, 6, 7, 8] or global
“whole sentence” objectives [9, 10, 11].

Although in the past few years the research community has
been focusing on Neural Network LMs (NN), we propose to use
MaxEnt models for rescoring due to, in part, these two reasons:
(I) We need a flexible model, which not only allows us to incor-
porate various number of signals, but also scales to the amount
of data we have at Google. Our textual corpora for American
English, for example, is about 1 trillion word tokens. Although
NN-based LMs can make use of arbitrary features, as of today,
they do not yet scale to these data sizes. (II) Our main goal is
to optimize our ASR’s performance for short queries for voice
search. The average number of words in our voice search query
is about 4 words." We found based on our preliminary research
that LSTM, for example, is not effective for this task.”

In this work, we test our approaches using some of the
largest reported MaxEnt models. The next section describes
background work about MaxEnt LMs; Section 3 describes our
experimental setup. Adapting our large MaxEnt model using
our adaptation technique, we observe in Section 4 large gains
over two baselines: unadapted MaxEnt and n-gram models.
Afterwards, in Sections 5, we introduce our MaxEnt adaptive-
training to train non-linguistic signals and show our results. We
finally conclude in Section 7.

'Computed from a sub-sample of 3 million voice-search queries.
2Qur future work will focus on making NN-models perform well on
short queries.



2. Background

In this section, we briefly describe MaxEnt language model-
ing. Let h = w::i be the immediate context before word w;,
®(h,w;) be a d-dimensional feature vector, 6 a d-dimensional
parameter vector, and V' a vocabulary. Then

exp(®(h,w;) - 0)

P(w; | h) Z(h.0)

where Z is a partition function to normalize the model.:

Z(h,0) = > exp(®(h,v)-0)
veV

Training with a likelihood objective function is a convex opti-
mization problem, with well-studied efficient estimation tech-
niques, such as Stochastic Gradient Descent (SGD). The most
expensive part of this optimization is the calculation of the nor-
malizer term Z, since it requires summing over the entire vo-
cabulary, which can be very large. This term also needs to be
computed during inference, which can be problematic for real-
time systems of large vocabulary. To mitigate this problem, we
use hierarchical modeling [12] in which the vocabulary is hard
clustered into word-clusters c¢(w). Hence, the model becomes:
P(w; | h) = P(c(w;) | h) - P(w; | h,c(w;)). Submodels
P(c(w;) | h) and P(w; | h, c(w;)) are MaxEnt models with a
much reduced vocabulary. This technique can speedup model
predictions by up to \/m .

Besides improving speed, hierarchical modeling can also
improve modeling quality [13]. Our approach differs from [13]
in that we do not limit the feature set to n-grams and cluster n-
grams, and in that we do not use regularization. For vocabulary
clustering, we use the distributed algorithm described in [14].

For all our experiments, we make use of the Iterative Pa-
rameter Mixture (IPM) method [15] to distribute the training
process, using hundreds of machines.’

3. Experimental Setup

We evaluate the impact of our MaxEnt adaptation and domain
modeling ideas on ASR on multiple languages. We make use
of Google’s state-of-the-art ASR system with an LSTM RNN
acoustic model [16], and a 5-gram Bayesian interpolated first
pass LM. The models described in this paper are used in the
second-pass to rescore either lattices, for n-gram models, or lists
of 150-best hypotheses, for MaxEnt models. During rescoring,
the first-pass LM’s log-likelihood is log-linearly interpolated
with the second-pass model score.

We rank the vocabulary according to the distribution in ma-
chine transcribed ASR logs. The top million words are parti-
tioned in 1000 clusters. The remaining words are assigned to a
special cluster <TAIL>. For efficiency, its cluster conditional
submodel P(w|h,c(w) = <TAIL>) is estimated using uni-
gram relative frequencies instead of a MaxEnt model. Out of
vocabulary words are also assigned to the <TAIL> cluster and
receive the lowest probability of all <TAIL> words.

3.1. Feature templates

We organize our feature vector ® in feature templates, each
responsible for a particular type of features. Let y be the to-
ken being predicted, the feature templates used are: Word n-
grams, < W;—g, - ,W;—1,y > up to 5-gram; Cluster n-grams,

3We have developed our own optimized IPM algorithm that doesn’t
rely on the MapReduce framework. It avoids writing models to disk to
better scale for larger models and datasets. This algorithm is out of the
scope of this paper, and will be described in our future work.

Table 1: Number of words in the training data. B = Billions,
M = Millions.

Language Train | Adapt | Domain | Vocab
American English (en-us) | 943B 47M 3.02B | 3.63M
French (fr-fr) 245B 14M 476M | 1.96M
Italian (it-it) 139B 16M 119M | 3.92M
Russian (ru-ru) 182B 66M 238M | 2.00M
Turkish (tr-tr) 143B 12M 252M | 1.99M

Table 2: Comparing Voice Search (V) and Dictation (D) WER
(%) across, Ist-pass only vs. 100-best oracle, rescoring with
n-gram LM, unadapted and adapted MaxEnt LMs.

fr-fr tr-tr ru-ru it-it

\% D \'% D \'% D \'% D
1st Pass 159 9.6 | 155 17.5] 16,5 18.8| 13.0 6.4
Oracle 8.1 32 81 80| 86 7.0 33 24

N-Gram 156 9.1 | 148 17.8] 16.1 169| 126 6.4
MaxEnt 15,6 9.1 | 149 17.5| 16.1 16.8] 12.6 6.3

+adapt | 148 8.7 | 147 16.7| 15.7 16.0| 124 6.1
< c(wi—k), -+ ,c(wi—1),y > from 3 to 5-gram; Skip bigrams,
< Wi—k,*,y > up to 5 word gap; Left and Right skip tri-
grams, < Wi_j, Wi—k+1,%,Y >, and < w;_g, *, Wi—1,y >,
up to 3 word gap. We also use PrefixBackoffo features as de-
scribed in [17]. These features are shared between contexts h in
the same feature template and trigger when a regular feature is
missing for a given y.

The model is initialized by selecting the top most frequent
features in the training data. Model sizes are 10 billion parame-
ters for American English, and 5 billion for the other languages.

Our distributed training algorithm runs on 500 machines
with exponential decay learning rate [18]. Depending on the
language, it takes 4-20 hours of training time for 4-15 epochs.

4. MaxEnt Model Adaptation

The vast majority of the training data available to train our LMs
consist of typed text: web documents, anonymized typed query
logs, news articles and books. Unfortunately, models trained
on such data are unlikely to perform well on our task, which is
the transcription of voice search, spoken questions, voice com-
mands, dictation and speech inputs for 3rd party apps.

To alleviate this mismatch, we also make use of unsuper-
vised data (automatically transcribed voice search and dicta-
tion anonymized logs) in our training data. However, this type
of data may contain errors, especially for languages with high
WER. To fine tune our system, we make use of a sample of man-
ually transcribed data. We call this data adapt dataset. Table 1
shows the amount of data we use in this paper.

We first train our MaxEnt models, as described in Section 3,
on the pool of data described above (train + adapt). Then, upon
model convergence (tested on a held-out dev set), using the dis-
tributed SGD training, we present the shuffled adapt data only,
to the training algorithm, and run it for four iterations with a
step function learning rate: 0.2, 0.15, 0.1, 0.05. We use 30-
50 machines, depending on the language. These learning rates
have been chosen empirically optimizing perplexity of a held-
out dev set. We update all parameters of all active features dur-
ing training — thus, all features that share the same context will
be updated. The learning rate of the first epoch we use for the
adaptation step is typically higher than the minimum learning
rate reached in the first training phase, which is about 0.1.

To evaluate this adaptation technique, we train both tradi-
tional 5-gram and MaxEnt models, as shown in Section 3 for
4 different languages. We select 5 billion parameters for the
MaxEnt models using feature frequency, while 5-gram models
are pruned to 5 billion parameters using entropy pruning [19].

We observe that MaxEnt LM, even without adaptation, is




generally competitive with n-gram, and often better (see Ta-
ble 2). However, once the MaxEnt LM is adapted using our
approach, it obtains significant reduction in WER across all lan-
guages and across both types of data sets. We achieve up to 0.9
WER reduction from the n-gram LM baseline and up to 0.8
compared to the unadapted MaxEnt, and up to 2.8 WER reduc-
tion relative to no second-pass rescoring.

5. Domain Adaptation

A domain corresponds to a subset of queries that are defined
using a non-linguistic signal that is available during both train-
ing and prediction. For example, we define a series of “GEO”
domains, such as “California”, “New York City”, or “Canada”.
Similarly, knowing the App-ID sending the request, we define
App domains — e.g. “YouTube”, “Maps”, etc. Domains may
overlap; for example, the same utterance may belong to both
“California” and “YouTube” domains. Given a set of (domain
key, value) pairs D associated with each utterance, we formalize
a domain conditional language model as:

exp(®(h,w;) -0+ ®p(h,w;) - 0p)

P(w: [ b, D) Z(h,D,0,0p)

where ® D(h, wi) and Op are, respectively, domain dependent
feature and parameter vectors.

Note that in this formula, we have two sets of parameters,
one for the original background model (#) and another for the
domains (fp), to represent the non-linguistic signals. A com-
mon technique to train this model is simply to train all param-
eters jointly on a mix of data with and without domain annota-
tions. Unfortunately, this method introduces multiple problems:

1. Since the overwhelming majority of our textual data do
not have these annotations, the training algorithm may
not robustly estimate these parameters (fp). During
SGD, these parameters will be far less active than the
domain-independent ones.

2. We want the background model not to change even if we
add extra training data for some specific domains. For
example, we want to continue getting the exact predic-
tions on voice-search queries, even if we add YouTube
App training data (annotated with the App signal).

3. The model is not easily extendable: supporting a new
signal may require retraining the model from scratch.

Although this joint training approach has these limitations,
evaluating it, we demonstrate that it, in fact, negatively impacts
WER and it performs poorly on a domain task (as shown in
Section 6). We refer to the joint training as BASE-I.

Aiming to address problem 1, one might simply present the
domain-dependent examples last at the training process. But
it is not clear what learning rate to use in this case, since if
large learning rate is used, we may greatly affect the background
model’s parameters; and small ones may not robustly train the
domain-dependent parameters. Similarly, we observe that this
approach negatively impacts WER. We refer to this approach
BASE-II. To address these challenges, we propose and test our
adaptive-training approach:

We first start with a trained and adapted MaxEnt model.
Then, for each domain, we add a set of domain specific param-
eters to the model (0p). Recall that the features corresponding
to these parameters are triggered during both training and pre-
diction only if the utterance belongs to that domain. The domain
parameters are initialized to zero (i.e., §p = 0), so at this point
the new model is equivalent to the trained background model.

Table 4: WER of different domain adaptation methods.

Method v D

BASE-I 15.2% 9%
BASE-II 15.2% 9%
Adaptive Training | 14.8% 8.7%

We have observed that adding domain-specific unigram and
bigram parameters (6 p) is sufficient for our tested domain tasks.
That is, for California, for example, we select the frequent uni-
grams and bigrams from utterances that are annotated with Cal-
ifornia. This is important because we want to support multiple
domains while maintating a model as small as possible.

After adding all domain specific features, we train these pa-
rameters (0p) using SGD on only annotated data while keeping
the background model parameters (0) frozen. We should stress
out that even though these parameters are frozen they are still
used during gradient computation, but are not updated. There-
fore, this approach can be viewed as learning these domain-
specific parameters (fp) given the background LM predictions,
or these are domain-specific biases from the background model.
Note, as a result, the model performance is unaffected for utter-
ances that do not belong to a domain, addressing item 2, above.

Since we need an annotated training set for domain adap-
tation, we must have the corresponding signals in the train-
ing data. We use automatically transcribed, speech logs as
the source of our domain training data. These sets contain
anonymized transcripts, along with additional signals. Some
signals, such as GEO location, are only kept at a coarse level.

6. Domain Adaptation Results

To evaluate our domain modeling approach, we have run sev-
eral “side-by-side” (SxS) experiments, in which each utterance
is automatically transcribed by two systems. If the two tran-
scripts are different, they are sent for rating. Each pair of results
is rated by two humans. We use SxS experiments because of
the following reasons. They can accurately measure semantic
changes as opposed to minor lexical differences. Also, we can
do a SxS experiment on a specific domain, which only focuses
on the fraction of the traffic affected by adapting to that domain.
Plus, in SxS experiments, we are able to show additional infor-
mation to the human raters (such as approximate location of the
origin of the query) which allows them to rate more accurately.

For each of the SxS experiments, we present the following
results: Change: The percentage of utterances for which the
two systems produced different transcripts. Wins/Losses: The
ratio of wins to losses in the experimental system vs. the base-
line. We also report the p-value for statistical significance. We
use * % x, *x, x and no-star to respectively represent p-value
ranges of < .1%, [.1%, 1%), [1%, 5%) and > 5%.

6.1. Domain training method

We use the fr-fr system to evaluate the three alternative domain
training methods in section 5: BASE-I, BASE-II, and our pro-
posed method. We use the same training recipe for all meth-
ods. The results are presented in Table 4. We observe that both
BASE-I and BASE-II achieve worse WER than our method,
that preserves the WER obtained by the domain independent
system, since we do not change the domain-independent fea-
tures. SxS experiments on the Canadian domain also show
that using BASE-I or BASE-II the domains adapted model
is significantly worse than the model before adaptation, both
for domain-independent utterances (19/54 Win/Loss) and for
domain-dependent (30/58), whereas our approach achieves pos-
itive SxS results (49/24) (see Section 6.3).



Table 3: Examples of wins in the SxS experiment for three English GEO domains

Domain Device location Transcript without GEO signal ~ Transcript with GEO signal
Peterborough, ON | the Baroque Era. Pets Peterborough Canada pets

Country = Canada Oshawa, ON Janitorial jobs offshore Jjanitorial jobs Oshawa
Irving, TX Urban Police Department Irving Police Department

US State = Texas Baytown, TX Ashanti hold it down Russian Depot Baytown
LaPlace, LA Aptos weather LaPlace weather

US State = Louisiana | New Orleans, LA Arlene’s arrest Orleans arrest
NYC gypsy JFK

City =NYC NYC 126 Lake Street in Iceland 126 Lake Street in Islip
San Francisco Puccini’s local number PG&E local number

City = San Francisco | San Francisco what’s the drive time to Penn. what’s the drive time to Pinole

Table 5: App domain SxS results

YouTube Maps Play Store
Win/Loss  %Change  Significance | Win/Loss  %Change  Significance | Win/Loss  %Change  Significance
en-us 54/29 7.2% *k 63/52 7.0% 69/43 4.7% *
fr-fr 46/32 16.3% * 66/51 10.0% *k 68/28 15.9% * * Kk
it-it 76/28 4.7% * % 86/49 4.5% * 90/30 11.4% * %k
ru-ru 42/51 4.5% 92/41 6.6% * * K 69/41 10.0% * x K
tr-tr 45/33 11.0% 65/57 6.9% 68/22 11.7% * K K
Table 6: French GEO (country) based SxSs. ble 6 shows that the use of the country signal improves the
French queries from: | Win/Loss  %Change  p-value quality of our transcripts, but the results are statistically signif-
Canada 49/24 14.0% 1% — 5% . . . .
Tunisia 34/20 5.7% 5% — 10% icant only for Canadian French, and approaching significance
Algeria 24/18 12.9%  10% — 20% for Tunisia. We speculate that system tuning is likely to help
Belgium 37/21 2.4% 10% — 20% achieve significant results for the other countries.
Table 7: US English GEO based SxSs For en-us GEO domains, we define domains for each US
Win/Loss _ %Change _ Significance state, the top 30 most populated US cities, and the top 20 coun-
Overall 60/33 4.4% * * % tries using the “en-us” system. As shown in Table 7, we observe
Canada 75/44 3.4% * ok k significant reduction in errors for all tested domains. We also
UAGE. 48/32 7.5% *k run an overall SxS that shows that the overall effect of GEO
Texas 82/36 2.1% xoxx domains is about 2/1 Win/Loss ratio, changing 4.4% of the
California 69/45 1.9% * % * . . . .
Florida 59,42 1.6% x queries, with strong statistical significance. Table 3 shows a
Louisiana: 71/41 2.0% - few representative examples of our “wins”.
Los Angeles 67/48 1.8% Hok . .
Philadelphia 65,/44 2.0% * % % 7. Discussion
New York City 64/30 2.6% * * K

6.2. Application domains

An App domain corresponds to the set of speech queries that
originated from a particular App on the user device. We test
our adaptive-training approach across five languages for this do-
main. First, we make use of the models described in Section 4
as our background models. Using the Domains sets, in Table 1,
which is ASR speech query logs that are annotated with App
and GEO signals, we adapt our models for 4-8 SGD adaptive
iterations, as described in Section 5.

Table 5 shows the results of our approach against the back-
ground model (no domains). In all cases except for YouTube
in ru-ru, we observe improvements, and in the majority of the
cases (11 out of 15) the improvements are statistically signifi-
cant (p-value < 5%). We observe that PlayStore domain per-
forms the best — perhaps due to being a more restricted domain.

6.3. GEO location domains

A GEO domain corresponds to all speech queries originating
from within a specific geographical area. (Voice queries may
contain approximate location information, if enabled by the
user. The geographical features are logged only if they have
a user population > 1000, and an area > 1km2.) We test our
approach on the GEO domain for two ASR systems: American
English system (en-us) and French system (fr-fr).

In the fr-fr system, similar to the App experimental setup,
we have trained four country specific domains to recognize
French speech in Algeria, Belgium, Canada, and Tunisia. Ta-

We have discussed the performance of a large scale MaxEnt
Language Models (LMs) when used as second-pass rescoring
for Automatic Speech Recognition (ASR). As a first contribu-
tion, we have described a simple model adaptation approach for
MaxEnt LM which exerts significant reduction in word error
rate when compared to both 5B n-gram and unadapted MaxEnt
second-pass LMs, across four languages, on the task of voice-
search and dictation transcription. Our adaptation approach
consists of a few iterations of Stochastic Gradient Decent (SGD)
on the adaptation data. Our method is not only effective, since it
affects all competing parameters that share same history, but it
also scales on large models; it is efficient, and easily distributed,
using the standard distributed SGD training algorithms.

Another main contribution of this paper is introducing and
evaluating thoroughly our new adaptive-training method. This
method allows us to incorporate and efficiently train various
non-linguistic signals into MaxEnt without jointly training all
the parameters. It has multiple advantages: (1) the original
(baseline) MaxEnt model is not affected if no signals are avail-
able; (2) Adding new signals to the model can be done with-
out retraining the full model; (3) It scales well and it is effi-
cient since only new parameters of the newly added signals are
trained. (4) Our approach significantly outperforms traditional
joint training methods; (5) Relying on human evaluation, we
have seen that our ASR becomes significantly more accurate
across multiple domains — GEO domain: countries, US states,
and US cities and/or App domain: YouTube, Maps, and Play-
Store — for our American English speech recognizer.
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