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Abstract

In this paper, we study recent neural gen-
erative models for text generation related
to variational autoencoders. These mod-
els employ various techniques to match the
posterior and prior distributions, which is
important to ensure a high sample qual-
ity and a low reconstruction error. In our
study, we follow a rigorous evaluation pro-
tocol using a large set of previously used
and novel automatic metrics and human
evaluation of both generated samples and
reconstructions. We hope that it will be-
come the new evaluation standard when
comparing neural generative models for
text.

1 Introduction

While automatic natural language generation
(NLG), in particular from structured data, has had
a long tradition (Reiter and Dale, 2000), the recent
advances in deep learning have given it a new im-
petus. In parallel to a massive number of deep gen-
erative models for creating realistic images, a fair
number of papers have introduced probabilistic
generative models of text (Zhao et al., 2017a; Hu
et al., 2017, inter alia) which are claimed to pro-
duce fluent and meaningful samples from a con-
tinuous vector representation. Similar to research
focused on image generation, related but distinct
text generation tasks for such models include:

(1) sentence reconstruction – given a natural lan-
guage sentence, can we encode it into a fixed-
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length vector and then reconstruct it from that
representation?

(2) unconditional sentence generation – can we
generate fluent sentences that follow the dis-
tribution of sentences in natural language?

(3) conditional sentence generation – given a
content and/or style representation, can we
generate a sentence expressing that content
and exhibiting the desired stylistic proper-
ties?

While tasks (1) and (2) may not have obvious
applications, they are important for assessing the
properties of the learned representations and their
usefulness for other tasks, including (3). For ex-
ample, autoencoder-based models have been pro-
posed (Hu et al., 2017; Zhao et al., 2017a) for
learning disentangled representations of style and
content from unaligned data. One possible appli-
cation of such autoencoders is modifying the style
of a sentence by manipulating the style represen-
tation, but this is only possible if the model can
encode and generate accurately, i.e. has a low re-
construction error.

Partly due to the difficulty of evaluating text
generation directly, recent studies on autoencoders
for text (Bowman et al., 2016; Hu et al., 2017)
have mostly focused on applying them to tasks
such as language modeling and classification.
With the exception of Zhao et al. (2017a), these
studies do not consider the reconstruction task.
Bowman et al. (2016) report negative results of
variational autoencoders on language modeling,
which suggests that the reconstruction error of
these models will be high.



The lack of evaluation standards resulted in
fierce debates around the experimental setup of
some of the most novel neural-based text genera-
tion studies, to the point that their utility has been
questioned.1 This is unfortunate because neural
generative models for text do hold real promise
for NLG, as the progress in MT over the past few
years has clearly demonstrated.

In this paper, we strive to address the method-
ological issues with the current neural text gen-
eration research and also close some gaps by an-
swering a few natural questions to the studies al-
ready published. We focus on neural generative
models from the autoencoder family and their per-
formance on tasks (1) and (2), because we feel
that this is an area that hasn’t been sufficiently ex-
plored and deserves a proper treatment before one
moves on to more complex setups.

In particular, our contributions are as follows:

1. We focus on several most recent autoencoder
models for sentence generation, namely plain
(AE), variational (VAE) and adversarially
regularized (ARAE) autoencoders (Kingma
and Welling, 2013; Bowman et al., 2016;
Zhao et al., 2017a), as well as adversarial
autoencoders (AAE, Makhzani et al., 2015),
and compare them on equal footing.

2. We study the effects of alternative tech-
niques for regularizing autoencoders for text,
namely latent code normalization, injecting
noise into the latent representation, and RNN
dropout.

3. We show that these simple techniques are
sufficient for training an autoencoder which
is comparable to state-of-the-art models for
unconditional text generation while outper-
forming them in terms of reconstruction ac-
curacy.

4. We rigorously evaluate different variants of
autoencoder models with humans as well as
compute a rich set of automatic metrics on
both generated samples and reconstructions,
which is missing in the previous work.

5. In particular, we introduce a novel technique
for automatically measuring the quality of

1See the discussions around the posts by Yoav Gold-
berg from June 2017: https://medium.com/@yoav.
goldberg.

generated texts – Fréchet InferSent Distance
(inspired by the recent work on image gener-
ation by Heusel et al., 2017).

2 Related work

Since the introduction of VAEs by Kingma and
Welling (2013) and its many successful applica-
tions in computer vision, the first study of VAEs
for text generation was performed by Bowman
et al. (2016). While demonstrating that VAEs can
be a viable way to train unconditional generative
models for text, the authors show that training a
VAE with an LSTM (?) decoder leads to an issue
where it tends to ignore the latent code completely
and hence collapse to a language model. To al-
leviate this issue, the authors applied two moder-
ately successful tricks: input dropout and KL term
annealing. While demonstrating their model can
generate natural-looking samples, the reconstruc-
tion performance is omitted from the discussion,
which is important as it indicates how well the en-
coder generalizes and structures the latent space.

To address some of the issues of training
VAE models for text discussed by Bowman
et al. (2016), Semeniuta et al. (2017) propose
a hybrid architecture composed of a convolu-
tional encoder and a decoder composed of a de-
convolutional and an autoregressive layer (LSTM
or ByteNet (Kalchbrenner et al., 2016)). This
model is shown to better handle longer sequences
and more importantly, it allows for a better control
over the KL term. The latter ensures that the latent
vector is actually useful and used by the decoder.
Additionally, similar to findings in Chen et al.
(2016) and Yang et al. (2017), explicit control over
the autoregressive power of the decoder, e.g., by
using a ByteNet decoder with a smaller receptive
field, helps to alleviate this issue. In this work we
employ a standard LSTM encoder/decoder archi-
tecture, whereas our primary focus is on various
mechanisms to match posterior and prior distribu-
tions and its effects on structuring the latent space.

The original VAE objective includes a KL
penalty term whose goal is to match the approx-
imate posterior with a prior. This regularizes
(smooths out) the latent space, ensuring that it is
possible to generate meaningful samples from any
point from the prior. Instead of using a conven-
tional KL penalty, Makhzani et al. (2015) propose
to use a GAN discriminator to match the aggre-
gate approximate posterior with the prior. Bous-
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quet et al. (2017) provide a proof that this in effect
corresponds to minimizing a Wasserstein distance
in the primal between the data and generated dis-
tributions. Zhao et al. (2017a) attack the problem
from a different angle by using a GAN to instead
learn a powerful prior that matches the aggregated
posterior. Thus, during generation, the latent vec-
tors are sampled from the GAN generator instead
of being drawn directly from an imposed prior.

Hu et al. (2017) propose a conditional VAE
model for text where a discriminator is used to
impose desired attributes on generated samples
and disentangle them from the latent representa-
tion produced by the encoder. To enable back-
propagation from the discriminator, the recurrent
decoder is made fully differentiable by applying a
continuous approximation.

Another notable approach of applying VAEs to
text was recently proposed in Guu et al. (2017),
where generation is treated as a prototype-then-
edit task – sample a prototype sentence from the
training corpus and then edit it into a new sen-
tence. Unlike conventional VAEs where the en-
coder packs the whole sentence into a latent vec-
tor, Guu et al. (2017) choose the latent vector to
represent an edit that transforms an input proto-
type into a new sentence.

Finally, autoencoders as a key technique in
unsupervised representation learning have been
widely applied in NLP tasks to regularize lan-
guage models and sequence-to-sequence mod-
els (Dai and Le, 2015), for supervised machine
translation (Zhang et al., 2016), and more re-
cently, for enabling unsupervised machine trans-
lation (Artetxe et al., 2017; Lample et al., 2017).

3 Background

In this section, we briefly review two previously
proposed types of generative models which we
adopt in this work: variational and adversarial au-
toencoders.

Both are autoencoders consisting of two com-
ponents: an encoder E, which transforms an in-
put x to an embedding (latent code) z, and a de-
coder (generator)G, which produces a reconstruc-
tion of x from z. A prior distribution p(z) is im-
posed on the embedding space and the model is
trained to match the aggregated posterior pE(z) =∫
x pdata(x)pE(z|x)dx to the prior. The two mod-

els differ in the way they achieve this goal: a VAE
includes a KL divergence term in its cost function,

while AAEs employ an adversarial training objec-
tive.

3.1 Variational autoencoder

A variational autoencoder (Kingma and Welling,
2013) maximizes a lower bound on the marginal
log-likelihood:

log pG(x) ≥ EpE(z|x)[log pG(x|z)]
−KL(pE(z|x) || p(z)).

The first term is the log-probability of reconstruct-
ing the input x given the latent vector z sampled
from the posterior distribution. The second term
is the negative KL divergence from the prior to the
posterior, which effectively acts as a regularizer,
pushing the posterior closer to the prior.

A standard Gaussian is usually chosen as the
prior distribution, and the posterior (the output dis-
tribution of the encoder) is modelled as a diagonal
Gaussian to allow for gradient back-propagation
using a reparameterization trick.

A VAE for text, as proposed by Bowman et al.
(2016), uses an RNN encoder and decoder. The
authors use KL cost annealing (gradually increas-
ing the weight of the KL term from 0 to 1) and
word dropout (randomly masking out tokens from
the decoder’s input during training) to encourage
the decoder to make use of the latent vector pro-
duced by the encoder.

3.2 Adversarial autoencoder

Adversarial autoencoders (Makhzani et al., 2015)
regularize the embedding space by means of ad-
versarial training. The model is extended with
an adversarial network (discriminator) D, which
is trained to predict whether a given vector z is a
sample from the imposed prior distribution p(z) or
an embedding produced by the encoder:

max
D

Ep(z)[log pD(z)]+

EpE(z|x)pdata(x)[log(1− pD(z))].

Here, pD(z) is the probability, predicted by the
discriminator, that z is a genuine sample from the
prior distribution.

Meanwhile, the autoencoder is trained in two al-
ternating SGD steps: In the reconstruction phase,
we optimize the standard reconstruction objective:

max
E,G

EpE(z|x)pdata(x)[log pG(x|z)].



In the regularization phase, the encoder is trained
to fool the discriminator so that the latter is unable
to distinguish the encoder outputs from the sam-
ples coming from p(z):

max
E

EpE(z|x)pdata(x)[log pD(z)].

Note that p(z) can now be an arbitrary distribu-
tion, as long as we can sample from it.

4 Models

We will now describe the details of the models we
examine in this work, our modifications to them,
and our choice of prior distributions.

VAE. In the variational autoencoder, we adhere
to the commonly used Gaussian prior and diagonal
Gaussian posterior. We employ KL term annealing
and word dropout as in Bowman et al. (2016). In
one of the settings (VAE-BOW), we replace word
dropout with the bag-of-words loss of Zhao et al.
(2017b).

AAE. For adversarial autoencoders, we experi-
ment with two kinds of prior distributions: a stan-
dard Gaussian and a uniform distribution on the
unit sphere (in Euclidean space).

In the case of a Gaussian prior, we use two
types of posterior distributions: a diagonal Gaus-
sian parameterized by the encoder, i.e. p(z|x) =
N (z; µE(x), σ

2
E(x)), and a deterministic poste-

rior, where the encoder produces a single z =
E(x) for each input. We refer to the two resulting
models as AAE-GAUSS and AAE-GAUSS-DET,
respectively.

In the spherical case (AAE-SPH), we normal-
ize the output of the encoder to ensure that the
aggregated posterior distribution is supported on
the unit sphere. During training, we add Gaussian
noise to the normalized embeddings before pass-
ing them to the decoder and the discriminator. The
variance of this noise is either fixed or exponen-
tially decayed over time.

Unlike Makhzani et al. (2015), we combine
the reconstruction and regularization phase in one
training objective:

max
E,G

EpE(z|x)pdata(x)[log pG(x|z) + λ log pD(z)].

We use λ = 20 except where stated otherwise.
To further regularize the decoder, we apply

dropout with a keep probability of 0.4 on the
LSTM inputs and states (Gal and Ghahramani,
2016).

ARAE. Adversarially regularized autoencoders
(Zhao et al., 2017a) are similar to AAEs, but in-
stead of imposing a prior distribution on the em-
beddings, they learn a flexible prior and employ
adversarial training to match it to the aggregated
posterior. We use the original ARAE implemen-
tation,2 modified to perform decoding from the
mean of the posterior distribution. We evaluate
two ARAE configurations: the defaults used by
Zhao et al. (2017a) and a modified setup with
hyper-parameters and training time matching our
models.

Plain AE. We also include a plain autoencoder,
which isn’t endowed with a means of controlling
the aggregated posterior. However, in order to
be able to draw samples from the model, we still
assume a prior distribution on the embeddings –
either Gaussian (AE-GAUSS-DET) or spherical
(AE-SPH). These autoencoders are equivalent to
their adversarial counterparts with λ set to 0.

Note that while there is no explicit control over
the embedding space of AE-GAUSS-DET, the out-
puts of the AE-SPH encoder are constrained to the
unit sphere (although a uniform distribution is not
enforced).

5 Experimental setup

We train and evaluate all models on a public cor-
pus consisting of 200,000 sentence summaries ex-
tracted from news articles3 (Filippova and Altun,
2013). We perform unsupervised sub-word tok-
enization using SentencePiece.4

Each of the models is evaluated on two different
tasks:

• Sampling. As a pure unconditional gener-
ative model, drawing random samples from
the prior distribution and performing greedy
decoding on each of the samples. This allows
us to measure how well the model approxi-
mates the underlying data distribution.

• Reconstruction. As an autoencoder, measur-
ing the reconstruction quality. For this task,
we first encode the input sentence, take the
latent vector z to be the mean of the posterior
distribution, and then run greedy decoding.

2https://github.com/jakezhaojb/ARAE
3https://github.com/

google-research-datasets/
sentence-compression

4https://github.com/google/
sentencepiece
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We give examples of generated sentences in the
supplementary material.

5.1 Sampling evaluation
To evaluate an unconditional generative model for
text, we would like to make sure that (a) the gener-
ated sentences are correct with respect to the lan-
guage used in the training data, and (b) the gener-
ated sentences reflect the diversity of expressions
in the training data, i.e. the model avoids mode
collapse. In order to capture both requirements,
we use a number of different evaluation metrics.

Cross entropy. A natural way to evaluate a
probabilistic model is cross entropy:

Epdata(x)[− log pG(x)]. (1)

Note, however, that pG(x) = Ep(z)[p(x|z)] is in-
tractable for any given x. Following Zhao et al.
(2017a), we approximate pG(x) using an RNN
language model trained on 100,000 model sam-
ples; then, to obtain an estimate of (1), we evaluate
this LM on the test set.5

We are also interested in ‘reverse cross entropy’,
i.e. the expected negative log-probability of sam-
ples from the model with respect to the true data
distribution:

EpG(x)[− log pdata(x)]. (2)

This can be thought of as a measure of plausi-
bility (fluency) of the generative model’s outputs.
Again, pdata(x) is unknown, but can be approxi-
mated using a language model. Therefore, to es-
timate (2), we score the samples from each model
using a pre-trained RNN LM. The model is trained
on a large news corpus from the English Giga-
word.6

Fréchet distance. In addition, motivated by a
comprehensive study of various GAN models (Lu-
cic et al., 2017) where the authors use Fréchet In-
ception Distance (Heusel et al., 2017) extensively
and demonstrate that it is superior to the Inception
Score (Salimans et al., 2016), we experiment with
an equivalent metric for text – Fréchet InferSent
Distance (FID) – to measure the distance between
the generative distribution and the data distribu-
tion. FID measures the Wasserstein-2 distance

5Note that Zhao et al. (2017a) use an equivalent metric,
but refer to it as ‘reverse perplexity’.

6https://catalog.ldc.upenn.edu/
ldc2003t05

(Vaserstein, 1969) between two Gaussians, whose
means and covariances are taken from embeddings
of the real and generated data (i.e. samples from
pdata and pG), respectively. To our knowledge,
this is the first time that this idea is applied to
evaluating generative models for text. Different
from the negative log-likelihood metrics discussed
above, FID directly measures the distance between
distributions, hence it offers an additional angle
for comparing generative models whose goal is to
learn to recover the true data distribution.

We compute FID between 10,000 sentences
generated from the model and taken from the test
set, respectively. To obtain their embeddings,
we use a pre-trained general purpose sentence
embedding model, InferSent (Conneau et al.,
2017), which encodes each sentence as a 4,096-
dimensional vector. We chose InferSent for com-
puting the FID metric on sentence samples be-
cause it has been shown to provide state-of-the-art
results on various sentence representation tasks,
and is domain-independent to a large extent.

5.2 Reconstruction evaluation

The metrics in the previous section quantify the
quality and diversity of samples generated while
conditioning the decoder on a sample from the
prior p(z). Another way to gauge the diversity of
sentences the model can represent is to measure
how accurately it can reconstruct a given input.
We express the reconstruction error as negative
log-likelihood (NLL) and BLEU-3 and ROUGE-3
scores computed with the input sentence as a ref-
erence.

5.3 Human evaluation

We also evaluate the models based on subjective
human judgment, focusing on the two tasks men-
tioned above: sampling and reconstruction.

For sampling, we decode sentences from ran-
dom points in the embedding space and ask hu-
man raters to rate them on a 5-point Likert scale
according to their fluency. Raters are trained so
that a score of 1 corresponds to gibberish, 3 corre-
sponds to understandable but ungrammatical sen-
tences, and 5 corresponds to naturally constructed
and understandable sentences.

For reconstruction, we present the raters with a
sentence and its reconstruction produced by one of
the models. Besides assessing fluency, the raters
are asked to provide another score on a 5-point

https://catalog.ldc.upenn.edu/ldc2003t05
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Likert scale measuring how well the output re-
flects the original meaning (this score is referred to
as relevance in the following). A score of 1 corre-
sponds to an unrelated sentence, 3 corresponds to
a reasonably good paraphrase, and 5 corresponds
to a perfect reconstruction, i.e. an identical output
or a semantically equivalent paraphrase.

The evaluation was done using a crowdsourced
rating platform. For both tasks, we evaluated a
sample of 200 sentences from each model, em-
ploying three raters per item. The results were
calculated as an average of the median sentence
ratings. For 84% of the items, there was a major-
ity score, i.e. at least two of the three raters chose
the same of the 5 possible scores for the item.

6 Results

6.1 Quantitative evaluation

The results are shown in Table 1 (automatic evalu-
ation) and Tables 2 and 3 (human evaluation). Re-
sults on samples from the training set and from an
RNN LM are included for comparison. The RNN
LM uses the same architecture and hyperparame-
ters as the decoder of all the other models.

For the sampling task, one thing to notice is that
there seems to be a trade-off between the qual-
ity and the diversity of the samples: models with
a lower (i.e. better) reverse cross entropy and a
higher fluency rating tend to have a higher (i.e.
worse) forward cross entropy. In particular, the
reverse cross entropy of some models (VAE and
some -SPH models) is less than that of the real
data – this is a clear sign that the model is suffer-
ing from a mode collapse. This is supported by the
fact that these models also tend to have worse per-
formance on reconstruction, which suggests that
the set of sentences they are able to encode is less
diverse.

Another important observation is that plain au-
toencoders with the spherical prior (AE-SPH)
achieve relatively good results, on par with their
adversarial counterparts (AAE-SPH). This sug-
gests that the techniques applied in these models –
constraining the embeddings to lie on a unit sphere
and injecting noise – are sufficient for making the
model learn to cover the sphere uniformly and be
able to decode sentences from any given point on
the sphere. The adversarial training seems to have
little additional effect, if any at all.

In particular, AE-SPH with σ = 0.1 performs
at least as well on sampling as all other types of

models we evaluated:

• It achieves a superior forward cross entropy.

• Its FID is only slightly higher than for VAE
(dw = 0.5), which achieves the lowest (i.e.
best) value.

• Although its reverse cross entropy is still be-
low the real data threshold, it is higher than
for VAEs, hence it arguably suffers less from
the mode collapse problem.

• It achieves a higher fluency score than a LM
and is only surpassed by the VAE.

• Finally, it outperforms VAEs on the recon-
struction task by a large margin.

The effect of adversarial training on the Gaus-
sian prior model (AAE-GAUSS-DET) seems to be
more pronounced than in the spherical prior mod-
els – this is unsurprising as the non-adversarial
variant (AE-GAUSS-DET) doesn’t place any re-
strictions on the aggregated posterior, and there-
fore cannot be expected to be useful as a genera-
tive model. However, AAE-GAUSS-DET still has
poor performance on sampling according to both
automatic and human evaluation.

Regarding ARAE, it outperforms all other
methods on almost all reconstruction metrics, but
its results on sampling are rather poor, especially
according to human ratings. This might be due
to a more challenging dataset than in Zhao et al.
(2017a), or simply because of the model’s high
sensitivity to hyperparameters, which is noted by
the authors.

6.2 Embedding visualization
Fig. 1 shows t-SNE (van der Maaten and Hinton,
2008) projections in 2D of the encodings of ten
random sentences from the test set. Each sentence
has been encoded one hundred times with sam-
pling from the posterior, then plotted with some
additional noise in order to better visualize col-
lapsed points.

Plain AE-GAUSS-DET is deterministic, and
each sentence is mapped to the same identical
point all 100 times. This leads to a very high-
quality reconstruction, but the embedding space is
not smooth and sampling from random points in
the prior would often produce unreadable outputs.
Plain VAE exhibits the opposite behaviour: all 10
inputs are encoded into large, heavily overlapping



Model Sampling Reconstruction

Forward Reverse FID BLEU ROUGE NLL

real data 73.11 75.38 0.4193 — — —
LM 78.50 88.75 0.6267 — — —
VAE (dw = 0.5) 79.75 65.46 0.6562 10.27 20.52 66.3
AAE-SPH (σ = 0.075) 74.01 82.34 0.6622 50.90 59.93 36.0
AAE-SPH (σ = 0.1) 76.28 66.73 0.6632 35.19 46.53 42.1
AE-SPH (σ = 0.1) 75.77 67.98 0.6635 37.56 49.42 26.3
AAE-SPH (σ = 0.05, λ = 10) 74.28 103.33 0.6749 60.39 68.14 31.3
AE-SPH (σ = 0.05) 74.69 101.27 0.7403 63.22 70.08 14.3
ARAE 80.48 94.51 0.7871 72.21 75.11 7.1
AE-SPH (σ → 0, d = 1) 79.62 117.911 0.8748 11.75 20.80 105.8
ARAE (default) 99.67 73.37 0.8860 18.38 26.08 33.4
VAE-BOW (dw = 1) 87.75 63.06 1.0150 2.03 11.43 88.9
AAE-GAUSS-DET (λ = 10, d = 1) 88.49 116.18 1.1433 68.01 73.29 23.6
VAE (dw = 0.75) 112.16 59.59 1.2440 2.04 11.30 70.5
AE-GAUSS-DET (d = 1) 107.16 71.12 3.0839 71.14 76.25 9.9

Table 1: Automatic evaluation results. Forward: ‘forward cross entropy’, i.e. the negative log-likelihood
(NLL) of a LM trained on the samples from each model and evaluated on the test set; Reverse: ‘reverse
cross entropy’, i.e. the NLL of a LM trained on real data and evaluated on the model samples; FID:
Fréchet InferSent Distance. The reconstruction section reports the NLL, BLEU and ROUGE w.r.t.
the input sentence. σ denotes the standard deviation of the noise added to the sentence embeddings
during training. d and dw denote the RNN dropout and word dropout keep probability in the decoder,
respectively (d = 1 means no dropout). ‘Real data’ corresponds to samples from the training set.

Model Relevance Fluency
real data — 4.42
AAE-GAUSS-DET (λ = 10, d = 1) 3.54 3.71
ARAE 3.35 3.56
AAE-SPH (σ = 0.075) 2.76 3.53
AE-SPH (σ = 0.1) 2.54 3.53
AAE-SPH (σ = 0.1) 2.40 3.54
AE-SPH (σ → 0, d = 1) 1.73 2.33
ARAE (default) 1.48 2.51
VAE (dw = 0.5) 1.39 3.87

Table 2: Human evaluation results for the reconstruction task. Each score is on a scale of 1 to 5. The
readability score for real data from Table 3 is included for comparison.



(a) AAE-GAUSS-DET

(b) VAE

(c) AE-SPH

(d) AAE-SPH

Figure 1: t-SNE visualization of 100 different en-
codings (samples from the posterior distribution)
of 10 sentences, using various models.

Model Fluency
real data 4.42
VAE (dw = 0.5) 3.46
AE-SPH (σ = 0.1) 3.07
AAE-SPH (σ = 0.1) 2.83
LM 2.69
AAE-SPH (σ = 0.075) 2.61
ARAE (default) 2.08
AE-SPH (σ → 0, d = 1) 1.85
ARAE 1.68
AAE-GAUSS-DET (λ = 10, d = 1) 1.53

Table 3: Human evaluation results for the sam-
pling task. Each score is on a scale of 1 to 5.

regions of the embedding space. This hints at why
this model performs poorly for reconstruction and
has very good quality sampling from any random
point in the embedding space.

Finally AAE-SPH and AE-SPH display similar
behaviours, with sentences mapped into smooth
regions in the space without significant overlap in
the projections.

While not a quantitative study by itself, the plots
are consistent with the observed results for sam-
pling and reconstruction described above.

7 Conclusions

We introduced a rigorous evaluation scheme for
generative models for text. In addition to previ-
ously proposed metrics, we proposed the Fréchet
InferSent Distance, adopted from the field of im-
age generation.

Three families of generative models (plain,
variational and adversarially regularized autoen-
coders) have been thoroughly compared, under
different regularization strategies. The qualita-
tive evaluation shows that no model outperforms
the others under all circumstances, with VAE
being the strongest for sampling, but suffering
from mode collapse and poor reconstruction per-
formance. The rest of the models represent com-
promises between good sampling and reconstruc-
tion, and as we have demonstrated, the trade-off
between these two can be controlled using simple
regularization techniques.
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