
Keyword Spotting for Google Assistant Using Contextual Speech Recognition

Assaf Hurwitz Michaely, Xuedong Zhang, Gabor Simko, Carolina Parada, Petar Aleksic

Google Inc.
{amichaely,xuedong,gsimko,carolinap,apetar}@google.com

Abstract
We present a novel keyword spotting (KWS) system that uses
contextual automatic speech recognition (ASR). For voice-
activated devices, it is common that a KWS system is run on
the device in order to quickly detect a trigger phrase (e.g. “Ok
Google”). After the trigger phrase is detected, the audio cor-
responding to the voice command that follows is streamed to
the server. The audio is transcribed by the server-side ASR sys-
tem and semantically processed to generate a response which is
sent back to the device. Due to limited resources on the device,
the device KWS system might introduce false accepts (FA) and
false rejects (FR) that can cause an unsatisfactory user experi-
ence.

We describe a system that uses server-side contextual ASR
and trigger phrase non-terminals to improve overall KWS accu-
racy. We show that this approach can significantly reduce the
FA rate (by 89%) while minimally increasing the FR rate (by
0.2%). Furthermore, we show that this system significantly im-
proves the ASR quality, reducing Word Error Rate (WER) (by
10% to 50% relative), and allows the user to speak seamlessly,
without pausing between the trigger phrase and the voice com-
mand.
Index Terms: speech recognition, keyword spotting

1. Introduction
Keyword spotting systems are a common component in speech-
enabled devices. KWS systems enable hands-free speech recog-
nition experience by detecting a trigger phrase used to initiate
the interaction with a device. KWS system accuracy is criti-
cal for any voice input device, especially for devices that have
only voice input. For example, a user may say “Ok Google,
play some music”, resulting in music playing without the user
ever touching the device. Once a trigger phrase is detected on
device, typically the connection is opened to the server and the
audio corresponding to the rest of the query (e.g. “play some
music”) is sent for transcription using a server-side ASR sys-
tem. Other common trigger phrases used in commercial voice
enabled products are: “Alexa”, “Hey Siri” and “Hey Cortana”.
KWS systems usually run on devices that have constraints in
memory footprint and computational power. These constraints
can often result in limited KWS system accuracy [1, 2, 3, 4].

To measure the accuracy of a KWS system, we use false
accept rate and false reject rate as metrics. A false accept oc-
curs when the system detects a trigger phrase although none
was said. False accepts can result in the device responding to
random commands and interrupting users, hence negatively af-
fecting the user experience. A false reject occurs when the user
says the trigger phrase, but the system does not detect it and re-
jects the query. A good KWS system has very small FA and FR
rates.

In this paper we describe a system that uses two KWS sys-
tems. The primary KWS system runs on-device and determines

which queries to send to the server. The secondary KWS system
runs on the server side and is used to suppress queries that were
falsely accepted by the primary on-device KWS system. The
secondary KWS system takes advantage of the server-side ASR
system, including larger models and more resources, to provide
more accurate trigger phrase detection and eliminate a large per-
centage of false accepts. In the proposed system, once the on-
device KWS triggers, the audio corresponding to both the trig-
ger phrase and the query is sent to the server. The server-side
ASR system decodes the concatenated audio using a context-
aware recognizer for improved KWS performance. Once the
ASR result is complete, the server-side KWS task is reduced to
string matching: If the ASR result does not contain the trigger-
phrase, the query is suppressed. Otherwise, the query is consid-
ered a true accept and is processed further.

We evaluate the proposed system on several human-
transcribed test sets. We show that adding the server-side KWS
system leads to a significant reduction of FA rates, with only a
minimal increase of FR rates. Furthermore, we show that our
system improves speech recognition accuracy, significantly re-
ducing word error rate (WER). It does so by continuously de-
coding the audio corresponding to both trigger phrase and the
query, thus:

1. Avoiding the negative effect of potentially incorrect seg-
mentation of the trigger phrase audio and the query au-
dio.

2. Improving the modelling of coarticulation effects, and
improving the handling of noise, thanks to the additional
audio decoded.

We organize the paper as follows. In section 2 we describe
the main components of our KWS system. In section 3 we de-
scribe the adjustments made to the first pass language model
(LM). In section 4 we describe the endpointing system. In sec-
tion 5 we describe the final system modifications, including sec-
ond pass rescoring (section 5.1), and trigger phrase detection
and removal (section 5.2). In section 6 we describe the exper-
imental setup and analyze the results. Finally, in section 7 we
present our conclusions.

2. Client-Server KWS System Design
In this section we describe the main components of our com-
bined KWS system consisting of both on-device and server-side
KWS systems.

The on-device KWS system continuously listens and initi-
ates a connection to the server when it detects a trigger phrase.
Once a trigger phrase is detected, the audio corresponding to the
trigger phrase and the query are sent to the server in a streaming
fashion as shown in Figure 1. In this paper we do not modify
the on-device KWS system behavior.

The server-side contextual ASR system is used to provide
server-side KWS (trigger phrase detection). If the resulting

Client

Server

KWS

KWS
 +

 ASR
Trigger Phrase Audio

 +
 Query Audio

Figure 1: Client-Server keyword spotting system.

transcript does not contain the trigger phrase, the query is re-
jected (the device does not respond to the command). If the
transcript contains the trigger phrase, the query is accepted and
processed. Finally, the trigger phrase is removed from the final
transcript as part of denormalization (e.g. “Ok Google stop”→
“stop”), before being further processed.

The following sections describe the approaches we consid-
ered and solutions designed to enable using server side contex-
tual ASR system for improved KWS performance and transcrip-
tion.

3. Language Model (LM) Adaptation
The ASR system used in this work is a 2-pass ASR system uti-
lizing a smaller first pass LM and a larger second pass LM. The
LMs are trained on anonymized query examples, such as “what
time is it”, most of which do not include trigger phrases. There-
fore, any sentence starting with the trigger phrase (e.g. “Ok
Google what time is it”) will usually have a high cost in the
baseline LM. Using such an LM for KWS and for speech recog-
nition of queries that include trigger phrases will results in both
increased FR rates and increased WER. In order to avoid this
degradation, the LM must be adapted to better model queries
that do start with a trigger phrase. This section describes sev-
eral adaptation approaches we considered.

3.1. LM Retraining

The first approach we considered was retraining the LMs with
data consisting of queries that do include trigger phrases. This
approach has two problems:

1. Changing the set of supported trigger phrases would re-
quire retraining of the LM.

2. The retrained LM would no longer match well recog-
nition tasks in which the utterances do not start with a
trigger phrase.

3.2. Contextual ASR

On-the-fly rescoring (biasing) [5, 6] is a framework for on-the-
fly changing of LM costs corresponding to certain n-grams us-
ing rescoring (biasing) models. A biasing model consists of n-
grams that need to be biased and the weights corresponding to
each of the n-grams. Biasing is applied during decoding and is
triggered based on particular conditions. The biasing n-grams
can include any word, that is, words in the LM’s vocabulary as
well as out of vocabulary words. Class based symbols [7] can
also be biased (e.g. “$TIME”, “$DATE”).

During decoding, the cost from the LM, G, is combined

with the cost from the biasing model, B, as follows:

s(w|H) =

{
sG(w|H) if (w|H) /∈ B
C(sG(w|H), sB(w|H)) if (w|H) ∈ B ,

(1)
where sG(w|H) is the raw score from the main model G for

the word w leaving history state H and sB(w|H) is the raw
score for the biasing model. C is some combination function,
e.g. min(x, y). Note that this approach only modifies the LM
scores of n-gramsHw for which the biasing model provides an
explicit weight. This differs from regular LM interpolation and
is motivated by the fact that the support of the biasing model is
much sparser than that of the main LM.

In a KWS system, rescoring can be used on the server side
to boost the probability of the trigger-phrases at the start of
the sentence. This rescoring would be activated only when the
streaming audio includes both trigger-phrase and query audio.
With this approach the contextual ASR system will still pro-
vide good recognition accuracy on utterances that do not con-
tain trigger phrase audio. This approach is also modular and
flexible: supporting a new trigger phrase would require a sim-
ple addition of the corresponding n-grams to the biasing model.
This approach solves both problems associated with LM retrain-
ing approach.

Rescoring will ensure that the conditional probability of the
trigger phrase at the beginning of the sentence is sufficiently
high:

P(“Ok Google”|”<S>”)

However, the conditional probability of the word following the
trigger phrase, w:

P(w|”<S> Ok Google”)
will not be well estimated, because the history “<S>
Ok Google” is not well represented in the LM training data.
This can result in a system with sufficiently low FR but in-
creased WER. In order to solve this problem we introduce a
trigger phrase non-terminal, described in the following section.

3.3. Trigger Phrase Non-Terminal

A non-terminal is a symbol in a finite-state-transducer (FST)
[8] which can be replaced at recognition time by another FST.
One common use of non-terminals is for class based language
models [7], in which a non-terminal symbol, e.g. $DATE, is
replaced with an FST representing the class grammar. The non-
terminal symbol can also be replaced dynamically at recogni-
tion time [9], using contextual or personalized information.

In order to dynamically adapt the first pass LM to the task of
decoding audio with the trigger phrase included, we introduce
a trigger phrase non-terminal, $TRIGGER PHRASE, as an arc
at the LM FST’s start state (Figure 2).

<S>

1
$TRIGGER_PHRASE

2
stop

3

pause

ε

Figure 2: $TRIGGER PHRASE non-terminal in the first pass
LM FST.

At recognition time, if the trigger phrase audio is sent
to the server, $TRIGGER PHRASE is dynamically replaced
with an FST containing the relevant trigger phrases (Figure 3).
If the trigger phrase audio is not sent to the server, $TRIG-
GER PHRASE is replaced with an empty FST, resulting in an
undadapted LM.

We adjust the LM cost of $TRIGGER PHRASE using on-
the-fly rescoring. We choose a cost that optimizes the FR
and FA rates, by tuning on a dev set. To prevent multiple
looping through $TRIGGER PHRASE, we set a low cost for
its first occurrence only (“$TRIGGER PHRASE |<S>”) and
a higher cost for any additional occurrences (e.g. “$TRIG-
GER PHRASE |<S> $TRIGGER PHRASE”).

0 1ε:<trigger_phrase> 2
ok:ok

hey:hey 3google:google 4ε:</trigger_phrase>

Figure 3: The trigger phrase FST.

The opening and closing tags (“<trigger phrase>” and
“</trigger phrase>”) mark the span of the trigger phrase.
These tags are used for trigger phrase detection and removal
(see 5.2).

4. Endpointing System
The quality of the overall system significantly depends on the
endpointer system used. In this section we describe the end-
pointer system used in our system and various modifications
applied.

4.1. Background

The task of endpointing is to detect quickly and accurately when
the user started and finished speaking their query. A typical
setup [10] for endpointing is to use a probabilistic voice activity
classifier (or end of query classifier) that classifies frames as
speech/non-speech (or query-complete vs query-not-complete)
and threshold the framewise posteriors to reach hard decisions.

For simplicity it is often assumed that the output labels
yt of the classifier are conditionally independent. Then, the
conditional probabilistic model expresses the posterior proba-
bilities P(yt|xt, λ) given an acoustic feature vector sequence
xT = x1, . . . , xT and model parameters λ.

In order to turn these posteriors into a hard decision, the
posterior scores are thresholded. The formula for the final deci-
sion can be expressed in the form of

D = argmin
t

(
t > σw ∧ ∀tt−σw (P (yt|xt, λ) > σp)

)
whereD is the frame at which the endpointing decision is made,
σp is the threshold used with the posterior scores and σw is the
wait-time threshold (the number of consecutive frames where
the same decisions were made).

4.2. Endpointer System Modifications Overview

Sending and decoding the entire audio segment can cause prob-
lems for the endpointer. For example, users typically pause
after saying the trigger phrase, which might trigger the end-
pointer. In order to solve this problem, we can modify the for-
mula for endpoint-decision to factor in the recognition results
when choosing the thresholds as follows:
D = argmin

t

(
t > σw(R) ∧ ∀tt−σw(R)(P (yt|xt, λ) > σp)

)

Here σw(R) signifies that the threshold is dependent on the
recognition result R. Note that we could similarly introduce a
recognition-based threshold σp(R), however, we did not pursue
the idea in this work.

There are three modifications that we had to make for end-
pointing to work as expected:

1. Do not endpoint aggressively when the recognition con-
sists solely of the trigger phrase.

2. Do not endpoint aggressively when the recognition of the
trigger phrase is in flux.

3. Endpoint early if the ASR does not detect the trigger
phrase after decoding the entire trigger-phrase audio.

4.3. User Pauses After Trigger Phrase

Users might pause between saying the trigger phrase and the
main query. To prevent cutting off the user during this pause,
the endpointer should have a longer-wait time if the recogni-
tion consists of only the trigger phrase. This detection can be
done by matching the recognition text, R, in which case the end-
pointer’s wait-time is increased.

σw(R) =

{
πL, if R = ”TP”
πS , otherwise

(2)

where πL is the (long) wait-time for incomplete queries (e.g.,
800 frames), πS for (short) complete queries (e.g., 30 frames),
and ”TP” is the textual form of the trigger phrase.

4.4. Trigger Phrase Recognition In Flux

Recognition in flux is a harder problem to tackle, since we
do not have prior information about what the partial recogni-
tions might look like. However, we know how long the trigger
phrase audio is, and we can force the endpointer to not make any
endpointing decisions before having decoded the entire trigger
phrase audio.

σw(R) =

{
πL, if Fr(R) < Fr(TPaudio)
πS , otherwise

(3)

where Fr(R) is number of frames processed to reach recogni-
tion R and Fr(TPaudio) is the length in frames of the trigger-
phrase audio.

4.5. Trigger Phrase Not Detected

Finally, the endpointer can alleviate the problem in the low-
probability but important case of false accepts. The endpointer
can make an early end of the utterance decision if there is no
trigger phrase detected after processing the trigger phrase au-
dio, which saves bandwidth and server load.

σw(R) =

{
0, if R 6= ”.*TP.*” ∧ Fr(R) ≥ Fr(TPaudio)
πS , otherwise

(4)
where the inequality ofR expresses that the right-hand side reg-
ular expression does not match R.

The final equation that combines these decisions can be
written as follows:

σw(R) =


πL, if R = ”TP” ∨ Fr(R) < Fr(TPaudio)
0, if R 6= ”.*TP.*” ∧ Fr(R) ≥ Fr(TPaudio)
πS , otherwise.

(5)

5. ASR System Modifications
5.1. Second Pass Rescoring

In section 3 we described how the first pass LM is dynamically
modified to enable recognition of trigger phrases. However, in
a two-pass scoring system, the second pass LM must also be
adapted. Similar to the first pass LM, if the second pass LM
assigns a low probability to sentences starting with a trigger
phrase, this will lead to increased FR rate and WER.

We solve this problem by modifying the 2nd pass LM to
ignore the trigger phrase portion of the transcript and only
rescore the part of the transcript corresponding to the query.
The trigger phrase tokens retain the LM cost that was assigned
to them in the first pass. For example, if the transcript is
“<trigger phrase> Ok Google </trigger phrase> volume up”,
then the 2nd pass LM will only rescore “volume up”, while
“<trigger phrase> Ok Google </trigger phrase>“ will retain
the score assigned to it in the first pass.

5.2. Trigger Phrase Detection and Removal

The server side KWS system considers that the trigger phrase is
detected if the trigger phrase tags are present in the top hypoth-
esis (e.g. “<trigger phrase> Ok Google </trigger phrase>
stop”). Otherwise, the server system discards the audio, and
the query is rejected.

After detection, the trigger phrase tags and enclosed text
are removed as part of the denormalization process, resulting
in the transcription of the query without the trigger phrase.
For example, the hypothesis “<trigger phrase> Ok Google
</trigger phrase> stop” would be denormalized to “stop”. Re-
moving the trigger phrase text enables seamless integration of
the server-side KWS functionality into the ASR pipeline in
which only the query audio is decoded. Otherwise, if the trig-
ger phrase text were kept in the hypothesis, further modification
would be required in the semantic processing of the query to ig-
nore the trigger phrase.

5.3. Summary of system adaptation changes

1. A $TRIGGER PHRASE non-terminal arc is added to
the first pass LM. The arc’s cost is adjusted using con-
textual biasing (section 3.3).

2. Endpointer (section 4)

Less-aggressive endpointing when the recognition
consists solely of the trigger phrase (section 4.3).

Less-aggressive endpointing when the recognition
of the trigger phrase is in flux (section 4.4).

Early endpointing if the trigger phrase is not de-
tected after decoding the entire trigger-phrase audio (sec-
tion 4.5).

3. The trigger phrase text is ignored during second pass
rescoring (section 5.1).

4. The trigger-phrase text is detected and removed during
denormalization (section 5.2).

6. Experimental Results
In this section we describe the experimental setup and analyze
the results.

6.1. Experimental Setup

The baseline system consists of a long short-term memory
acoustic model [11, 12] and a Katz smoothed [13] 5-gram
FST [8, 14] LM, pruned to 100M n-grams and trained using
Bayesian interpolation [15]. The system also includes a larger
second pass LM, trained on the same data [16]. The training
data does not include transcripts with trigger phrases. The base-
line system does not decode the trigger-phrase audio of the ut-
terance.

We ran experiments on the baseline system and the two ex-
perimental systems:

• SYS-A. This system decodes the trigger phrase audio
and the query audio, and includes the modifications de-
scribed to the first pass LM (section 3), the second pass
LM (section 5.1) and the trigger phrase detection and re-
moval (section 5.2). SYS-A does not include endpointer
modifications described in section 4.

• SYS-B. This system includes all the modification de-
scribed in the paper. That is, it is the same as SYS-A
with the added modifications for the endpointer system,
describes in section 4.

To evaluate our models, we ran two types of experiments:

1. Offline experiments on human-transcribed test sets.

2. Live traffic side-by-side experiments rated by humans.

6.2. Offline Experiments

Our offline experiments included two types of test sets, all con-
sisting of anonymized utterances in British and American En-
glish.

1. Positive. Utterances that start with a trigger-phrase (e.g.
“Ok Google”). These utterances are transcribed by hu-
man raters, and used for measuring WER and FR rate.

2. Negative. Utterances that were accepted by a client-
side trigger-phrase detector, but determined (by human
raters) to not include a trigger-phrase. This type of test
set is used for measuring the system’s effect on the FA
rate. Note that because we are not changing the on-
device KWS system, we do not measure FA or FR rate of
the device, and our testing data consists of utterances that
were accepted by the on-device KWS system. Accord-
ingly, we consider the baseline system’s FA rate to be
100%, its FR rate to be 0%, and we measure the experi-
mental system’s FA and FR rates relative to the baseline.

6.2.1. Ground Truth

The utterances were classified by human raters as positive (con-
tain a trigger-phrase) or negative (do not contain a trigger
phrase). The positive utterances were then transcribed by hu-
man raters, omitting the trigger-phrase from the transcription.
For example, the utterance “hey google stop”, would be tran-
scribed as “stop”. This allows fair comparison of the baseline
system (which does not decode the trigger phrase audio) with
the experimental systems (which do decode the trigger phrase
audio but remove the trigger-phrase from the final transcript, as
described in section 5.2).

6.3. Live traffic side-by-side (SxS) experiments

In these experiments each utterance is automatically transcribed
by the two live systems, baseline and experimental. If the two

resulting ASR transcripts are not identical, they are kept for rat-
ing. The experiment continues until a certain number of differ-
ent transcripts is collected. The transcripts are then, together
with corresponding audio, sent for rating. Each utterance is
rated by two humans (and a third in case of a tie). For each
of the SxS experiments, we present the following:

% Changed: The percentage of utterances in which the two
systems produced different transcripts.

Wins/Losses: The ratio of wins to losses, comparing the ex-
perimental system to the baseline. A win occurs when
the transcript of the experimental system is rated higher,
a loss occurs when the transcript of the baseline is rated
higher.

6.4. Results

In this section we present the results obtained by running exper-
iments for each of the three systems on the positive and negative
test sets.

Note that we do not report false accept or false reject rates
for the baseline system. This is because the baseline system
does not decode the trigger-phrase audio, only the main query
audio, and does not suppress any requests. It can be seen as
having 0% FR rate and 100% FA rate.

6.4.1. Negative Test Set Experiments

As this test set was created by collecting false client-side de-
tections, the baseline system (with no server-side KWS) would
have 100% FA. The two experimental systems (SYS-A and
SYS-B) obtained an identical FA rate on this test set, 10.58%
(Table 1), a decrease of 89.42% compared to the baseline sys-
tem.

Name Size FA [%] FA decrease [%]
NEGATIVE 832 10.58 89.42

Table 1: False accepts rates obtained by SYS-A and SYS-B on
the negative test set in American English. Note that the base-
line system does not decode the trigger-phrase audio, and hence
does not suppress any requests (its FA rate is 100%).

6.4.2. Positive Test Set Experiments

We ran experiments for the three systems on six test sets in
British English and three test sets in American English. Ta-
ble 2 shows the results obtained for the British English test sets.
These test sets were split by trigger-phrase (”Hey Google” or
”Ok Google”) and noise level (clean, noisy, very noisy). Ta-
ble 3 shows the results for the three American English test sets.
These test sets were split by query type:

1. “timer” and “alarm” test sets consist of utterances corre-
sponding to timer and alarm control commands, respec-
tively.

2. “general” test set consists of all types of voice queries.

In all of these test sets, the baseline WER (BASE) is re-
duced by decoding the trigger-phrase audio (SYS-A) and fur-
ther reduced by adding the endpointer modifications (SYS-B).
For example, on the test set “general”, the WER is reduced from
10.3% (BASE) to 7% when adding trigger-phrase audio decod-
ing (SYS-A), and further decreases to 6.8% when adding the

endpointer modifications (SYS-B). The two experimental sys-
tems obtained an identical FR rate on these test sets. The FR
rate on the general American English test set is .15%, while
“timer” and “alarm” test sets show higher FR rates, 2.7% and
3.5%. This is likely due to high levels of noise caused by the
alarm and timer firing. Similarly on the test sets in British En-
glish, the FR increases with the amount of noise, ranging from
.07% to .83%.

Test Set Size WER [%] FR [%]
BASE SYS-A SYS-B SYS-A,B

hey clean 2102 15.5 10.9 9.7 .19
hey noisy 3329 17.9 14.7 13.4 .24
hey v noisy 841 26.8 24.2 23.1 .83
ok clean 5870 14.7 10.5 9.7 .07
ok noisy 5832 19.2 14.1 12.7 .22
ok v noisy 1463 28.8 20.1 18.8 .61

Table 2: Results on the positive test sets in British English.
“BASE” is a system that does not decode the trigger-phrase
audio. “SYS-A” is a system that does decode the trigger-phrase
audio but does not have the endpointer adjustments described in
4. “SYS-B” is the full system described in this paper, including
the endpointer adjustments. The FR rate for SYS-A and SYS-B
are identical. Note that the baseline system does not decode the
trigger-phrase audio, so it does not suppress any requests, and
its FR rate is 0 %.

Test Set Size WER [%] FR [%]
BASE SYS-A SYS-B SYS-A,B

general 82987 10.3 7 6.8 .15
timer 1808 21 11.4 11.3 3.5
alarm 1631 16.6 8.2 7.8 2.7

Table 3: Results on the positive test sets in American English.
“BASE” is a system that does not decode the trigger-phrase
audio. “SYS-A” is a system that does decode the trigger-phrase
audio but does not have the endpointer adjustments described in
4. “SYS-B” is the full system described in this paper, including
the endpointer adjustments. The FR rate for SYS-A and SYS-B
are identical. Note that the baseline system does not decode the
trigger-phrase audio, so it does not suppress any requests, and
its FR rate is 0 %.

6.5. SxS Experiments

Table 4 shows the results of live Side By Side (SxS) experi-
ments, comparing the ASR transcriptions produced by the base-
line system (which does not decode the trigger-phrase audio) to
those of SYS-B (which does decode the trigger-phrase audio).
These experiments all show a significant improvement gained
by SYS-B compared to the baseline, with between 17% and
42% of the transcripts changed, and with a win/loss ratio be-
tween 2.6 and 11.6.

6.6. Improvements Analysis

In this section we further analyze specific problems solved by
our system, leading to improved overall performance.

Exp Changed [%] Wins/Losses
en-us 42.47 11.667
en-gb 26.86 2.29
en-au 17.62 2.87
de-de 25.57 2.37
fr-fr 25.61 2.61

Table 4: SxS results comparing SYS-B to the baseline system.
The experiments were run in English(USA), English(Britain),
English(Australia), German(Germany) and French(France).
All languages show a significant improvement, with over 12%
of the transcripts changed, and a win to loss ratio of over 2 for
all experiments.

Figure 4: An example where decoding the trigger-phrase au-
dio and the main audio together improves the recognition. The
vertical gray line represents the end of the trigger-phrase audio
as recorded by the on-device KWS system. Due to background
noise and a short pause between “google” and “stop”, the au-
dio for “stop” ends before the main audio.

6.6.1. Speech Onset Problem

Since the baseline system does not decode the trigger-phrase
audio, it must determine the speech onset after the trigger-
phrase, at which it will start decoding. When the user makes
a pause between the trigger-phrase and the command (e.g. “Ok
Google...stop”), it is easier to detect where the trigger-phrase
ends and the query begins. However, when the user speaks more
naturally, without the pause, incorrect segmentation of the audio
often results in the beginning of the query being misrecognized
(see Figure 4). At times this results in an empty transcription
(especially with short utterances). Other times it results in an
incomplete or incorrect transcription, leading to a failed voice
action. By decoding the trigger-phrase audio, the need for seg-
mentation is eliminated, and the system can correctly model the
coarticulation effect.

Examples of recognition improvements:

• “new ad”→ “can you add”

• “which off alarm”→ “switch off alarm”

• “soft rock”→ “play soft rock”

6.6.2. Early Cutoff Problem

The endpointer modification (described in section 4.3) improves
handling of the complementary problem to the one described
above: the case where the user makes a lengthy pause between
the trigger-phrase and the command. In system SYS-A (de-
coding trigger-phrase audio without adjusting the endpointing),
endpointing would trigger during the pause, ending the decod-
ing before the audio of the actual query is processed, and result-
ing in an empty transcript. Adjusting the endpointing to expect

a pause after the trigger phrase addresses this problem.

6.6.3. Second Speaker Problem

Since the baseline system transcribes only the query audio, a
second speaker (e.g. another person, TV) speaking between
the trigger-phrase and the query can cause unwanted insertions
or misrecognitions. The proposed system solves this problem
since the decoder sees the trigger-phrase audio from the user,
learns to ignore the background speech from additional speak-
ers, and only transcribes user’s query.

Some examples of improved recognition quality by using
the trigger phrase audio to better eliminate the noise coming
from a second speaker:

• First speaker: “play some latest English songs”.
Second speaker (human): “15 minutes later”.
Correction: “55th of latest English songs”→ “play some
latest English songs”.

• First speaker: “dim the living room light”.
Second speaker (television): “instead of Renee”.
Correction: “better brunette dim the living room light”
→ “dim the living room light”.

• First speaker: “turn down”.
Second speaker (television): “An oath to United States”.
Correction: “United States”→ “turn down”.

7. Conclusion
We described a system for improving keyword spotting quality
that uses server-side contextual ASR. This system decodes the
trigger phrase audio sent from the device for improved perfor-
mance. Our system significantly reduces the rate of FAs by 89
%, with a small increase in the FR rate of 0.2%. In addition, our
system significantly improves the ASR quality, reducing WER
by 10-50% and showing significant improvements in SxS exper-
iments in several languages. As future work, we plan to further
expand support to other languages and evaluate our system on
various voice activated devices.

8. References
[1] G. Chen, C. Parada, and G. Heigold, “Small-footprint keyword

spotting using deep neural networks,” in Acoustics, Speech and
Signal Processing (ICASSP), 2014 IEEE International Confer-
ence on. IEEE, 2014, pp. 4087–4091.

[2] G. Chen, C. Parada, and T. N. Sainath, “Query-by-example key-
word spotting using long short-term memory networks,” in Acous-
tics, Speech and Signal Processing (ICASSP), 2015 IEEE Interna-
tional Conference on. IEEE, 2015, pp. 5236–5240.

[3] T. N. Sainath and C. Parada, “Convolutional neural networks for
small-footprint keyword spotting.” in INTERSPEECH, 2015, pp.
1478–1482.

[4] K. Audhkhasi, A. Rosenberg, A. Sethy, B. Ramabhadran, and
B. Kingsbury, “End-to-end asr-free keyword search from speech,”
arXiv preprint arXiv:1701.04313, 2017.

[5] K. B. Hall, E. Cho, C. Allauzen, F. Beaufays, N. Coccaro,
K. Nakajima, M. Riley, B. Roark, D. Rybach, and L. Zhang,
“Composition-based on-the-fly rescoring for salient n-gram bias-
ing,” in Interspeech 2015, 2015.

[6] P. Aleksic, M. Ghodsi, A. Michaely, C. Allauzen, K. Hall,
B. Roark, D. Rybach, and P. Moreno, “Bringing contextual infor-
mation to google speech recognition,” in Interspeech 2015, 2015.

[7] P. F. Brown, P. V. deSouza, R. L. Mercer, V. J. D. Pietra, and J. C.
Lai, “Class-based n-gram models of natural language,” Computa-
tional Linguistics, vol. 18, pp. 467–479, 1992.

[8] M. Mohri, F. Pereira, and M. Riley, “Weighted finite-state trans-
ducers in speech recognition,” Computer Speech and Language,
vol. 16, pp. 69–88, 2002.

[9] L. Vasserman, B. Haynor, and P. Aleksic, “Contextual language
model adaptation using dynamic classes,” in Spoken Language
Technology Workshop (SLT), 2016 IEEE. IEEE, 2016, pp. 441–
446.

[10] M. Shannon, G. Simko, S. yiin Chang, and C. Parada, “Improved
end-of-query detection for streaming speech recognition,” in In-
terspeech 2017, 2017.

[11] H. Sak, A. Senior, and F. Beaufays, “Long short-term memory re-
current neural network architectures for large scale acoustic mod-
eling,” in Interspeech, 2014.

[12] H. Sak, O. Vinyals, G. Heigold, A. Senior, E. McDermott,
R. Monga, and M. Mao, “Sequence discriminative distributed
training of long short-term memory recurrent neural networks,”
in Interspeech, 2014.

[13] S. M. Katz, “Estimation of probabilities from sparse data for
the language model component of a speech recognizer,” in IEEE
Transactions on Acoustics, Speech and Signal Processing, 1987,
pp. 400–401.

[14] C. Allauzen, M. Riley, J. Schalkwyk, W. Skut, and M. Mohri,
“OpenFst: A general and efficient weighted finite-state transducer
library,” in CIAA 2007, ser. LNCS, vol. 4783, 2007, pp. 11–23,
http://www.openfst.org.

[15] C. Allauzen and M. Riley, “Bayesian language model interpo-
lation for mobile speech input,” in INTERSPEECH, 2011, pp.
1429–1432.

[16] P. Jyothi, L. Johnson, C. Chelba, and B. Strope, “Distributed dis-
criminative language models for google voice search,” in Proceed-
ings of ICASSP 2012, 2012, pp. 5017–5021.

